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SUPERSYMMETRY AND MORSE THEORY

EDWARD WITTEN

Abstract

It is shown that the Morse inequalities can be obtained by consideration of a certain supersymmet-
ric quantum mechanics Hamiltonian. Some of the implications of modern ideas in mathematics for
supersymmetric theories are discussed.

1. Introduction

Supersymmetry is a relatively recent development in theoretical physics
which has attracted considerable interest and has been actively developed in
several different directions [17], [18].

A number of concepts in modern mathematics have significant applications
to supersymmetric quantum field theory [22]. Conversely, as we will see in this
paper, supersymmetry has some interesting applications in mathematics. The
purpose of this paper is to describe some of those applications and to make the
notions of "supersymmetric quantum mechanics" and "supersymmetric quan-
tum field theory" accessible to a mathematical audience.

The mathematical applications in §§2 and 3 will be self-contained. However,
it may be useful to first make a few remarks about some of the relevant aspects
of supersymmetry.

In any quantum field theory, the Hubert space % = %+ Θ3C~, where %+

and %~ are the spaces of "bosonic" and "fermionic" states respectively. A
supersymmetry theory is by definition a theory in which there are (Hermitian)
symmetry operators Qi9 i = 1, ,N, which map %+ into %~ and vice-versa.

Let us define the operator (-1)F which distinguishes %+ from %~ (and
counts the number of fermions modulo two). Thus we define (-l)Fψ = ψ for
ψ E %+ , and (-l)Fχ = -χ for χ G %~. The first basic condition which must
be satisfied by the supersymmetry operators Qt is that they each anticommute
with(-l)F:

(i) (- i) F β, + β,(- i) F = o.
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Second, the supersymmetry operators, like any other symmetry operators, must

all commute with the Hamiltonian operator H which generates time transla-

tions:

(2) Q H-HQ^O.

An additional condition is needed to specify the algebraic structure. In

supersymmetric quantum mechanics in its simplest form one requires that for

any i,

(3) Qf = H,

while for / ¥=j

(4) Q,Qj + QJQi = 0.

In §2 we will study the supersymmetry algebra in this form.

The above stated algebra must be generalized when one comes to relativistic

quantum field theory. The reason for this is that Lorentz transformations relate

the Hamiltonian H to the momentum operators which generate spatial transla-

tions, so that the algebraic relations (3) and (4) are not compatible with

Lorentz invariance. We will restrict ourselves in this paper to the simplest case

of a world with one space and one time dimension, so that there is only a

single momentum operator P. In the simplest situation there are two supersym-

metry operators, Qx and Q2, and they satisfy

(5) ρf-iZ + P, Ql = H-P, QϊQ2+Q2Qι=0.

From (5) one can deduce (essentially by means of the Jacobi identity) that

(6) [Qi,H] = [Qi,P]=0.

The algebraic structure (5), which obviously reduces to (3) and (4) if P = 0, is

compatible with Lorentz invariance,1 but we will make no reference to Lorentz

invariance in this paper.

By adding the first two equations in (5), we learn that the Hamiltonian

(7) H = \{Q\ + Q\)

can be expressed in terms of the Q( and is positive semi-definite (being a sum

of squares of Hermitian operators).

Since H and P are quadratic in the Qi9 the fact that the Q. are odd (equation

(1)) implies that H and P are even, [H,(-l)F] = [P,(-l)F] = 0.

1 In a world with one space and one time dimension, there is a single (anti-Hermitian) generator
M of Lorentz transformations. It satisfies [M, H] = P, [M, P] = H, [M, Qx] = \QX, [M, Q2] =
~ ΪQi These relations, which say that (//, P) transform like a vector and (Q\,Q2) like a spinor
under Lorentz transformations, are compatible with (5).
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We are now almost ready to understand why it is that modern mathematics
has something to say about supersymmetry. The most important question
about a supersymmetric theory is the question of whether there exists in the
Hubert space % a state | Ω) which is annihilated by the supersymmetry
operators Qi9

(8) β, | 0 > = 0 .

This question is important for the following reasons. Such a state, if it exists,
necessarily has zero energy, in view of (7). Moreover, (7) shows that no state
could have negative energy. Therefore a state | Ω) which obeys (8), if it exists,
is necessarily the minimum energy state or " vacuum state" of the system. If
there are several states | Ωα) which obey (8), they are equally good zero energy
vacuum states (except possibly for questions involving cluster decomposition).

Now in any quantum field theory if a symmetry operator (an operator which
commutes with the Hamiltonian) annihilates the vacuum state, then the one
particle states furnish a representation of the symmetry. In the case of a
supersymmetric theory, if a solution of (8) does exist, then the Hubert space of
the theory contains bosons and fermions of equal mass.

The bosons and fermions which are observed to exist in nature do not have
equal masses, so if supersymmetry really does play a role in nature, the world
is described by a theory in which (8) has no solutions. In such a case, it is said
that supersymmetry is "spontaneously broken". If supersymmetry is sponta-
neously broken, there still exists a vacuum state—a state of minimum energy
—but its energy is strictly positive, and it is not annihilated by the supersym-
metry charges. In such a case, the bosons and fermions are not equal in mass,
despite the underlying supersymmetry.

The spontaneous breaking of supersymmetry which occurs if (8) has no
solution is somewhat analogous to the spontaneous breaking of gauge invari-
ance in the Weinberg-Salam model, or to the spontaneous breakdown of chiral
symmetry in quantum chromodynamics. In each case a symmetry of the
underlying equations is not manifest in the particle spectrum because the
symmetry operator does not annihilate the vacuum.

It should be emphasized that for applications in physics, what is important
is primarily the question of whether a solution of (8) does exist. The number of
solutions—assuming that one or more solutions does exist—is not so im-
portant.

In some cases, methods which are standard in physics suffice to show that a
supersymmetrically invariant state—a solution of (8)—does or does not exist
[21]. (A solution may be shown not to exist by calculating a reliable, positive
lower bound to the energy eigenvalues. It may be shown that a solution does
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exist by showing that the theory has a mass gap so that there is no potential
"Goldstone fermion".) In general, though, it is far too difficult to show by
direct methods whether (8) has a solution, much as it is too difficult to
determine directly whether, say, the Dirac operator on a compact manifold has
a zero eigenvalue. But the indirect methods that are effective in the latter case
can usefully be applied to supersymmetry.

The simplest indirect method is to calculate the index of one of the
supersymmetry operators. In view of (5), any state | Ω) with Qx\ Ω) = 0 also
obeys P | Ω) = 0. In looking for states | Ω) which obey Qx\ Ω) = 0, we therefore
lose nothing by restricting ourselves to the subspace %0 consisting of states
annihilated by P. Like the full Hubert space %, %0 has a decomposition
%0 = %Q Θ%~ into bosonic and fermionic states.

Within %0 the simplest supersymmetry algebra of (3) and (4) is obeyed. In
particular, Qf = Qj = H for any i ory. Hence a state in %0 annihilated by one
of the Qt is annihilated by all of them.

Choosing one of the Qi and denoting it simply as Q, we want to know
whether Q restricted to %0 has a zero eigenvalue. This of course can be
partially addressed as an index problem. We write the restriction of Q to %0 as
Q+ + β_, where Q+ maps %Q into %Q, and Q_ is the adjoint of Q+ . A
nonzero index of Q+ would ensure that Q does have a zero eigenvalue within
%0. The index of Q+ may usefully be referred to as Tr(-1)F, the trace of the
operator (-\)F which distinguishes bosons from fermions.

In [21] the index was calculated and shown to be nonzero in a number of
interesting cases, including supersymmetric φ4 theory and supersymmetric
non-Abelian gauge theories (both in four dimensions). Therefore supersymme-
try is not spontaneously broken in any of these theories.

Other "deformation invariants" which appear in conventional problems in
mathematics have analogues in supersymmetry quantum field theories. We will
return to this later.

In §§2 and 3 of this paper we will consider supersymmetric quantum
mechanics systems with a finite number of degrees of freedom. In §2 we will
discuss systems which obey the simplest supersymmetry algebra of (l)-(4). We
will see that such systems have a very surprising connection with Morse theory.
In fact, we will be led to a new way of looking at the Morse inequalities, and to
a conjectured generalization of them. In §3 we will discuss supersymmetric
quantum mechanics systems which obey the more elaborate algebra of (5). We
will see that such systems are related to the fixed point theorems for Killing
vector fields, much as the systems of §2 are related to Morse theory. Finally, in
§4 we will discuss the extension from supersymmetric quantum mechanics to
supersymmetric quantum field theory.
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The results of §2 have an analogue for complex manifolds, which will be

discussed in a separate paper.

2. Morse theory

The simplest example of supersymmetric quantum mechanics is a system

which is very well known in mathematics. Let M be a Riemannian manifold of

dimension n. Let Vp9 p = 0,1, ,w, be the space of/7-forms. Let d and d* be

the usual exterior derivative and its adjoint. Define

(9) Q{=d + d*, Q2 = i(d-d*)9 H = dd* + d*d,

so that H is the usual Laplacian acting on forms. Then by virtue of the fact

that d2 — d*2 — 0 we have the supersymmetry relations

(10) Q\ = Q\ = H, QlQ2 + Q2Qi = 0.

We must interpret p-ίoτms as being bosonic or fermionic depending on

whether p is even or odd, so that the Qt map bosonic states into fermionic

states and vice-versa.

This theory has a simple generalization, which appears widely (in a different

form, which we will discuss later) in the physics literature. Let h be a smooth

(real-valued) function on M, and t a real number. Define

(11) dt = e~htdeh\ d* = ehtd*e~ht.

Evidently, d2 — df2 — 0, so if we define

(12) Qu = dt + d*9 Q2t = i(di-d*)9 Ht = dtdt + d*dt9

the algebra (10) is still satisfied for any /. As we will see, h plays the role of a

Morse function, and consideration of this system will lead us to a new proof of

the Morse inequalities.

We may define a Betti number Bp(t) as the number of linearly independent

/?-forms which obey dt\p = 0 but cannot be written as ψ = dtχ for any χ.

However, it is almost obvious that Bp(t) is independent of t, and therefore

equal to the usual Betti number Bp. This follows immediately from the fact that

dt differs from d only by conjugation by the invertible operator eth

9 so that the

mapping ψ -* ethψ is an invertible mapping from/?-forms which are closed but

not exact in the usual sense to /7-forms which are closed but not exact in the

sense of dr

It then follows from standard arguments that the number of zero eigenvalues

of Ht acting on /?-forms is, just as at t = 0, equal to Bp. This is useful because,

as we will see, the spectrum of Ht simplifies dramatically for large /. We will be
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able to place upper bounds on the Bp in terms of the critical points of A, by

studying the spectrum of Ht for large /.

To understand why the critical points of h enter, it is useful to work out an

explicit formula for Ht. Some notation is useful. At each point p on M choose

an orthonormal basis of tangent vectors ak(p). The ak(p) can be regarded as

operators on the exterior algebra at /?, the operation being interior multiplica-

tion, ψ -> i(ak)\p. Let ak* be the adjoint operators. Thus ak* is exterior

multiplication by the one-form dual to ak. The ak* and ak would be called

"fermion creation and annihilation operators" in the physics literature. Also

on a Riemannian manifold it makes sense to speak of the covariant second

derivative of h with components D2h/DφiDφJ in the basis dual to the ak.

With these conventions, one may readily calculate that

(13) Ht = dd* + d-d + t\dhf + 2 1 - ^ - [a*', a'].
ij DφDφJ

Here (dh)2 = γ / 7(3Λ/9φ')(9V 9Φ 7) i s t h e square of the gradient of Λ, evaluated
with respect to the Riemannian metric γ of M.

We can now see why the critical points are important. For very large /, the

"potential energy" V(φ) = t2(dh)2 becomes very large, except in the vicinity

of the critical points where dh = 0. Therefore the eigenfunctions of Ht are, for

large t, concentrated near the critical points of h, and an asymptotic expansion

for the eigenvalues in powers of \/t can be explicitly calculated in terms of

local data at the critical points.

Let us first consider the case of a nondegenerate Morse function h, so that

dh = 0 only at isolated points pa, and at each of those points the matrix of

second derivatives D2h/DφιDφj is nonsingular. Let Mp be the number of

critical points whose Morse index is/?—that is, the number of critical points at

which the matrix D2h/DφιDφj has/? negative eigenvalues. We will first prove

the Morse inequalities in the weak form Mp> Bp.

Let Xp\t) be the nth smallest eigenvalue of Ht acting on /7-forms. We will

see that there is an asymptotic expansion for large t

( β(n)

We will calculate explicitly the Ap below. As has been argued above, the Betti

number Bp is equal to the number of λ(

p\t) which are equal to zero. For large

t, the number of λ( °̂ which vanish is no larger than the number of vanishing

Ap

n\ We will see below that the number of Ap

n) vanish is equal to the Morse

number Mp9 that is, the number of critical points of Morse index/?. This shows
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that Mp> Bp. The stronger form of the Morse inequalities will require a slight

further argument.

As t becomes large, the low-lying eigenvalues of Ht can be calculated by

expanding about the critical points pa. In the vicinity of any critical point, one

can introduce locally Euclidean coordinates φ, (chosen so that the critical point

is at φ, = 0 and so that in terms of the φ, the metric tensor γ is Euclidean up to

terms of order φ2). The φ, can be chosen so that, near the critical point,

λ(Φ, ) = A(0) + \ Σ λ,φ2 + 0(φ3) for some λ,.

Near the critical point pa, Ht can be approximated as

(15) ^ =

There are corrections to this formula of higher order in φ, but they can be

neglected in calculating the Ap"\ The reason for this is that for large t the

eigenfunctions are concentrated very near the critical point. The corrections to

(15) enter in calculating the higher order terms B^n\ Cj;n\ and so on.

It is very easy to calculate the spectrum of the operator which appears in

(14). This operator is

(16)

where

(17) H^-^j + t^φl Kj=[aJ*,aJ].
όφi

The Hi and Kj mutually commute and can be simultaneously diagonalized. As

is well known Hi9 which is the Hamiltonian of the simple harmonic oscillator,

has the eigenvalues /1 λ/1 (1 + 2Λf ), Nt; = 0,1,2, , each of which appears

with multiplicity one. The eigenfunctions of Hi vanish rapidly if | λ φ. | » 1/ ft,

and this is the reason that the approximation (15) is valid to lowest order in

\/t. The operator K} has eigenvalues ± 1. The eigenvalues of Ht are therefore

(18) tΣ (I λ, I (1 + 2ΛJ) + λ / Λ , ) , ΛJ = 0,1,2, , nt = ± 1.
i

This is the spectrum of Ht acting on the exterior algebra as a whole. If we wish

to restrict Ht to act on /7-forms, a moment's thought about the operators Kt

shows that we must require that the number of positive ni be equal to/7.

For (18) to vanish, we must set all Nt to zero, and we must choose ni to be

+ 1 if and only if λ, is negative. This means that, expanding around any given

critical point, Ht has precisely one zero eigenvalue, which is a /?-form if the

critical point has Morse index/?. All other eigenvalues of Ht are proportional to

/ with positive coefficients.
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(18) gives explicitly the leading coefficients Ap

n) in the spectrum of Ht near

any critical point. The higher order coefficients B^n\ C£n\ and so on could be

straightforwardly calculated according to the standard rules of Rayleigh-

Schrόdinger perturbation theory.2

We have been discussing the states localized near one critical point, but the

low-lying eigenstates of Ht for large t may of course be localized near any

critical point on the manifold. Taking account of all the critical points we see

that for every critical point A, Ht has just one eigenstate | a) whose energy does

not diverge with t. Moreover, | a) is a/?-form if A has Morse index p. It is not

necessarily the case that Ht annihilates all the states \a)\ we have only shown

that the leading coefficients in perturbation theory vanish. But Ht certainly

does not annihilate any of the other states, whose energy is proportional to /

for large t. So at most the number of zero energy /?-forms equals the number of

critical points of Morse index /?, and we have established the Morse inequali-

ties in the weak form Mp> Bp.

What about the strong form of the Morse inequalities? We wish to show that

(19) ΣMpt
p ~ Σβpt

p = 0 +

where all Qp are nonnegative integers. It is well known that (19) is equivalent

to the assertion that the critical points form a model of the cohomology of the

manifold M in the following sense. For every p, p = 0,1, ,«, let Xp be a

vector space of dimension Mp. One may think of Xp as a vector space spanned

by the critical points of Morse index p. Then (19) means precisely that there

exists a coboundary operator δ:Xp-^X+ι, where δ 2 = 0 and the Betti

numbers associated with the cohomology of 8 equal those of the manifold M.

The existence of such a coboundary operator is equivalent to the Morse

inequalities, but the Morse inequalities give no canonical form for it.

We have actually constructed the required coboundary operator. In fact, the

space of low energy/?-forms | a) localized near the critical points A of index/?

may be identified with Xp9 and dt restricted to the Xp is the required

coboundary operator whose existence establishes the Morse inequalities in

their strong form.

Since we have now a canonical form for the coboundary operator (canonical

except that it depends on the choice of a Riemannian metric for M), we can go

2 For a rigorous justification of Rayleigh-Schrόdinger perturbation theory for operators in
Euclidean space, see Reed and Simon [16]. Although the rigorous theory has apparently not been
developed for operators acting on vector bundles on manifolds, the method used in Reed and
Simon, pp. 34-38, to treat the double well potential should suffice with some elaboration for this
case. The essential point is that only local data enters in the Rayleigh-Schrόdinger perturbation
theory.

ignac
Máquina de escribir
---------------------------------------------------------------------------------
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further and attempt to refine the Morse inequalities by calculating the action of
dton t h e ^ .

To put it differently we have obtained the Morse inequalities from an
approximate calculation of the spectrum of Hr From a more accurate calcula-
tion of the spectrum we can hope to get a better upper bound on the number
of zero eigenvalues and thereby to strengthen the Morse inequalities.

One's first thought might be to try to improve on the Morse inequalities by
calculating the higher order terms in perturbation theory. However, it is easily
seen that the B^n\ C^n) and all other terms in the asymptotic expansion vanish
for all those states whose energy vanishes in lowest order. This really follows
from the fact that the coefficients in perturbation theory can all be calculated
in terms of local data at the critical points. From local data one cannot tell
whether a given critical point is required by the topology or is "removable". So
all of the states which have zero energy in the first approximation remain at
zero energy to all orders in \/t.

To learn something new we must perform a calculation which is sensitive to
the existence on the manifold of more than one critical point. Since the
"potential energy" in our problem, V(φ) = ί2(dh)2, has more than one
minimum (one for each critical point), we must allow for the possibility of
" tunneling" from one critical point to another.

The effect of tunneling can be calculated in the WKB approximation, or, in
a current language, by means of instantons [14]. Tunneling effects often
remove spurious degeneracies which exist in perturbation theory, and so it is in
this case.

It may be useful to first state the result which emerges from the instanton
analysis. The relevant instantons or tunneling paths are the paths of steepest
descent leading from one critical point B to another critical point A. They are
the solutions, in other words, of the equation

(20)
dλ

Moreover, the instanton calculation shows that the only relevant solutions of
(20) are the ones which correct two critical points whose Morse indices differ
by one.

Now to each such path Λ we must associate a sign ± 1. This may be done as
follows. At each critical point A we have a state | a) of approximately zero
energy. It is a/?-form, if A has index/?, and we may think of it as furnishing an
orientation of the p dimensional vector space VA of negative eigenvectors at A
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Now consider a path Γ of steepest descent from a critical point B of Morse

index/? + 1 to a critical point A of Morse index/?. Let v be the tangent vector

to Γ at 2?, and VB the subspace of VB orthogonal to v. The orientation of VB

given by | b) induces an orientation of VB (by interior multiplication of v with

the (p + l)-form corresponding to | b)).

By considering paths of steepest descent which run near to Γ from points

near B to points near A, we get a mapping from VB to VA. Since VB is oriented,

this mapping induces an orientation of VA. We define nv to be + 1 or -1

depending on whether that orientation agrees or disagrees with the orientation

corresponding to | a)?

Define

(21) n(a,b) = Σ»τ>
r

where the sum runs over all paths Γ of steepest descent from B to A. We are

now ready to define a coboundary operator δ: Xp -> Xp+ι. For any basis

element | a) of Xp, define

(22) δ\a)=Σn(

where the sum runs over all basis elements \b) of Xp+λ. The definition does

not make it obvious that δ 2 = 0, but this follows from the considerations

below, in which we will extract δ from the large t limit of dn whose square

certainly vanishes.

The instanton calculation shows that all states in Xp, which are not annihi-

lated by δδ* + δ*δ, do not have zero energy. For large t their energies are

roughly exp - It \ h(A) - h(B) | .

Consequently, if we denote as Yp the number of zero eigenvalues of

δδ* + δ*δ acting on Xp, then the Yp furnish upper bounds on the Betti

numbers of our manifold M, just as the Morse numbers Mp do. (19) remains

valid if one replaces Mp by Yp.

Actually, it is reasonable to conjecture that the Yp are in fact always equal to

the Betti numbers Bp of M. This does not follow from instanton considerations

alone. It is conceivable that some states which really do not have zero energy

nonetheless remain at zero energy not just in perturbation theory but also in

3 Another way to define this is as follows. As we are working on a Riemannian manifold, we
have at each point x on Γ a well-defined matrix Mx — D2h/DφiDφJ of second derivatives of h.
For generic Λ, Mx has nondegenerate eigenvalues for every x on Γ, so there is a well-defined vector
space Vx consisting of the p lowest eigenvectors. As Vs interpolates smoothly from VB to VA, we
may transport the orientation of VB to VA via Vx. (It is essential here that generically the tangent
vector υ to Γ at B is always the element of VB corresponding to the largest eigenvalue.)
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the simplest instanton calculation which leads to (22). Their energies would in

that case vanish even more rapidly for large t than exp — 2t\h(A) — h(B)\ .

However, one frequently finds that in the spectrum of a system all degen-

eracies which exist in perturbation theory but are not exact are eliminated by

the simplest tunneling calculation. This motivates the guess that in general

Yp — Bp. This is certainly true in simple examples.

Actually, the integer n(a, b) defined above appears in other contexts. It is

the intersection number of the ascending sphere from A and the descending

sphere from B [13]. It is plausible that the integer-valued coboundary operator

8 actually gives the integral cohomology of the manifold M, but this statement

could not be proved with the methods of this paper.

Let us now discuss the derivation of (22). The system described by dn df,

and Ht can be obtained by canonical quantization of

(23)
3A dh D2h -,

2 ..3A dh

θφ1" dφj
t ψ

θφ1" dφj Dφ'DφJ

and it is in this form that the theory appears in the physics literature.4 In (23),

φι are local coordinates of Λf, γ iy and RiJkl are the metric and curvature tensors

of M, and the ψ1' are anti-commuting fields tangent to M.5 How canonical

quantization of (23) leads to the exterior algebra was discussed in [21].

Instanton solutions or tunneling paths in this theory would be extrema of this

Lagrangian, written with a Euclidean metric and with the fermions discarded.

So we write the relevant action:

(24)
dλ

It is easy to prove that minimum action extrema of £ with given initial and

final conditions are paths of steepest descent. In fact'after simple manipula-

tions one finds

(25)
dλ

4 This Lagrangian is a simplification of the supersymmetric nonlinear sigma model which we will

discuss in §4. It is obtained by requiring the fields in the sigma model to be functions only of the

"time", λ.
5 After quantization the ψ' become the creation and annihilation operators of (13).
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From (25) we see that for any trajectory

(26) £>t\h(λ= + o o ) - Λ ( λ = -oo)

with equality only if

which (apart from a rescaling of λ) is the equation of steepest descent

considered earlier.

We thus see that the minimum action paths between any two critical points

A and B are paths of steepest descent. Moreover, the action for each such path

is

(28) I=t\h(B)-h(A)\.

The instantons contributions to matrix elements of dt are of order exp — / for

large ί, and the contributions to matrix elements of Ht — dtdf + d*dt are of

order exp — 2/, explaining a remark made earlier.

The next step in an instanton calculation would usually be the evaluation of

the Fredholm determinant for small fluctuations about the classical solution.

However, in this case the nonzero eigenvalues cancel between bosons and

fermions, due to supersymmetry. We are left with the zero eigenvalues of the

fermions. For a trajectory running from A to B, the index of the Dirac

operator equals the Morse index of A minus the Morse index of B.

We are interested in the case in which the Dirac operator has exactly one

zero mode, because we want to evaluate the action of dn which is linear in

fermi fields, on the states of very low energy. This explains why the relevant

paths connect critical points whose Morse indices differ by one. (As long as the

paths of steepest descent A and B are isolated, there is always precisely one

Dirac zero mode; it can be given explicitly because it can be obtained from the

classical solution by a supersymmetry transformation.)

The normalization factor associated with the fermion zero mode cancels in

magnitude against the normalization factor associated with the fact that our

classical solution is really a one-parameter family of solutions (because of the

trivial invariance under λ -> λ + constant). Finally we see that all details

having disappeared, the amplitude (b, dta) due to a path Γ of steepest descent

is just exp — t\ h(B) — h(A) | it is assumed here that \a) and \b) are

normalized in the L2 norm.

However, it remains to determine the sign of the amplitude, which is

absolutely crucial when we add the contributions of different paths to obtain

n(a9 b). It actually is somewhat awkward to determine the sign from the
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instanton point of view, because of the notorious minus signs associated with

fermions. A straightforward way to determine the sign is provided by the WKB

approach which is worth describing in its own right.

For a problem like this one, the basic idea of the WKB approximation is the

following. We have seen that the states | a) and | b) decay rapidly upon

departing from their respective critical points A and B. However,6 the rate of

decay is slowest along paths corresponding to solutions of the Euclidean

equations of motion, which interpolate between two minima of the potential.

We are thus led back to the paths Γ of steepest descent.

The state | a) is small where | b) is large, and vice-versa, because | a) is

localized near A while | b) is localized near B. However, the overlap between

I a) and | b) is greatest along the paths Γ connecting A and 2?, so a knowledge

of I a) and | b) along these paths is enough to determine the dominant large t

contribution to (b \ dta). To determine the behavior of | a) and | b) along Γ is

effectively a one-dimensional problem, because the fall-off upon departing

from Γ is even more rapid than the fall-off along Γ. The one-dimensional

problem is exactly soluble, and one finds, for instance, the \a) falls off like

exp — th(φ) in ascending along Γ from A to B.

Having determined | a) and \b) to a sufficient approximation, it is straight-

forward to evaluate (b \ dtά) and in particular to determine the sign. The result

is easily understood. The state | b) starts out at B with a sign corresponding to

an orientation of what previously was called VB. Propagating | b) continuously

along Γ by solving the WKB equation, we eventually arrive at A with an

orientation of VA. The sign of (b \ dta) depends on comparing this orientation

to the orientation of VA corresponding to \a). In this way we obtain the result

stated earlier for the sign. (The tangent vector to Γ, which entered our previous

discussion, appears in acting with dt on the wave-functions.)

This discussion would suggest that the boundary operator should be

(29) ~d\a)=Σe-t(h(B)-h(A))n(a,b)\b),
b

where n(a, b) was defined earlier.7 However, the factors of eth, which obvi-

ously carry no essential information, can be eliminated by redefining the states

e-th(A) i ay>g ^ i aym j n s o doing we are simply undoing the conjugation by eth

6 For the WKB treatment of tunneling through a barrier in one dimension, see, for example, [13,

171-178]. For a discussion of the multi-dimensional case, see [19].
7 Note that the absolute value sign can be dropped here from (h(B) — h(A)), because if A and

B have Morse index p and p + 1 respectively, then paths Γ from A and B only exist for

h(B)
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which originally brought us from dtodr After this redefinition we arrive at the
form given in (22) for the coboundary operator.

This completes our discussion of nondegenerate Morse theory. Let us now
discuss how one would treat the degenerate case in this framework.

Let us thus assume that the critical point set of h is a manifold N with
connected components Nt. We assume that at any point on one of the Ni9 the
matrix D2h/DφιDφJ restricted to the directions orthogonal to Nt is nonsingu-
lar. The number of negative eigenvalues of this matrix is then a constant, the
Morse index pi of Nt. The negative eigenvectors form a /^-dimensional vector
bundle over Ni9 which we will call the negative bundle A(Ni).

The potential energy V(φ) = t2(dh)2 now vanishes on the Ni9 but is, for
large t9 very large elsewhere. The wave functions therefore have a complicated
dependence on the N( but vanish very rapidly on departing from them. Let us
discuss the states localized near one of the Ni9 which we will call No. We will
see that for large t the low-lying spectrum of Hn acting on states localized near
Nθ9 converges to the spectrum of the Laplacian on No.

A small neighborhood of No in our manifold M can be regarded as a fiber
bundle M(NQ) over No by projecting each point in M onto the point in N to
which it is closest. Because M is endowed with a Riemannian structure, it
makes sense to think of the exterior derivative d of No as acting on the
de Rham complex of the whole neighborhood M(N0).

For Ht one finds a formula

(30) Ht= (dd* + d*d) + H'9

where the first term is just the Laplacian of No considered to act on the
de Rham complex of M(N0), and H' contains all terms which act in the
directions transverse to No.

For large t9 Hf can be approximated by a formula similar to (15). Fixing a
point n of No, one can think of H' as a differential operator acting on the
differential forms of the fiber over n in M(N0). H' so restricted has a single
zero energy state—all other states have energy of order t. We will call this zero
energy state \a(m; «))—n denoting a point in N and m denoting a point in the
fiber over n in M(N). This state | α) is a p-ϊorm (p being the index of No).
Moreover, rather as in the nondegenerate case, | α(π)> gives an orientation of
the fiber over n of the negative bundle A(N0).

Now we restore the n dependence. Rather as in the Born-Oppenheimer
approximation in molecular physics, the degrees of freedom transverse to iV0

are frozen into their ground state | α), because of the large energy associated
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with any excitation. It therefore is appropriate to write the low-lying states | ψ)

of Ht in the form

(31) \φ(n9m)) = \χ(n))®\a(m;n)).

Here | ψ> is a differential form of N (with boundary conditions to be discussed

shortly). The tensor product of a differential form | χ ) of No with a differential

form I α) of the fiber in M(N) to make a differential form | ψ) on the total

space makes sense because of the Riemannian structure of M.

The proper global conditions on | χ ) depend on the question of whether the

negative bundle A(N0) is orientable. This is so because, at each point «,

I a(m; n)) furnishes an orientation of the fiber over n in A(N0). If A(N0) is

orientable, |χ> is simply a differential form; if not, | χ ) is a section of the

de Rham complex of N twisted with the orientation bundle of A(NQ). The

cohomology corresponding to this twisted de Rham complex we will refer to as

the " twisted cohomology" of No.

Since | a(m\ n)) is annihilated by H\ the eigenvalue problem Ht | ψ) = λ | ψ)

reduces for large t to the problem

(32) (dd* + d*d)\χ)=λ\χ)

on NQ. The zero eigenvalues correspond of course to the cohomology (or

twisted cohomology) of No. The approximation which is being made here is to

ignore the No dependence of | a(m; «)). The approximation is valid to lowest

order in \/t\ the corrections could be systematically calculated, by analogy

with the corrections to the Born-Oppenheimer approximation in molecular

physics.

In particular, the states which have nonzero energy in this approximation

really have nonzero energy for large enough t. However, their energies are of

order one and equal (for large /) to the nonzero eigenvalues of the Laplacian

on N.

States that really have zero energy must have zero energy in this leading

approximation. We thus obtain the inequalities of degenerate Morse theory—

which bound the Betti numbers of M in terms of those of the critical point set.

The contribution of No to the Morse polynomial is tpPt(N0), where P refers to

the ordinary Poincare polynomial or the Poincare polynomial appropriate to

the twisted de Rham complex, depending on whether A(N0) is orientable.

The subtlety that arises when A(N0) is not orientable is analogous to what

occurs in the diatomic molecule when the electrons have nonzero angular

momentum about the axis between the nuclei. The quantum numbers of the

nuclear motion are then shifted, because the nuclear wave-function is a section

of a twisted bundle, even though the interaction of the nuclei with the electron

angular momentum might have appeared negligible.

ignac
Máquina de escribir
----------------------------------------------------------------------------------
----------------------------------------------------------------------------------
----------------------------------------------------------------------------------
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3. Killing vector fields

Let M be a compact Riemannian manifold of dimension «, which admits the

action of a continuous group of isometries. Let A' be a Killing vector field—the

infinitesimal generator of an isometry of M. Let N be the space of zeros of

K—not necessarily connected, and not necessarily consisting of isolated points.

We can regard K as an operator i(K) on differential forms acting by interior

multiplication. With this in mind, we modify the usual exterior derivative d

and define

(33) ds = d + si(K)9

s being an arbitrary real number. Note that while d maps a p-ίorm into a

(p -f l)-form, ds maps a p-ίorm into a linear combination of a (p + l)-form

and a (p — l)-fprm. We therefore split the de Rham complex Finto the spaces

V+ and V_ consisting of the p-foτms of even and odd p respectively. Then ds

maps V+ into V_ and V_ into V+ .

One straightforwardly calculates that

(34) d} = -d;2 = stκ,

where d* is the adjoint of ds, and t κ is the Lie derivative along K. Only in

verifying that d*2 = -d] do we need the fact that K is a Killing vector field.

In this section, we will primarily study the "Hamiltonian"

(35) H, = dsd* + d*d.S '

Our main results will concern the number of zero eigenvalues of Hs. We will

see that this number is independent of s as long as s Φ 0 and independent of

the choice of a ^-invariant Riemannian structure for M. The number of zero

eigenvalues of Hs always equals the sum of the Betti numbers of N.

This implies, in particular, an alternative proof of a bound [8] on the sum of

the Betti numbers of the fixed point set. Indeed, for s = 0, Hs is the Laplacian

of M, and the number of zero eigenvalues of Hs equals the sum of the Betti

numbers of M. The eigenvalues of Hs are smooth functions of s, since the

^-dependent terms are bounded operators. Hence the number of zero eigenval-

ues is no bigger for very small nonzero s than it is for s = 0. So our result on

the number of zero eigenvalues for s φ 0 implies that the sum of the Betti

numbers of N is not bigger than the sum of the Betti numbers of M.

In the course of determining the number of zero eigenvalues of Hs9 we will

also see that the study of Hs for large s can be used to express the Hirzebruch

signature of M in terms of the fixed point set N. One obtains the fixed point

theorem [2], [3], [9] in a version in which the contribution of each connected
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component of N is an integer (its own signature). Also, dropping the require-

ment that K should be a Killing vector field, one can obtain from the large s

limit of Hs a proof of Hopf s theorem expressing the Euler characteristic of M

in terms of the zeros of any vector field. The proofs of these theorems which

we will extract from the large s behavior of Hs are really variants of the proofs

based on the index theorem [6], [7], [5].

Turning to our main goal—counting the zero eigenvalues of Hs — dsdf +

d*ds—clearly any zero eigenvalue ψ of Hs must obey dsψ = J*ψ = 0. It must

therefore also be annihilated by d] — stκ. We therefore lose nothing by

restricting ourselves to the subspace V of the de Rham complex consisting of

states which are annihilated by tκ—states which are invariant under the

isometry generated by K.

Within V, dj = 0, and we can view ds as a sort of generalized coboundary

operator. By standard arguments the number of zero eigenvalues of dsd* +

d*ds equals the maximum number of linearly independent states which are

closed but not exact in the sense of ds. In other words, it equals the dimension

of(keτds/imds).

Since ds, like d itself, can be defined purely in terms of differential topology

without choosing a metric on M, this shows that the number of zero eigenval-

ues of Hs does not depend on the choice of A^-invariant Riemannian metric

on M.

We can likewise easily show that the number of zero eigenvalues is indepen-

dent of s as long as s is nonzero. Let eλp be the linear operator which

multiplies every /?-form by eλp. Conjugation by eλp cannot change the dimension

of (ker ds/im ds). Under conjugation we find e~λpdse
λp = e~λds9 where s' =

se2λ. Since s can be changed in an arbitrary way by conjugation (but always

remaining nonzero), the number of zero energy states is independent of s for

S 7^0.

The above arguments can of course be refined to refer separately to the

number of even or odd zero energy states. Thus let n+ and n_ be the number

of zero eigenvalues of Hs in V+ and V_ respectively. Then n+ and n_ are

separately independent of s and of the choice of metric on M. In fact

n+— n_ = χ(Λf), the Euler characteristic of M.

Our next goal is to prove a lower bound on n+ and n_. Let N+ and N_ be

the sum of the even and odd Betti numbers of N respectively. We will show

n+> N+ and n_> N_. In fact, it is sufficient to prove one of these inequali-

ties; the other one then follows from the fixed point theorem for the Euler

characteristic, which states that n+ —n_— N+ —N_= χ(M). (We actually will

show later that this formula can be proved by studying the large s behavior of
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Hs.) Depending on whether M is even dimensional or odd dimensional we will

concentrate on proving that n+ > N+ or that n_> N_.

Let No be any connected component of N. Let ψ be any differential form on

No which is a representative of the cohomology of No. Our strategy will be to

construct for each such ψ a corresponding ψ defined on M which is closed but

not exact in the sense of ds.

A neighborhood M(N0) of No in M can be regarded as a fiber bundle over

No by projecting each point in M onto the point in No to which it is closest.

Making use of the fiber bundle structure we obtain from ψ a differential form

ψ defined on M(N0). Then Jψ = 0 in M(N0), and i(K)$ = 0, because the

projection from M(N0) onto No commutes with the action of K. So in M(N0),

dsψ — 0. Moreover, it is impossible in M(N0) to satisfy ψ = dsa; on No, since

^ vanishes, this equation would reduce to ψ = da, which by hypothesis has no

solution.

However, on the boundary of M(N0), d\p and hence also ds\p are nonzero.

We must modify ψ to avoid this problem. This can be done in an explicit way.

From the vector field K and the Riemannian metric we form the scalar

function K2 = (K, K) which vanishes only on the fixed point set iV. Let Mε be

the set of all points on M with K2 < ε. Choose some ε > 0 such that the

component of Mε containing No is contained in M(N0).

Let φ(x) be a smooth function of a real variable with φ(0) = 1 and

φ(x) = 0 for x > ε.

Making use of the Riemannian metric, there is a definite one-form K which

is dual to K. Since K is a Killing vector field, i(K) (dK) = -d(K2).

We now define

σ = φ(K2) + -φ'(K2)dK + -\φ"(K2)dK A dK

(36) i _ \
+ — φ'"(K2)dKΛ dK/\dK+ ••• .

3.s3

The series terminates because M has finite dimension n. One readily sees that

dp = 0 if « is even, while if n is odd, dp is zero except in dimension n.

Now let

(37) X = ψΛσ.

Let us assume now that for even (respectively odd) «, ψ is a representative of

the even (respectively odd) dimensional cohomology of N. Under this restric-

tion one may readily see that dsχ = 0. (Otherwise, it is true except in the

highest dimension.) Moreover, χ is not exact in the sense of ds. The equation

X = dsa would again reduce on No to ψ = da.
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For every even (or odd) dimensional cohomology class of N we have

produced an object χ which is closed but not exact in the sense of ds.

Depending on whether n is even or odd, we have proved that n+ > N+ or that

n_^ N_. As noted earlier, consideration of the Euler characteristic shows that

both of these inequalities hold if one does.

Now let us prove the converse inequalities N+ > n+ and N_> n_. This will

be done by studying the large s behavior of the spectrum of Hs. One

straightforwardly calculates that

(38) Hs = dd* + d*d + s2K2 + s((dK) Λ +i(dK)).

Here dK is regarded as an operator acting on differential forms by exterior

multiplication, and (using the Riemannian metric) by interior multiplication

also.

In this case, the "potential energy" is V(φ) = s2K2. For large s the

eigenstates are therefore concentrated near the zeros of K. As in §3 this makes

it possible to obtain detailed information about the spectrum for large s. As the

arguments will be somewhat repetitious of §2, we will be brief.

Assume first that K has only isolated zeros. This of course is possible only if

the dimension n is even. In this case. N_ — 0 and N+ equals the number of

zeros of K for reasons which will now be sketched.

Near any zero A of K, there are locally Euclidean coordinates centered at A

in which

(39) K=\)
i=\ \ U Λ 2 / U Λ 2 i - l

with some constants λ1, , λ n / 2 . Near A, Hs can be approximated by

(40) i=X 7 r = 1

+ 2* 2 K(a2r-\*2r ~ a2r-\^2r)^

where the ai and a* are the "creation and annihilation operators" introduced

in (13).

As in §2 (40) can be diagonalized explicitly. There is again precisely one zero

eigenvalue, all other eigenvalues being of order s. The one zero eigenvector of

Hs lies in V+ regardless of the values of the Xt.

We have thus altogether N+ states in V+ whose energy does not diverge as s

is increased, and none in V_. As in our discussion of Morse theory, this implies

n+ < N+ , n_— Ή_— 0. Combining this with our previous inequality, we have
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Now let us consider the general case in which the zeros of K are not isolated

points. This is just analogous to our discussion of degenerate Morse theory.

For large s the low-lying eigenstates are concentrated near N. The eigenvalue

problem associated with Hs reduces for large s (and for the states whose energy

does not grow with s) to the eigenvalue problem of the ordinary Laplacian

HN = dd* + d*d on N. Hs has, in lowest order in l/s, one zero eigenvalue for

every zero eigenvalue of HN. This statement holds separately for the forms of

even and of odd dimension.

Consequently, Hs has N+ even eigenvalues and N_ odd eigenvalues which

vanish in the large s limit. Since an eigenvalue which is actually zero for all s

certainly must vanish as s becomes large, we get as usual an upper bound on

the number of zero eigenvalues of Hs. In fact, we obtain the desired upper

bounds n+ < N+ , w_< N_.

This completes our determination of the number of zero eigenvalues of Hs.

Let us now discuss how the fixed point theorems for the Euler characteristic

and the Hirzebruch signature emerge in this framework. As noted previously,

we will obtain essentially an explicit realization of the proofs based on the

index theorem.

Considering first the Euler characteristic, we have Hs = dsd* + dsd* =

(ds + d*)2 since d2 + </*2 = 0. Hence zero eigenvalues of Hs are zero eigenval-

ues of the Hermitian operator Ds = ds + d*. Using the decomposition V = V+

+ V_ for the de Rham complex, we may write Ds — Ds+ +DS_, where Ds+

maps V+ into F_, and Ds_ is its adjoint.

By standard arguments the index of Ds+ is independent of s and hence equal

to the Euler characteristic of M just as at s — 0. On the other hand, we can

calculate the index of Ds+ from our knowledge of the spectrum of Hs in the

limit of large s. As there are N+ even eigenvalues and N_ odd eigenvalues of Hs

which vanish as s becomes large, the index of Ds+ is Λf+ — N_, which is just the

Euler characteristic of N. So M and TV have equal Euler charactertistics,

(41) x(M) = χ(N),

As it stands this is a less than satisfactory result, since it is, according to

Hopf s theorem, possible to express the Euler characteristic of M in terms of

the zeros of any vector field, not necessarily a Killing vector field.

Actually, it is possible to obtain the more general result in this framework.

Letting K be an arbitrary vector field, we may still define ds as before, and let

Ds = ds + d* and Hs — D2. Hs is now given by a formula similar to (38) but

slightly more complicated. It is no longer true that Hs = dsd* + d*ds,

because dj + df2 = 0 only for Killing vector fields. Because of this, it is no
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longer true that the zero eigenvectors of Hs are annihilated by the Lie

derivative along K, and there is no general formula for the total number of

zero eigenvalues of Hs.

However, it is still possible to calculate the Euler characteristic of M as the

number of even eigenvalues of Hs which vanish for large s minus the number of

odd eigenvalues of Hs which vanish for large s. The potential energy is still

V(φ) = s2K2, so the low-lying eigenvalues are still localized, for large s, near

the zeros of K. One may therefore associate an integer a(Nt) with each

connected component Nt of the space N of zeros of K. Here a(Nt) = a+ (Nt) —

α_(i^ )» where a± (Nt) are the number of even (or odd) states localized near Nt

whose energy vanishes for large s. Each a(Nt) may be determined from local

data near Nr For an isolated zero of K it can be easily shown that a equals the

degree or index of the zero. (In the generic case of a zero of degree ± 1, the

leading large s approximation is again an exactly soluble harmonic oscillator

Hamiltonian.) We have now χ ( M ) = Σ, α(Λξ )

Let us now return to the case in which AT is a Killing vector field. Assuming

that M is even dimensional and orientable with orientation form co, let us

discuss, from this point of view, the fixed point theorems for the Hirzebruch

signature of M.

The de Rham complex has the decomposition V — V+ +V_ into states

which are even or odd under the duality operation*. Define the Hermitian

operator Qs — iλ/2ds 4- i~ι/2d*. With appropriate conventions in defining*,

Qs is odd under *, so we may write Qs — Qs+ + β 5 _ where Qs+ maps V+ into

F_, and Qs_ is its adjoint. By standard arguments the index of Qs+ is

independent of s and equal to the Hirzebruch signature of M.

At s — 0, all states annihilated by Qs are also annihilated by t κ . Hence, for

any s, in calculating the index of Qs we may restrict ourselves to the space Fof

states annihilated by t κ .

Since Q2 — Hs + 2is£κ, as one may readily calculate, any zero eigenvector

of Qs which is annihilated by t κ is also annihilated by Hs. Therefore we may

calculate the signature of M as the number of zero eigenvalues of Hs in V+

minus the number in V_.

For example, we have seen that near an isolated zero of K, Hs has a single

zero energy state. It is straightforward to determine, by further study of (40),

whether this state is even or odd under*. Choosing the λ r of (39) to be all

positive, the zero energy state near a given fixed point Ai is even or odd

under * depending on whether dxλ Λ dx2 Λ dxn is a positive or negative

multiple, at Ai9 of the orientation form ω of M. Defining nι; = ±1 accordingly,
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we have

(42) sign(M) = 2 « I
i

for the signature of M.
The generalization to the case where the fixed point set N does not consist of

isolated points is the following. One may assign to each component Nt of N an
orientation τ by requiring that τ Λ dK Λ ΛdK (the right number of factors
to make an /i-form) is, on Nt, a positive multiple of ω. We have seen that the
zero eigenvalues of Hs near N( are in direct correspondence with the zero
eigenvalues of the Laplacian on Nr The correspondence maps states even (or
odd) under*into states even (or odd) under*if N( is oriented in the way
just indicated. Hence each Nt contributes its own signature to the signature of
M. Adding up the contributions we find that N and M have the same
signature,

(43) sign M — sign N.

These considerations may be sharpened by thinking of the signature as a
character of the group generated by tκ. Thus for any real θ let I(θ) =
Tr * exp θtκ\ the trace is to be evaluated among the states annihilated by Qs.
Actually I(θ) is independent of θ; this must be true for any s, since it is
certainly true at s — 0. However, the contribution from states localized near
any given fixed point is not independent of θ. An isolated point At contributes

where the λ/r, r — 1,2, ,«/2, are the "rotation angles" at the /th zero of K\
(it is assumed again that they are defined to be all positive). (44) can be
calculated by study of Qs in the approximation of (40).

The calculation of (44) is somewhat delicate and must be done by fixing a
given Fourier component of I(θ) (in other words, a given eigenvalue of itκ)
and calculating the spectrum of Qs and Hs in the large s limit. The convergence
is not uniform for the different Fourier components. A more extensive discus-
sion and an analogous treatment of certain problems on complex manifolds
will appear in a forthcoming paper.

Adding the contributions of all the fixed points (which we assume to be
isolated, for simplicity), we have

(45)

for any θ. This formula was originally given by Atiyah and Bott [2], [3], [9].
The fact that (45) is independent of θ gives strong relations among the λ/r.
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This reasoning can also be applied to obtain the fixed point theorems for the

twisted signature complex. One can also use this approach to obtain the

theorem of Atiyah and Hirzebruch [4] concerning the vanishing of the

(character-valued) index of the Dirac operator on manifolds which admit a

Killing vector. This theorem is of interest in connection with the question [20]

of obtaining realistic fermion quantum numbers in Kaluza-Klein theories.

Let us now make a few remarks preliminary to our discussion of quantum

field theory in §4. We define

Q u = i*/*d, + r'/χ*, Q2s =
K } Hs = dsd* + d*ds, P = 2is£κ.

One readily sees that for any s these operators satisfy the supersymmetry

algebra in the form

(47) Q2 = H + P, Q2

2 = H-P, QlQ2 + Q2Ql=0.

As discussed in the introduction, this is the (simplest) form of the super-

symmetry algebra which is consistent with special relativity.

A slight generalizations is possible. Let h be any function invariant under the

action of K\ that is, i(K)dh = 0. Let dst = e~htdse
ht. Defining

(48) H,,, = dS9tdlt + dZtdStt9

P = 2is£κ,

it is evident that the supersymmetry algebra is still satisfied. (47) and (48) will

be our starting point in formulating supersymmetric quantum field theory.

We have so far assumed that M is compact. But in discussing quantum field

theory we will be interested in cases in which this is not so.

There will be two interesting cases. If N, the space of fixed points, is

compact, M is geodesically complete, and the asymptotic behavior of M is such

that Hs has a discrete spectrum, then most of our considerations apply. Our

determination of the number of zero eigenvalues of Hs in terms of the topology

of N is still valid.

Also, as long as N is compact and Hs has a discrete spectrum, the operators

Hs and Hst always have the same number of zero eigenvalues. This is because

the passage from ds to dst is achieved by conjugation and the number of zero

eigenvalues of Hs or of Hs t can be characterized as the number of states which

are closed but not exact in the sense of ds or dst. It does not matter here

whether M is compact.
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If N is not compact, then Hs has a continuous spectrum, and most of our

considerations do not apply. However, for suitable choices of h9 Hs t may have

a discrete spectrum. This is so if, on N, (dh)2 is bounded away from zero on

the complement of some compact set. In that situation there is an important

version of the fixed point theorems which can be applied.

As in §2, define on N the operators dt = e~htdeht and Ht = dtd* + d*dr

Then in the large s limit (with / fixed), the low-lying spectrum of Hs t on M

coincides with the spectrum of Ht on N. Consequently, any deformation

invariant associated with the system (ds n Hs t) on M equals the corresponding

invariant for the system (dn Ht) on N. This is true, for example, for the index

related to the decomposition V — F+ΘF_. That index in the quantum field

theory case is the quantity referred to as Tr(-1)F in the introduction.

In quantum field theory, M will be infinite dimensional and N finite

dimensional. The reduction of a problem on M to a problem on N is crucial to

make computations possible.

4. Quantum field theory

We will now formulate supersymmetric quantum field theory by generalizing

the previous considerations to certain Riemannian manifolds of infinite di-

mension (function spaces).

We will limit ourselves to the simplest case of a world with one spatial

dimension. Thus space will be a circle S. S is endowed with a Riemannian

metric and has a circumference L. We eventually wish to take the limit L -> oo

and replace the circle by the real line. But it is most convenient to begin with a

finite L.

Now let B be a finite dimensional complete Riemannian manifold, and

Ω(2?; S) the space of maps from S to B. Then Ω has a natural Riemannian

structure (,) obtained by combining the Riemannian structure of B with that

of S\ (δσ, δτ) — f dx(8o(x\ δτ(x)) where x parametrizes arc length on S,

and (, > is the Riemannian structure of B.

As the loop space Ω is an (infinite dimensional) Riemannian manifold, one

may think of introducing the de Rham complex of Ω and the de Rham

operators d and d*. However, these operators do not really make sense. In

particular, one could hardly make sense of the nonzero spectrum of H — dd*

-f d*d, although one could try to formally associate the zero eigenvalues of H

with the cohomology of Ω (defined by other means).

It is perhaps rather surprising that a relatively slight modification of the

de Rham operators of Ω gives rise to something meaningful. Indeed, the group
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U(\) of rotations of the circle S can be considered to act on Ω (the action being

simply σ(x) + σ(x + a) for any loop σ in Ω). Let K be the corresponding

Killing vector field—the infinitesimal generator of the group action on Ω.

Then following §3 we introduce a real number s and define on the de Rham

complex of Ω the operators

(49) ds = d + si(K), Hs = dsdf + dfds.

This system defines the "supersymmetric nonlinear sigma model" (in one

space, one time dimension, and based on the manifold B). Hs is the Hamil-

tonian of the theory, while ds and d* are the supersymmetry operators (the

connection with the conventional supersymmetry algebra is given in (46) and

(47)).

If B is R or S \ (49) describes massless supersymmetric free field theory and

is exactly soluble. Otherwise, it is a rather challenging problem, part of the

program of "constructive quantum field theory", to put (49) on a mathemati-

cally sound footing. This problem is rather delicate and involves "renormaliza-

tion", which is a sort of limiting procedure to define the operators acting on

the infinite dimensional function space. The supersymmetric nonlinear sigma

model is "asymptotically free" if B is, for example, a homogeneous space of

positive curvature. There are very strong arguments to believe that the renor-

malization program can be carried out successfully in asymptotically free

theories, so that such theories are in fact capable of being made mathemati-

cally well-defined.

With any choice of B9 the spectrum of Hs can be calculated for large s as an

asymptotic expansion in powers of \/s. In certain cases, other methods are

available. For instance, if B is SN or CPN, the spectrum of Hs may be

calculated for large N, independent of s [1], [10], [19]. These calculations

incidentally give strong support to the idea that the supersymmetric nonlinear

sigma is mathematically well-defined after renormalization. The nonzero en-

ergy spectrum of Hs describes particles, bound states, collisions—the whole

range of phenomena of quantum field theory.

Since (49) is not the usual formulation in the physics literature of the

supersymmetric nonlinear sigma model, the following remarks may be useful.

Ordinary quantum mechanics is (in the simplest case) described by the

Hamiltonian operator H — - V2 + V, where V2 is the Laplacian (or Laplace-

Beltrami operator) on some manifold 2?, and V is a potential energy function.

Quantum field theory with bosons only is a sort of infinite dimensional

generalization of that construction. The Hamiltonian is still of the general form

H — - v 2 + V, but V2 is now formally the Laplace-Beltrami operator on an

infinite dimensional function space Ω, and V is a potential energy function
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defined on Ω. This point of view, which goes back to the early days of quantum
field theory, is for some purposes extremely clumsy, but for other purposes it is
useful to be able to think of quantum field theory as an infinite dimensional
generalization of ordinary quantum mechanics.

Supersymmetric theories involve in many ways objects which might be
regarded as the square roots of the objects appearing in theories of bosons
only. The de Rham operators are in some sense the square roots of the
Laplace-Beltrami operator. Therefore given that quantum field theories of
bosons only are based (in one viewpoint) on the Laplace-Beltrami operator on
function spaces, it is not too surprising that the de Rham operators d and d*
on function spaces are the starting point for (one formulation of) supersym-
metric quantum field theory. The main points in the connection between the
de Rham operators and conventional formulations of supersymmetric theories
were pointed out at the end of [22].

Let us now discuss some of the interesting questions to which this point of
view can usefully be applied. We assume first that B is compact.

As explained in the introduction the most important question is whether Hs

has one or more zero eigenvalues. The states annihilated by Hs, if they exist,
are supersymmetrically invariant vacuum states, and their existence means that
supersymmetry is not spontaneously broken.

Counting the zero eigenvalues of Hs is precisely the problem we solved in §3,
for the case of a finite dimensional manifold M. In that case we showed that
the number of zero eigenvalues equals the sum of the Betti numbers of N9 the
space of zeros of the Killing vector field which enters in the definition of Hs.

In the quantum field theory considered here, M is replaced by the infinite
dimensional loop space Ω(2?). A zero of K would be a map from S into B
which is invariant under rotations of S. It would be, in other words, a constant
map from S into B. The space of zeros can thus be identified with B itself.

Assuming that the results of §3 apply in the infinite dimensional situation,
we conclude that in the quantum field theory the number of zero eigenvalues
of Hs equals the sum of the Betti numbers of B. In particular, for compact B
we conclude that Hs always has at least two zero energy states if B is
orientable, and that supersymmetry is never spontaneously broken in the
supersymmetric nonlinear sigma model.

Results from the \/N expansion are entirely consistent [1], [11], [19], [22]
with the idea that the results of §3 do apply in the infinite dimensional context.
However, to establish this on a firm footing one would have to exhibit a
regularization of the infinite dimensional system within the context of which
the considerations of §3 apply. As it is not clear how this can be done, it is
worth while to state some more modest conclusions which can be drawn on the
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basis of arguments which are more clearly applicable. Let us thus discuss what
can be learned about the supersymmetric nonlinear sigma model by considera-
tion of index theorems.

There are two relevant decompositions of the Hubert space % of this theory.
We first may write %= %+ Θ3C_, where %+ and %_ are the bosonic and
fermionic spaces (corresponding in the finite dimensional case to p-forms of
even or odd/?, respectively). Relative to this decomposition one may define an
index (the number of zero eigenvalues of Hs in %+ minus the number in %_).
As in the introduction this index may be viewed as the trace of the operator
(-1)F, which assigns the value + 1 to every state in %+ , and -1 to every state
inX_.

It is also possible in the supersymmetry nonlinear sigma model to define an
operation which generalizes the notion of duality on finite dimensional mani-
folds. One may be surprised that it makes sense to formulate duality on the
infinite dimensional space Ω. Very roughly, this may be understood as follows.
If one chooses an Λf-dimensional approximation to Ω, the low-lying spectrum
of Hs is dominated by /?-forms with p of order {N. Letting N become larger
and larger, the relevant values of p increase in such a way that the duality
operation which exists in the finite dimensional case has a smooth limit when
one finally defines the theory on the infinite dimensional manifold Ω.

In any case, the supersymmetric nonlinear sigma model admits a symmetry
operation which in the physics literature is usually referred to as the discrete
chiral symmetry <25, and which has all the algebraic properties of duality on
finite dimensional manifolds. Thus Q5 commutes with Hs, and Q2 — 1, so %
has a decomposition %— %+ ®5C_, where %+ and %_ contain respectively
the states even and odd under Q5. Also the Hermitian operator Q = ix/2ds +
i~ι/2d* anti-commutes with Qs. So for the same reasons as in the finite
dimensional case, the difference between the number of zero eigenvalues of Hs

in %+ and the number in %_ is a deformation invariant, which we may think
of as the trace of Q5.

These invariants Tr(-1)F and Tr Q5 may be viewed as providing a definition
of the Euler characteristic and Hirzebruch signature of the function space Ω. In
the finite dimensional case, we can identify Tr(-1)F and TτQ5 with the Euler
characteristic and Hirzebruch signature of the space of zeros of K. We have
seen that in the quantum field theory the space of zeros can be naturally
identified with B itself, so we expect

(50) Tr(-1) F = χ(B), ΎτQ5 = sign(^).

Actually, these results are on a rather solid footing for the following reason.
As in our discussions in §§2 and §3, to evaluate Tr(-1)F and Tr Q5 it is enough
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to have an asymptotic expansion in powers of \/s for the spectrum of Hs. Such
an expansion is provided by perturbation theory, which is the basis for most of
what we know about the supersymmetric nonlinear sigma model (and quantum
field theory in general). The results (50) can be obtained [22] just as in the
finite dimensional case by studying the spectrum of Hs for very large s. No
non-perturbative questions of regularization and renormalization are relevant;
the only assumptions required to justify (50) are that the supersymmetric
nonlinear sigma model does exist and that—as every physicist supposes—
perturbation theory gives correctly an asymptotic expansion for the behavior
of the spectrum at large s.

We actually can go somewhat further along these lines. Let /: B -> B be any
isometry. There is then a corresponding isometry T: Ω -> Ω in the loop space
(T is the mapping σ -> t σ for any σ: S -» B). Since T commutes with ds and
Hs9 we can define the deformation invariants Tr(-1)FΓ and Tr Q5T, which in a
finite dimensional setting would equal the Lefschetz number and the signature
of T, respectively.

In the finite dimensional case, the Lefschetz number and signature of T can
be identified with the Lefschetz number and signature of the restriction of T to
the space of zeros of the Killing vector field K. In the quantum field theory the
restriction of T to the space of zeros can be identified with t: B -» B. So we
conclude

(51) Tr(-1) F Γ-Lef(/) , ΊτQ5T= sign(r).

Again (51) can be justified by studying the spectrum of Hs for large s and so
requires only very weak assumptions.

The importance of (50) and (51) is that if any of these deformation
invariants are nonzero, Hs must have zero eigenvalues, so supersymmetry is not
spontaneously broken.

To summarize then, we may conclude in a quite reliable way that in the
supersymmetric nonlinear sigma model, supersymmetry is not spontaneously
broken if B has a nonzero Euler characteristic or Hirzebruch signature, or
admits an isometry of nonzero Lefschetz number or signature. On a more
speculative basis we may claim that supersymmetry is never spontaneously
broken in this theory, the number of zero eigenvalues of Hs being always equal
to the sum of the Betti numbers of B. The latter claim is more speculative,
because it does not follow just from a knowledge of the large s behavior of the
spectrum, but requires considerations which are more delicate and less obvi-
ously valid in the infinite dimensional situation.

Let us now leave aside the nonlinear sigma model, and consider the
supersymmetric version of φ4 theory and some of its generalizations. We
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choose for B the real line R. The system based on ds and Hs is then relatively
trivial—supersymmetric massless free field theory.

However, as discussed at the end of §3, we may introduce a function h on Ω
and pass from ds to dst = e~thdse

th. The Hamiltonian is now Hs t — dstd*t +
d*tds t. With suitable choices of h, this gives the supersymmetric version of the
usual scalar field theories.

The appropriate choices of h are as follows. Let φ: S -> R be a real-valued
function on S— that is, a point in Ω. Let W be a smooth real-valued function
of a real variable. Then define

(52) h(φ) = jdxW{φ{x)).

If W(φ) = mφ2, this describes supersymmetric massive free field theory. For
W(φ) = aφ3 + 6φ, we obtain the supersymmetric φ4 theory. Letting W be an
arbitrary polynomial, we obtain the supersymmetric field theories with poly-
nomial interaction.

We now wish to discuss the question of most crucial physical interest—
whether Hs t has zero eigenvalues. For reasons discussed in §3, the number of
such zero eigenvalues, if any, is independent of s and t. The space of zeros of
the Killing vector field can now be identified as R, and because this is not
compact, many of the considerations of §3 do not apply. However, there is one
useful tool in discussing the zero eigenvalues of Hs r This is the index Tr(-1)F.

As discussed at the end of §3, there is a version of the fixed point theorems
which applies in this situation. By consideration of the large s behavior of the
spectrum, one may reduce the index problem on Ω to an immensely simpler
index problem on the space R of zeros of the Killing vector field. In fact, we
may replace dst by its restriction to R, which is just the operator dt — e~htdeht

acting on the de Rham complex of R.
As R is one-dimensional, the index problem associated with dt and Ht =

dtd* + d*dt is particularly simple. In fact, dt is equivalent to the ordinary
differential operator

acting on real valued functions of a real variable φ (recall that L is the
circumference of S\ it appears because of the integration over S in (52)).

Determining the index of D is a trivial and well-known special case of the
Atiyah-Singer index theorem. The index is 1,0, or -1 depending on the
behavior of W for large φ. For instance, if W is a polynomial of leading term
+ φ", the index is 1 or 0 depending on whether n is even or odd. In particular,
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if W is a polynomial of even order, T r ( - 1 ) F = 1 and supersymmetry is

unbroken regardless of the values of the "coupling constants" (coefficients of

various terms in W). This is a remarkable result in the sense that, in this

generality, it could hardly have been obtained by means of conventional

arguments in particle physics.

If W is a polynomial of odd order, or more generally if the index is zero, the

situation is more complicated. One may readily show that the one-dimensional

operator Ht has no zero eigenvalues when the index is zero. As the low-lying

spectrum of Hst converges to that of Ht in the large s limit, Hst also has no

zero eigenvalues for large enough s. This conclusion actually holds for all s,

since we know that the number of zero eigenvalues of Hst is independent of s.

However, this conclusion must be interpreted with care, for reasons which will

now be explained.

In this section, we have always taken S to be a circle of arbitrary cir-

cumference L. However, physical interest really centers on the "infinite volume

limit" L -> oo. This limit is not straightforward, and, for instance, our index

theorems are not directly applicable when L = oo.

The relevance of our considerations as L -> oo is really the following. If it

can be shown, for instance by means of an index theorem, that the energy of

the vacuum (the lowest eigenvalue of the Hamiltonian) vanishes for every finite

L, then, as the large L limit of zero is zero, the vacuum energy also vanishes in

the large L limit. This conclusion holds even if the mathematical structure used

to prove that the vacuum energy vanishes for finite L is ill-defined for L = oo.

No such general conclusion can be drawn if it is known that the minimum

eigenvalue of the Hamiltonian is not zero for finite L. One must then face the

question of whether the minimum eigenvalue converges to zero as L -» oo. For

instance, we have shown above that if the ordinary differential operator D has

zero index, then the lowest eigenvalue of Hst is nonzero for any L. However,

fOΓ w — φ3 + bφ (a typical case in which the index is zero), conventional

methods in particle physics [22] show that if b is large and negative the

minimum eigenvalue converges to zero as L -» oo, while if b is large and

positive the minimum eigenvalue does not converge to zero and supersymmetry

is spontaneously broken in the infinite volume limit.

5. Conclusions

It is not at all clear whether supersymmetry plays a role in nature. But if it

does, this is a field in which mathematical input may make a significant

contribution to physics.
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One outstanding mathematical problem is certainly the problem of giving a
sound mathematical formulation to the infinite dimensional structures dis-
cussed in §4. This is (part of) "constructive field theory".

Another outstanding question is the generalization of the considerations of
§4 to other theories. Supersymmetric scalar field theory in the interesting case
of three space dimensions may be formulated by analogy with the discussion in
§4 but with one essential difference. The starting point is Kahler geometry
rather than real differential geometry. However, for supersymmetric gauge
theories it is not at all clear what the right mathematical structure is, and this is
even less clear in the case of supersymmetric theories of gravity. If supersym-
metry does play a role in physics, many other questions calling for a significant
application of mathematical ideas are bound to emerge in the course of time.
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