Cargando Eventos

« Todos los Eventos

  • Este evento ha pasado.

Fast inference for slow likelihoods with probabilistic machine-learning

octubre 2 | 15:00 - 16:00
Speaker: Jesús Torrado from IEM-CSIC

Venue&Time: Red Room / 3:00 PM

Abstract: Inference for slow likelihoods can require weeks or months, if possible at all, with traditional Monte Carlo samplers. This would be the case, for example, when fitting expensive non-linear matter spectrum models, or when characterizing individual long-duration GW events. I will introduce a fast machine-learning Bayesian inference algorithm for general non-Gaussian posteriors with a moderate number of parameters. I will present a pedagogical discussion of some general aspects of it, such as dealing with the curse of dimensionality, characterizing a region of interest, or parallelising active learning. I will show that the total number of expensive likelihood evaluations can be reduced by at least two orders of magnitude compared to traditional Monte Carlo methods, at low overhead costs and no pre-training. I will demonstrate its performance on a couple of real cosmological and GW problems.

Detalles

Fecha:
octubre 2
Hora:
15:00 - 16:00
Categorías del Evento:
,

Local

IFT Seminar Room/Red Room
Instituto de Física Teórica (IFT) -C. Nicolás Cabrera, 13-15, Fuencarral-El Pardo
Madrid, 28049, Spain
+ Google Map
Teléfono
+34 912 99 98 00
Ver la web del Local

Utilizamos cookies en este sitio para mejorar su experiencia de usuario. Más información

ACEPTAR
Aviso de cookies