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We suggest a possible extension of the Monte Carlo technique to systems with fermionic 
degrees of freedom. We study in detail the application to an elementary example. 

1. Introdnction 

Monte Carlo simulations have recently emerged as one of the most powerful 
methods for obtaining information on pure gauge theories [ 11. If this technique is to 
be used for a direct computation of properties of known particles, however, the 
effect of fermions must be properly included. 

In the Feynman path integral formulation, fermions are described by anticom- 
muting variables. N anticommuting variables span an algebra with 2N generators: 
even for fairly small values of N, the amount of space needed to store a single 
element of this algebra exceeds by far the memory capacity of any possible 
computer. 

Anticommuting variables must be avoided in computer simulations. In many 
physically interesting cases, this can be accomplished by using the Matthews-Salam 
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formula. Let the euclidean action be given by 

S[ ~, ~b,A ] -- E ~Aiy[ A ] ~. + So[ A ] ,  (1.1) 
i , j  

where ~ and ~p; (i = l, N )  are the fermionic fields and A stands for the bosonic 
fields. It is crucial that the action be bilinear in the fermionic variables (quite often 
the action is of this form or may be reduced to it by introducing auxiliary fields). 
Then the integration over the fermionic degrees of freedom can be done analyti- 
cally: 

f d[ qT] d[ #]  e x p { -  S[ ~, q~,A ] } = det{A[ A ] } e x p { - S o [  A ] } ,  

f d[,V] dE ~] ~ j  exp{-S[ qT, ~, A ]} = {aE A ] } ; '  det{A[ A ] } exp{-  Sol A ]} .  

(1.2) 

Similar results can be obtained for higher-order Green functions. 
If det{A[A]} does not change sign as a function of A (e.g., A[A] is a positive 

definite operator or its eigenvalues always have even multiplicity), it can be 
absorbed into the action, producing an effective action for the bosonic field A: 

S~ff[ A ] = So[A ] - T r l n A [ A ] .  (1.3) 

All of this is well known. In principle, one could do Monte Carlo simulations for 
Sen[A]: however, the exact computation of the determinant is too slow (it requires 
N 3 steps). In this paper we propose a simple technique to evaluate approximately 
the determinant (more precisely the ratio of two determinants), which requires an 
acceptable amount of computer time. In sect. 2, we describe the method; in sect. 3, 
we apply it to a simple system, and in sect. 4 we present a few short remarks on the 
connection of this procedure with equations of the Langevin type. 

2. The introduction of pseudofermions 

For the reader's convenience, we recall the principles of Monte Carlo simulations 
[ 1,2]. The aim is to compute 

fd[A]f[A] exp{-S[ A] } 
<y[A]>------ (2.1) 

f dE~] exp{-s[A]} 
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As a starting point one constructs an algorithm which, given the configuration A, 
generates a new, trial configuration ,4, according to a definite probability distribu- 
tion P(A --->A). P must satisfy P(A --->.4) = P(A--->A). If A is an unconstrained real 
variable, the simplest algorithm consists in adding to A a random variable with 
symmetric distribution. 

A sequence of configurations A (i) is then generated in the following way. Starting 
from A = A (°, the new, trial configuration A is determined and a random number x 
is extracted with uniform probability distribution over the unit interval. If 

e x p { - ( S [ A ]  - S [A] )}  > x ,  (2.2) 

Ao+ i) is set equal to .4; otherwise, A (i+ 1) is set equal to the old configuration A. (In 
other words, if the new configuration leads to lower action, the change A--,A is 
always accepted; if not, it is accepted with the conditional probability exp{ - (S[ .4]  
-S[A])}.) This guarantees that the sequence eventually reaches a re#me of 
statistical equilibrium, where the probability of encountering any definite config- 
uration A is proportional to exp{ -  S[A]}. It follows 

< f [ A ] > - - l i m ( l i _ ~ i f [  ])  k-,~o k A(O " 
(2.3) 

Eq. (2.3) holds independently of the choice of probability distribution P(A--->A); 
however, if this choice is not "appropriate", the convergence of the right-hand side 
of eq. (2.3) may be very slow. 

To apply this algorithm to 

S~f,[ A ] = So[A ] - Trln{A[A] }, 

we must compute the ratio of two determinants. A substantial simplification occurs 
if we choose P(A --->A) so that A is close to A. Neglecting terms corresponding to 
higher powers of ( . 4 -  A), we obtain 

So. [  - so,,E A ] = So[ - SoE A ] 

- 2 (a- ' ) j ,A a) ,  
i,y 

(2.4) 

where A'ij = 8Aij/SA. 
Unfortunately, the computation of (A-1)j i is also impractical: our suggestion is 

to compute (A- l)y; approximately using a Monte Carlo technique. Indeed, if A is a 
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positive operator, we can write 

(ZX-'b, = <~,+; ) 

f d [ ~ ]  d[ q~]gOi~jexp{--Y.,,j~iA,j~} 

f d[ ~ ] d[ 0 ] exp{ - Xi,jTkiAuepj } 
(2.5) 

where ~ ,  ~i are complex bosonic fields which will be called pseudofermions. ~i ana 
~i interact like the fermions but are ordinary numbers. 

[If A is real symmetric, real bosonic fields ~i are sufficient. Eq. (2.5) is replaced 
by 

(A-')+, = <,/,,++ > 

f d [ ,  ] ¢,q,j exp { - ½Y.,.g¢,AigOj } 

f d[ q~]exp{-½Ei,g¢iAigq,j) 
(2.6) 

and all subsequent formulae are changed accordingly.] 
The final prescription is the following. We construct Monte Carlo simulations for 

the coupled system of A, ~ and ~ very much as in the standard appfication of the 
method, but with two major differences: for each upgrading of the bosonic field A, 
the pseudofermionic variables ~ and ~ are upgraded n times. When we upgrade the 
fields, different actions are used: these are, respectively, 

S~,+ = E ~iAq[ A ]q,j, (2.7) 
i , j  

S A -- So[ A ] - ~] ~;q~j Aij [ A ] ,  (2.8) 
i , j  

where the long bar denotes the average over the last n upgradings of the pseudo- 
fermionic fields. 

For large n, the pseudofermionic dynamics is much faster than the bosonic one, 

which is relatively slow: (~iq~j) is very near to ~iq~j. Neglecting errors proportional 
to ( , 4 -  A) 2, the correct results are obtained for n going to infinity. 

This method reproduces the functional averages of a system with fermions as a 
limit of Monte Carlo-like simulations; in practice it can work only if not too high 
values of n are needed to extrapolate to n--+ oo (the computer time is linear in n). It 
is hard to estimate theoretically how large n must be; in sect. 3 we show with an 
explicit example that good results are also obtained for low n. We notice en passant 
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that eqs. (2.7) and (2.8) are  easily generalized to the case where Nf fermionic species 
(flavours) are present, interacting with the A field in an SU(Nf) invariant way. The 
action for the pseudofermions is not modified; the new bosonic action is 

S A = So[ A ] - N, Z ~,*jAij[ A ] .  (2.9) 
i , j  

As expected, for N r = 0 we have no feedback from the pseudofermions on the 
bosons. With N r = - 1 we recover the bosonic theory ( - 2  charge conjugate bosons 
are a fermion) and the correct results are obtained also for n =1 .  

3. A simple example 

The ultimate goal would be to apply the method to gauge theories. In this case, A 
stands for the gauge fields and the ferrnionic term in the action is ~ ( ~  + m)~p, D 
being the covariant derivative. The operator /~  + m is not positive definite, but we 
can use the following chain of identities [3]: 

det[ D + m] = [ det{ (D + rn) z } ]1/2 

~[de t ( -D+m)  det(D+m)]'/2ffi[det{-D2+m2)] '/2 (3.1) 

The operator _/~2 + m 2 is now positive definite and can be used for the pseudo- 
fermionic action. Neglecting colour indices, one would find 

S a = l - F  F ~  - ½ N f ~ ( m  2 -- ~2)dp,  
4 ~ p ~ - -  (3.2) 

S~,q, --- ~ ( r n  2 - ~ 2 ) ~ b  . (3.3) 

Having in mind this future application, we have investigated a model with action 

S f  A2 + ~ ( I  +gA2). (3.4) 

The integrations over bosonic and fermionic degrees of freedom are trivial. One 
finds 

2 + 3 g  
<A2 > = 4 + ' 

( A 4 ~  = 6 + 15g 
8 + 4 g  ' 

2 
<~#'>---- 2 + g  ' 

- x ) )  - p ( x )  = 
2(1 + g x  2) 

exp{ - x 2 } .  (3.5) 
(2+g) 
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We have tried to reproduce these results with our modified Monte Carlo 
simulation. The effective actions for the A and (real) ~ evolutions are 

SA = A 2 - 2 g , 2 A  s , 

S, = q~2(1 +gAS).  (3.6) 

n upgradings of the pseudofermion (q0 are done for each upgrading of the bosonic 
field A. The expectation value ( ~ )  is given by twice the mean value of ~s. Using 
complex ~ we would have 

s A  = A s - g ~ , ~ , A  2 , 

S,~,, = ~ ( 1  +gAS),  

(~ / ,~  = ( ~ > .  (3.7) 

In the simulation we have set A = A  + ,/,~ = ~ + ~/', where 7/,,/' are random 
variables uniformly distributed over the interval [ -¼,  ¼]. (~/2) _ ~<< 1. With such a 
small value of ( , / s )  the bulk of the error should come only from the finite value of 
n. In order to see the n dependence, we have done long runs (250 000 steps for A, 
250000 x n steps for ~) at different values of g and n. In figs. 1 and 2, we show 
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Fig. 1. Values of (A 2 ) (O) and (A4)  (×)  obtained with different numbers n of fermionic steps per 
bosonic upgrade and g - 1.6. Marks at l / n  - 0 represent the expected exact values. 
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Fig. 2. The same as fig. 1, but  values of ( ~ k )  are reported. 
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Fig. 3. Ratios of integrated densities f ~+aXPthoor( x ) d x  / f ~ + a x p ~ ( x ) d x  with n - l ,g  ,.  1.6. 



376 F. Fucito et al. / Monte Carlo simulations 

t l  

I.C 

Q9 

0.8 

0.7 

0.6 

0.5 

0,4 

0 

7 

i i i I 
05  1.0 15 2 0  IA7 

Fig. 4. The same as in fig. 3, bu t  with n - 5. 

typical results for the moments of A and ( ~ )  as functions of n, with g -- 1.6. In 
figs. 3 and 4, we display the ratios of the experimental versus theoretical values of 
the density distributions, integrated over intervals of width 0.1. For  large values of 
I AI (;~ 2.5), the expected number of events is so small that statistical errors become 
dominant. In the last interval we reproduce ( 2 . 4 - 2 . 5 )  only ~ 4 0 0  events are 
expected, so that even for totally uncorrelated events the above statistical error 
would be ~5%.  

The results are quite satisfactory. Even for n = 1 they appear qualitatively correct 
and the numbers become rather accurate for n - - 2 .  We hope that this gratifying 
feature will survive more interesting applications. 

4. The modified Langevin equation 

The disadvantage of the Monte Carlo method is that analytic estimates of the 
rates of convergence and therefore of the errors are difficult, although one can 
always use the associated master equation. The Langevin equation is not so 
efficient for numerical simulations (although its use simplifies the computation of 
correlation functions), but the analytic study of the solution is easy to do. 

For  conventional systems the Langevin equation is 

1 BS 
, 4 - -  - + , 1 ,  

(~(t)~(t'))=8(t-t'), (4.1) 
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T/being a random gaussian variable [4]. As in Monte Carlo simulations we have 

( f [ A ] )  = r--,~lim -~1 f o r f [ A ( t ) ] d t .  (4.2) 

If we discretize the time, the Langevin equation becomes very similar to the Monte 
Carlo procedure. Vice versa, in the limit of very small Monte Carlo steps we obtain 
the Langevin equation. In this framework, instead of eqs. (3.6), we could write the 
following stochastic evolution equations: 

/1 = - A ( 1  - 2gO 2) + 71A , 

l"~b = --~b(l +gA 2) + ft/2vl, , 

( ~a( t )TIA( t') > ---- ( 71,( t )Tl,~( t') > = 8( t -- t') , 

( ~ x ( t ) ~ ¢ ( t ' ) ) = O .  (4.3) 

It will be shown elsewhere that in the limit ~'---> 0, one recovers the results for the 
fermionic system [5]. Everything in this approach is explicit enough to allow precise 
estimates of the errors. 

It is well known that the correlation functions of a bosonic field theory can be 
computed using the. solution of a stochastic differential equation [6, 7]; it is rather 
remarkable that the correlation functions of a theory with fermions can also be 
computed using a stochastic differential equation with commuting variables only. 

It is a pleasure to thank F. Guerra for many useful discussions. 
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