
Nuclear Physics B234 (1983) 269-330  
© North-Hol land Publishing Company  

G R A V I T A T I O N A L  A N O M A L I E S  

Luis A L V A R E Z - G A U M I E  1 

L yman Laboratory of Physics, Harvard University, Cambridge, MA 02138, USA 

Edward W I ' IT E N 2 

Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544, USA 

Received 7 October  1983 

It is shown that in certain parity-violating theories in 4k + 2 dimensions,  general  covariance 
is spoiled by anomalies at the one-loop level. This occurs when Weyl fermions of spin-½ or _3 or 
self-dual antisymmetric tensor  fields are coupled to gravity. (For Dirac fermions there is no trouble.) 
The  conditions for anomaly cancellation between fields of different spin is investigated. In six 
dimensions this occurs in certain theories with a fairly elaborate field content. In ten dimensions 
there is a unique theory with anomaly cancellation between fields of different spin. It is the chiral 
n = 2 supergravity theory, which is the low-energy limit of one of the superstring theories. Beyond 
ten dimensions there is no way to cancel anomalies between fields of different spin. 

1. Introduction 

The fermion anomaly in (3 + 1)-dimensional quantum field theory has a remark-  
able number  of important  applications. In the original version [1], one considers a 
massless fermion triangle diagram with one axial current and two vector currents. 
Requiring conservation of the vector currents, one finds, even for massless fermions, 
that the axial current is not conserved (fig. 1). This results in a breakdown of chiral 
symmetry  in the presence of gauge fields that are coupled to the conserved vector 
currents. This breakdown is known to lead to an understanding of 7r ° decay and to 
a resolution of the U(1) problem in QCD [2]. 

Another ,  equally significant facet of the anomaly arises if gauge fields are coupled 

not to vector currents but to linear combinations of vector and axial vector currents, 
as in the standard SU(2) x U(1) model of weak interactions. For instance, in a gauge 
theory with V - A gauge couplings, one must consider (fig. 2) a fermion triangle with 
a V - A  current at each vertex. This diagram is again anomalous. Unless it cancels 
when summing over  the fermion species running around the loop, the anomaly 
spoils conservation of the V -  A currents. But gauge theories with gauge fields coupled 
to non-conserved currents are inconsistent. So the S U ( 2 ) x U ( 1 )  model (or any 
gauge theory with non-vectorl ike gauge couplings) is inconsistent unless the 
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A 

V V 

Fig. 1. The fermion triangle with one axial cur- 
rent and two vector currents. 

V-A 

V-A V-A 

Fig. 2. The triangle diagram with a V - A  inser- 
tion at each vertex. 

anomalies cancel [3]. The classic triangle anomaly has other important  applications 

as well [4]. 
These remarks can be generalized in various directions. First of all, in addition 

to the fermion triangle diagram with three currents, the triangle with one current 
and two energy-momentum tensors is anomalous (fig. 3) [5]. This has been widely 
discussed in connection with the breakdown of chirality conservation in a gravita- 
tional field [6]. 

Also, several authors have recently discussed the question of anomalies in space-  
times of higher dimension. In any even number  of dimensions, there is an anomaly 
analogous to the triangle anomaly. In N dimensions, a fermion one- loop diagram 
with 1N + 1 external gluons is potentially anomalous. The anomaly can be evaluated 
[7] by analogy with the usual evaluation of the triangle in four dimensions. Cancella- 
tion of anomalies in higher dimensions is potentially of interest as a restriction on 

Kaluza-Klein theories. For  instance, as noted by some of the authors of ref. [7], 
the supersymmetric Yang-Mills theory in ten dimensions is inconsistent because of 
hexagon anomalies. This problem is even more  serious than the lack of renormaliza- 
bility (which has been explicitly demonstrated [8]) because it represents a breakdown 
of gauge invariance which almost certainly cannot be cured by a short distance 
cut-off. This point will be developed in sect. 3; it is related to 't Hoof t ' s  observation 
[4] that anomalies can be understood in terms of low-energy physics. 

The thrust of the present paper  is the following. The need to cancel anomalies 
places restrictions on which theories can be coupled to gravity. Such a restriction 
arises in four dimensions as a straightforward consequence of the triangle anomaly 
of fig. 3. Specifically, the S U ( 2 ) × U ( 1 )  theory cannot be coupled to gravity unless 
the sum of the hypercharges of the left-handed fermions vanishes. This appears to 

A 

T/~. ~, TX~ 

Fig. 3. The anomalous triangle with one axial current A and two insertions of the energy-momentum 
tensor. 
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q- q- 

q- q- 

Fig. 4. The hexagon anomaly in ten dimensions; a diagram with six insertions of the energy-momentum 
tensor T. 

be the case for known fermions (it is true for each generation of quarks and leptons). 

This will be further discussed in sect. 3. 
Our  main effort, however,  will be devoted to unraveling the structure of anomalies 

in more  than four dimensions. As we will see, in certain theories there are one-loop 
anomalies in the purely gravitational interactions. This sort of anomaly does not 

occur in four dimensions, and this is probably why it has not been previously noted*. 
Purely gravitational anomalies occur for Weyl fermions (of spin ½ or spin 3) in 
N = 4 k + 2  dimensions, k = 0 ,  1, 2 . . . . .  For instance, in ten dimensions (fig. 4) the 
hexagon diagram with six external gravitons coupled to a Weyl fermion of definite 

chirality is anomalous. It is impossible to maintain Bose symmetry and gauge 
invariance for the external graviton lines. This anomaly arises for Weyl fermions 

of spin 1 or spin ~. We will find a similar anomaly in the gravitational coupling of 

self-dual antisymmetric tensor Bose fields. Because of these anomalies, Weyl fer- 
mions or self-dual tensors cannot be coupled to gravity in 4k + 2 dimensions, unless 
one arranges for anomaly cancellation between the different spins. 

A number  of interesting theories are affected by this discussion. For  instance, in 
ten dimensions, there is an n = 1 supergravity theory with one real Weyl gravitino 
(and one real spin -1 field of opposite chirality). This theory is anomalous. 

In ten dimensions there are two theories with n = 2 supergravity. One can be 
obtained by dimensional reduction f rom eleven-dimensional supergravity [10]. It is 
parity conserving, and like all parity conserving theories it is anomaly free. The 
other  theory [11] has two gravitinos of the same chirality. It  has one- loop anomalies 
in the gravitino, spin-½, and antisymmetric tensor couplings, but as we will see the 
anomalies of the fields of different spin cancel. This is, in fact, apparently the only 
ten-dimensional theory with anomaly cancellation between fields of different spin. 

Since anomalies can be understood in terms of the low-energy behavior of a 
theory [4], the same considerations apparently apply to the supersymmetric string 
theories [12] which are of much interest as an approach to quantum gravity. The 
" type  ( I )"  superstring theories reduce at low energy to n = 1 supergravity in ten 

* There is a well-known trace anomaly in four dimensions [9]. This concerns the anomalous trace of 
the energy-momentum tensor and is related to the Callan-Symanzik/3 function. It does not spoil 
the conservation of the energy-momentum tensor and does not ruin the mathematical consistency of 
coupling to gravity. 
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dimensions. They are presumably anomalous. (Introduction of a gauge group cannot 
remove the gravitational anomaly, as one may see from formulae of sect. 12. On 
the contrary [7] it introduces new anomalies.) The "type (II)" theories of closed 
superstrings only reduce at low energies to n = 2 supergravity in ten dimensions. 
They appear to be free of hexagon anomalies. (Unfortunately, it is difficult to check 
these statements directly in the string context, because the simple light-cone formal- 
ism [12] is restricted to external graviton lines of p + = e  ÷~ =0 ,  for which the 
kinematical factor R defined in sect. 6 vanishes. Of course, a string theory might 
have anomalies that disappear in the field theoretic limit and survive when p÷ = e ÷" = 
0, but this is outside the scope of our investigation.) 

In addition to the purely gravitational anomalies, there are (as in four dimensions) 
anomalies in one-loop diagrams with both external gluons and external gravitons. 
In general, in n dimensions, the one-loop diagrams with 2r external gluons and 
in  + 1 - 2r external gravitons is anomalous for 0 ~< r ~< ~(n + 2). For r = 14(n + 2) this 
has been discussed previously [7]. The cancellation of all these anomalies is a very 
severe restriction on the allowed fermion quantum numbers in Kaluza-Klein theory. 
The phenomenology of some of the anomaly-free theories will be discussed else- 
where [13]. 

The construction of effective actions in curved space-time has been reviewed in 
ref. [14]. Our results answer in the negative the question of whether the induced 
energy-momentum tensor for matter fields in a background geometry is always 
conserved. 

Our calculations will reveal a connection between the gravitational anomalies in 
4 k +  2 dimensions and index theorems on curved manifolds in 4k +4  dimensions. 
This connection was suggested by M.F. Atiyah (private communication) on the basis 
of properties of diffeomorphism groups. Anticipating this connection was of consider- 
able help in finding ways to calculate gravitational anomalies. 

2. Some generalities about anomalies 

Before considering particular theories in detail, let us begin with some generalities 
about anomalies. Most of the remarks in this section are well known. 

First of all, as noted in the original literature, the anomaly constitutes a breakdown 
of gauge invariance. Theories with anomalies are theories in which the effective 
action is not gauge invariant at the one-loop level. To be specific, consider in 
four-dimensional euclidean space a theory with gauge fields coupled to fermion 
fields in a complex representation of the gauge group. Let us denote the left- and 
right-handed fermions as ~ and ~ respectively (in euclidean space they are indepen- 
dent variables, not complex conjugates of each other; and we use different names 
to emphasize the fact they they are independent). The lagrangian for $ and 
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interacting with gauge fields is 

~cC= I d4x2(ig/-yV'2Aa~Aa)(~-~) 0 , (1) 

where the A", normalized so that Tr  A")t b= 2~ab, are the gauge group generators 
acting on the left-handed fermions. If.we define A,  =½ZAaA~, then the variation 
of A ,  under an infinitesimal gauge transformation is A~, ~ A~ - D~,e. Consequently, 
any functional F(A) changes under an infinitesimal gauge transformation as 

F(A.) ~ F(A. - D,:) 

=r(A.)-f d4xTrD~e(x) ~F 
~A~, (x) 

= F ( A , ) +  f daxTr  e(x)D~. ~F 
J 8A~,(x) ' 

so the generator of gauge transformations is D,~ 3/8Aa~. Now, let F be the one-loop 
fermion effective action; thus, formally, 

exp[-F(A, )]=f  d $ d O e x p { - f  d4x[$iD(~-~-2)~O]}. (2) 

One often writes F as the logarithm of the determinant of the Dirac operator  [15]; 
we will discuss shortly the limits of this formulation. 

Although F is naively gauge invariant, the statement of the anomaly is that the 
variation of F under a gauge transformation does not vanish; rather 

6F i 
D~ 8A~ - 48~r ~ e ~ Tr  A"[20~A~O,~A~- iO~(A~A,~A~)]. (3) 

Thus, the anomaly represents a failure of gauge invariance. 
The connection of this loss of gauge invariance with the failure of current 

conservation due to the anomaly is as follows. The fermion current induced by an 
applied gauge field is 

j -  = A a o r  o "  

where the expectation value is to be taken in the background field A N. However,  
from eq. (2) it follows that J~ = 8F/SA~ so the (covariant) divergence of the current 
is 

a D ~ F,  (4) D f l , .  = " ~A~ 

and the loss of gauge invariance is equivalent to a failure of current conservation. 
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In gauge theories, unitarity and (in the case of renormalizable theories) re- 
normalizability depend upon gauge invariance. Once gauge invariance is lost, these 
properties are also lost. 

Now let us return to eq. (3). The factor of i on the right-hand side of eq. (3) is 
of fundamental importance. (This factor has nothing to do with thresholds or 
unitarity; it is required by CPT in euclidean space for a parity violating amplitude 
proportional to e ~ . )  Because of this factor of i, only the imaginary part of F is 
not gauge invariant. The real part of F is perfectly gauge invariant. In terms of the 
fermion integral, which equals e -r ,  this means that the modulus of the fermion 
integral is gauge invariant; it is the phase of the fermion integral that is not gauge 
invariant. 

There is a simple reason for this. First of all, consider the case in which the 
fermions are in a real representation of the gauge group. Such fermions are real 
(anticommuting) variables. For such real variables, the fermion integral e - r  is real. 
Moreover,  theories in which the fermions are in a real representation of the gauge 
group can be regularized by the Pauli-Villars method. The existence of this gauge 
invariant regularization ensures that the fermion effective action is gauge invariant. 
For fermions in a real representation of the gauge group, the effective action is real 
and gauge invariant. 

Now consider fermions in a complex representation Q. Such fermions are complex 
objects and the fermion integral is not necessarily real. On the contrary, as we have 
noted, the parity-violating amplitudes are imaginary. Gauge invariance forbids bare 
masses for fermions in a complex representation Q, and for this reason there is no 
evident way to regularize such theories. So the effective action F(Q) for fermions 
in the representation Q is complex and not necessarily gauge invariant. 

Now consider fermions in the complex conjugate representation 0 .  Such variables 
are complex conjugates of the ones we have just considered, and the Dirac action 
for fermions in the 0 representation is the complex conjugate of the action for 
fermions in the Q representation. So the effective action F ( 0 )  is the complex 
conjugate of F(Q).  (Differently put, in passing from Q to 0 ,  the parity-violating 
amplitudes, which are imaginary, change sign, so the action is complex conjugated.) 
Hence F(Q) + F ( 0 )  = 2 Re F(Q). 

But F ( Q ) +  F(Q) is the effective action for fermions in the real representation 
Q + 0 .  Because of our previous remarks, this effective action is gauge invariant. So 
Re F(Q) is gauge invariant, and only Im F(Q) may suffer from anomalies. Anomalies 
in Im F(Q) do in fact show up in triangle diagrams. 

A variant of this can occur if Q is a pseudoreal but not real representation of the 
gauge group. In this case, bare masses and Pauli-Villars regularization are again 
not possible so there is no guarantee that e - r  is gauge invariant. However,  if Q is 
pseudoreal, then Q0)Q  is a real representation, so the corresponding fermion 
integral, which is e -2r, can be regularized and is gauge invariant. The fact that e -2r 
is gauge invariant means that e - r  is gauge invariant in absolute value but perhaps 
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not in sign. In certain cases [16], it is indeed impossible to define the sign in a gauge 

invariant way. 
There  is another  point of view about this which may seem cumbersome but does 

help clarify why the phase of the fermion integral is potentially anomalous. 
We are acclastomed to thinking of the fermion integral as the determinant  of the 

Dirac operator.  For fermions in a real representation, we consider the hermitian 
eigenvalue problem it?l~bi = hi~i and define det i/~ as the product of the hi. Since the 
hi are real, their product is real; this shows again that the fermion integral is real 
for fermions in a real representation. Of course, the product of the hi needs to be 
regularized. But this is easily accomplished. One may define det i/~ = rI F(hi)  where 
F(hi)  is a suitably chosen function such that F ( h )  = h for small h and F ( h ) ~  1 as 
h ~ c ~ .  

For  fermions in a complex representation, life is more subtle. Our  action is of 
the general form 

where the ~ are left-handed fermions in a complex representation Q, and the )? 
are right-handed fermions in the complex conjugate representation 0 .  

Let  V be the vector space of left-handed fermion fields in the Q representation. 
Given a vector space V and an operator  M (not necessarily hermitian) mapping V 

into V, it is possible to define the determinant  of M. In the usual way, one solves 
the eigenvalue problem M~Pi = h~i  (or one defines the hi to be the diagonal elements 
when M is put in Jordan canonical form) and one defines det M -- I-I hi. In general, 
this determinant  is a complex number.  

We would like to define a determinant  of the operator  D = 1 i D ( 1 - y s ) .  The 
problem is that D does not map V into itself; it maps V into ~', the vector space 
of right-handed fermions in the Q representation. Without further information, 
there is no way to define a determinant  of an opera tor  M that maps one vector 
space V into another  space V. 

In the case at hand, V and X) are Hilbert  spaces; for ~ in V or V, we define the 
norm of ff as (if[ ~ ) = ~ d 4 x  ~,~i [~,~i3X)[ z- Given an operator  M from one Hilbert  
space V to another  Hilbert  space V, a determinant  can be defined up to phase as 
follows. Let  [~i) be an or thonormal  basis for V. Let  [xi) = M[~,i). Choose the I~i) so 
(xilxj) = 0 for i S  ], and define hi = ~(xi[xi). The product of the hi is automatically 
real and is not a sensible definition of det M, since it does not reduce to the standard 
definition (which can be complex) when V = ~'. But it makes sense to adopt this 
definition of the modulus of the determinant:  [det MI = lq ,~i. 

What  about  the phase of det M ?  Given a single operator  M from V to ~', there 
is no way to define this phase. But suppose we have two operators  M and N from 
V to V. Then A = N - 1 M  maps V into V, so the determinant  of A is well defined 
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as a complex number. The definition In det M -  In det N = In det A defines the phase 
difference between det M and det N. 

In our physical problem, we do not care about the overall phase of the determinant 
of D = l i D ( 1 -  3'5), since a constant can be absorbed in normalizing the partition 
function. We do care about relative phases. We arbitrarily pick a convenient gauge 
field, say A~ = 0, and define det D to be, say, positive for this gauge field. For any 
other gauge field A~ one attempts to define the phase of the determinant by saying 

a a _ _  a In det D(A, )  - I n  det D(A~ = 0) = In det (D-I(Aa~ - O)D(A~)). When dealing with 
differential operators in infinite-dimensional function spaces, it is difficult to  define 
the determinant of an operator  such as D-1(A~ = O)D(A~). This difficulty is one 
way of understanding the origin of anomalies. 

Let  us now return to the Feynman diagrams in which anomalies appear. In four 
dimensions, the simplest fermion diagram which (kinematically) can violate parity 
is the diagram with three external gluons. The diagram is indeed anomalous, as we 
have already discussed. A few general remarks about diagrammatic evaluation of 
anomalies will be useful later. 

There is no good way to regularize the anomalous diagrams; if there were, there 
would be no anomaly. Because there is no good way to regularize these diagrams, 
they are potentially ambiguous. The potential ambiguity consists of the ability to 
add a polynomial in the external momenta. The reason for this is as follows. Any 
acceptable definition of the triangle must obey unitarity in each channel. Using 
unitarity, the triangle amplitude (or any one-loop amplitude) can be uniquely 
reconstructed from tree diagrams up to a polynomial in the external momenta. (See 
recent discussions by Coleman and Grossman and by Frishman et al. [4].) Therefore,  
the triangle amplitude is well defined modulo the ability to add such a polynomial. 
When one claims that a diagram is anomalous, one means that it is impossible to 
add a polynomial in the momenta so as to eliminate the anomaly and obtain an 
amplitude that obeys all physical principles. 

It automatically follows from this that, regardless of the superficial degree of 
divergence of a diagram, anomalies are always finite. After all, the infinite part of 
a diagram is always a polynomial in the external momenta. Our freedom to redefine 
an amplitude by adding a polynomial includes the freedom to throw away all infinite 
pieces. Hence, relevant anomalies, if any, are always finite. 

Even in unrenormalizable theories, anomalies that ruin gauge invariance occur 
only at the one-loop level. Multi-loop diagrams can be regularized in a gauge 
covariant way by Pauli-Villars regularization of the internal bose lines these diagrams 
necessarily contain. 

When an anomaly occurs, it is impossible to define an amplitude to obey all 
physical principles. In this situation, different attempts at defining the amplitude 
may give different answers. For instance, consider the triangle diagram. It should 
obey Bose symmetry and current conservation in each of three external lines. There 
are two standard ways to define the triangle. One may insist on Bose symmetry in 
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a. Y ~ ( I -  Y ' f ) /Z  b. )"z, )"5 

Fig. 5. Alternative forms of the fermion triangle. 
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each of the three lines and check for current conservation. Or one may insist on 
Bose symmetry and current conservation in two of the three lines and check for 
current conservation in the third one. 

The difference is exemplified by the two diagrams of fig. 5. In fig. 5a there is a 
factor of ½y~(1- 75) at each vertex. In fig. 5b there are two insertions of y~, and 
one insertion of Y~'Ys. Formally, for massless fermions, since (ys) 2= 1 and 3'5 
anticommutes with gamma matrices, fig. 5b is equal to just - 2  times the parity- 
violating part of fig. 5a. 

Suppose, though, that one defines these diagrams by Pauli-Villars regularization 
- by subtracting the contribution of a massive regulator field. Then figs. 5a and 5b 
are not equivalent in the presence of the regulator, and because of the anomaly 
they do not become equivalent even as the regulator mass goes to infinity. Fig. 5a, 
as the regulator mass goes to infinity, obeys Bose symmetry but violates current 
conservation in each channel, while fig. 5b respects Bose symmetry and current 
conservation in the vector channels but violates them in the axial vector channel. 

If the amplitude of 5a obeyed current conservation its parity-violating part would 
serve as an acceptable definition of the amplitude of fig. 5b. If fig. 5b were conserved 
in the axial vector channel, then by Bose symmetrizing it one could get an acceptable 
definition of the amplitude of fig. 5a. 

This observation is indispensable because in fact (at least if one uses Pauli-Villars 
regularization) it is much easier to calculate the amplitude of fig. 5b. When we 
calculate gravitational anomalies, the simplification from considering a diagram of 
type 5b will be essential. 

As we have discussed, the existence of anomalies depends upon the fact that the 
one-loop diagrams cannot be regulated in a way that preserves chiral symmetry. 
Let us therefore examine this point briefly. To regularize the lagrangian 

by adding, say, 

1 - { 1 - 3,5\ 
-~ * D ~ D ~ - - - ~ ) * ,  
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(with A as a cutoff parameter) is not useful because the additional term violates 
chiral symmetry explicitly. However,  one could add higher-dimension terms that 
preserve chiral symmetry; for instance one could consider the chirally invariant 
lagrangian 

( 1 D D ' ~ ( 1 - Y ' ~ ,  t~iD\ l ----~ ~ ] \ - - - ~  ] . 

The reason that this regularization fails to eliminate anomalies is slightly subtle. 
Although ~ '  conserves chiral symmetry, the naive current 

is not conserved in the theory described by ~ ' .  Rather  one must find the appropriate 
conserved current by applying Noether 's theorem to ~ ' .  It includes additional pieces 
such as 

In one-loop diagrams with gluons (or gravitons) coupled to the conserved currents 
derived from ~ ' ,  there are extra factors of momentum in the vertices which just 
cancel the improvement of the propagators. Therefore,  the passage from ~ to ~f' 
as a regularization does not eliminate anomalies. 

More generally, we can show that under broad assumptions the one-loop 
anomalies depend only on the quantum numbers of the elementary fields, and not 
on the specific lagrangian chosen. Let A and B be two appropriate differential 
operators; in the spin-½ case we may take A = i/~ and B = i / ~ ( 1 - D , D " / A 2 ) ,  for 
example. Assume that A and B conserve parity. Let us prove that the two theories 
with lagrangians 

have the same one-loop anomalies. It is equivalent to prove that the theory with 
lagrangian 

is free of anomalies. But 

£e -- ~;½(A + B) ~, - ~ ( A  - B) ~,5~, 

and a suitable regularization is simply to pass from ~ to 

LP'= q~½(A +B) (1  +(-D~,D~'/ AZ)")~ - tpl(A -B)ysqJ, 
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for some suitable integer n. This regularization improves the propagators in Feynman 
diagrams and it does not add extra powers of momentum in parity-violating vertices. 
Since all parity-violating amplitudes computed from 6f' are highly convergent, 3?' 
is free of anomalies, proving that the original theories with lagrangian 

had exactly the same anomalies. This observation will be quite useful when we 
calculate the gravitational anomaly of a spin -3 field in sect. 7. 

3. Gravitational anomalies in four dimensions 

Before attempting a systematic discussion of gravitational anomalies in n 
dimensions, let us discuss some implications of known facts in four dimensions. 

Soon after the discovery of the standard triangle anomaly, it was pointed out that 
the fermion triangle with one axial current and two energy momentum tensors (fig. 
3) has a similar anomaly [5]. This anomaly has been much discussed in connection 
with gravitational instantons. The axial vector current j 5  of massless fermions is 
not conserved, but obeys 

1 
D,J~ = 384~r2R/~, (6) 

where R/~--~e~ " " ~ , , ~ , ~  . . . .  , R, .~ ,  being the usual Riemann curvature tensor. 
One of the results of our discussion in sect. 6 will be a relatively simple way to 
obtain eq. (6) from Feynman diagrams. 

Violation of a global chirality conservation law in the presence of gravity is only 
one aspect of eq. (6). Another  consequence arises if the anomalous axial current 
J~ is coupled to a gauge field A,.  In this case eq. (6) represents a breakdown of 
gauge invariance. It corresponds to an effective action F that is not gauge invariant 
but changes under the transformation A,~-~ A,~- a,~e by an amount 

~F = __1_1____ f d4 x x/ge(x)gl~(x) (7) 
3847r2 

Actually, the anomaly takes this form if one defines the triangle diagram in a 
way that maintains general covariance and sacrifices current conservation. One may 
instead define a triangle amplitude that obeys current conservation and violates 
general covariance. This can be done as follows. The topological density R/~ can 
be written as a total divergence R/~ = D~K" where K "  is a functional of the metric 
that is not generally covariant. One can replace the amplitude F by F ' =  
F + ( 1 / 3 8 4 7 r  2) S d 4 x ~ g A . K  ~" which differs from F'  by a local functional of the 
fields. One may readily see that F '  is invariant under the gauge transformation 
A .  ~ A . - O r e .  However,  F '  is not generally covariant because K ~" is not. It is not 
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possible to define the triangle in a way that respects both gauge invariance and 
general covariance. 

Therefore  in four dimensions gauge theories cannot be consistently coupled to 
gravity unless the triangle anomaly of fig. 3 cancels when summing over all of the 
elementary Fermi fields. 

Precisely this problem can potentially arise in the standard SU(2)×  U(1) model 
of weak interactions. Let  us take A .  to be the U(1) gauge field that is coupled to 
hypercharge. Let Y be the hypercharge operator  regarded as a matrix acting on 
the left-handed Fermi fields. The triangle diagram with one external hypercharge 
gauge boson and two external gravitons is proportional to Tr  Y. A necessary 
condition for consistency of the SU(2) x U(1) model coupled to gravity is therefore 

Tr  Y = 0 .  (8) 

If this condition does not hold, then either gauge invariance or general covariance 
is lost at the one-loop level. 

In fact, eq. (8) does hold in nature for the fermions of each observed generation. 
However,  this condition is usually interpreted as evidence for grand unification; in 
grand unified theories, the hypercharge operator  is a generator of a simple group 
and must be traceless. We see that since gravity does exist in nature, eq. (8) is 
needed for simple mathematical consistency. 

One might be sceptical of this claim on the grounds that general relativity is 
unrenormalizable. How do we know that eq. (8) for cancellation of the anomaly 
will not be modified by whatever cures the short distance behavior of quantum 
gravity? 

The point is that it is possible to understand anomalies strictly on the basis of 
long wavelength physics. For instance, consider trying to study the low-energy limit 
of the gauge boson-graviton-graviton coupling on the basis of unitarity. (See 
Coleman and Grossman, and Frishman et al., ref. [4].) By imposing unitarity in 
each channel, one could reconstruct the amplitude from the possible zero mass 
intermediate states, up to a term that is analytic in the momenta at p = q  = r = 0. 
But the whole idea of the anomaly is that one cannot eliminate it by adding to the 
amplitude a term analytic in the momenta at zero momentum. Otherwise, on 
dimensional grounds, it would be a suitable polynomial of dimension four that could 
compensate for the anomaly, and one would simply add this polynomial to obtain 
an anomaly-free triangle. 

Theories free of the usual triangle anomalies but with Tr Y ~ 0 are easily construc- 
ted. For instance, one may add to the standard model left-handed SU(3 )xSU(2)  
singlets of hypercharges Yi. If ~ y3 = 0, but ~ yi ~ 0, this preserves the cancellation 
of the usual anomalies but introduces an anomaly in the coupling to gravity. 

What specific consequences would this have? The usual electric charge operator  
is Q = T3+½Y. Since T3 is traceless in any representation of SU(2), if Tr  Y # 0 then 
Tr  Q ~ 0. Such a world would therefore have massless electrically charged fermions 
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Fig. 6. A two-loop diagram that  gives the photon a mass if Tr Y # 0. External wavy lines are photons;  
internal loopy lines are gravitons. 

with parity-violating electromagnetic couplings. The anomaly would show up in 
diagrams with external photons and, by analogy with a similar discussion in the case 
of gauge theories [3], the photon would get a mass from a three-loop diagram with 
two internal gravitons (fig. 6). Despite the smallness of the gravitational constant, 
this photon mass is not necessarily negligible. It would be of order 

rarE = otGE A 6 , (9) 

where mv is the photon mass, GN is Newton's constant, and A is an ultraviolet 
cut-off needed to make sense out of the divergent diagram. For A = 500 TeV, this 
gives a photon Compton wavelength of about 104 km, roughly the observational 
lower bound*. Thus the gravitational interactions would need to be cut off at rather 
" low" energies. 

The anomaly of fig. 3 has one other interesting application. 't Hoof t  pointed out 
some years ago [4] that anomalies can serve as a restriction on the quantum numbers 
of composite massless particles. Lt J~, be a conserved current in some quantum field 
theory, and assume that the corresponding conservation law is not spontaneously 
broken. Then the ( J J J ~ )  anomaly computed in terms of the elementary quanta 
must be precisely equal to the same anomaly computed in terms of the massless 
particles of the exact physical spectrum. Just the same condition must hold for the 
( J , T ~ T ~ )  anomaly. Therefore,  the trace of any conserved charge Y evaluated 
among the elementary left-handed fermions must equal the same trace evaluated 
in the physical spectrum - unless the conservation of Y is spontaneously broken. 
This requirement should be imposed as a constraint in preon models. 

4. Purely gravitational anomalies 

In sect. 3, we discussed some implications of the anomaly that arises when gauge 
fields are coupled to gravity. It is natural to ask whether anomalies occur in theories 
with gravitational couplings only. 

As we have discussed, the classical results about triangle anomalies concern the 
question of whether the fermion effective action is gauge invariant. Let  us ask the 
analogous question for gravity. Let  F be the one-loop effective action for matter 

* We  have assumed here that  the triangle is defined in a way that  preserves general coordinate invariance 
and sacrifices gauge invariance. Otherwise,  the graviton would gain a mass. 
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fields propagating in a gravitational field. F is, of course, a functional of the metric 
tensor. Is F generally covariant? Or-could it be that in some theories of matter 
fields coupled to gravity general covariance is violated at the one-loop level by 
anomalies? 

Under  the infinitesimal coordinate transformation x~'~ x ~" + e", the variation in 
the metric tensor is ~5g~,. = - D ~ , e ~ -  D~e~,. The variation of F is 

aF = - f  d4x x/ g ~ F /  aglzv( O~E ~ q- D~e~,). 

But 3F/6g~,~ is I(T~,~), where (T~,~) is the expectation value of the energy-momentum 
tensor of the matter fields. Integrating by parts and using the symmetry of T~,~, we 

/xv  have then that ~F=Sd4x~ge~Du(T ). So the question of whether the effective 
action is invariant under infinitesimal general coordinate transformations is 
equivalent to the question of whether the induced energy-momentum tensor of the 
matter fields is conserved. This is just analogous to the fact that in the case of gauge 
fields coupled to charged fermions, gauge invariance of the effective action is 
equivalent to conservation of the induced current. 

Now, by reasoning analogous to the discussion in sect. 2, the real part of F is 
always generally covariant. But we will see that the imaginary part of F can suffer 
from anomalies. 

But under what circumstances does F have an imaginary part? In euclidean space 
of n dimensions, the holonomy group of a riemannian manifold is O(n) (or a 
subgroup thereof). Consider matter  fields in some representation Q of O(n).  Their 
coupling to gravity involves the metric and connection - which are real - and the 
O(n) matrices in the Q representation, which may be complex. Only in case Q in 
a complex representation does F have an imaginary part. But O(n)  has complex 
representations only if n = 4k + 2 for some integer k, so it is only in 4k + 2 dimensions 
that the effective action may violate general covariance. In particular, for matter 
fields coupled to gravity in four dimensions, the one-loop action always respects 
general covariance. 

Which complex representations of O(n)  are relevant? For fermions, we may 
consider spin-½ fields of definite chirality or spin -3 fields of definite chirality. As we 
will see, each of these fields gives rise to one-loop anomalies. In addition, it seems 
that there is one type of Bose field that suffers from an anomaly. The simplest 
complex bosonic representation of O(4k + 2) is an antisymmetric tensor F~,l...,2k+ 1 
with 2k + 1 indices that obeys a duality condition F , ~ l . . . ~ 2 k +  1 = 

±i/(2k+ 1)! × e,1...,2,:.1~ 1. . . . .  k+aF 'q'''~'k+l. Certain very interesting theories [11, 17] 
contain an antisymmetric tensor field A~,1...~,2~ of 2k indices whose curl is constrained 
to obey such a condition. We will see that also for such a field, there is a one-loop 
anomaly. Most of the rest of this paper will consist of a detailed evaluation of 
anomalies for the spin-½, spin -3, and antisymmetric tensor fields. 
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First, however, let us discuss in more detail what is special about 4 k + 2 dimensions. 
(See also ref. [18], where many of the points that follow have been made.) 

In an odd number of dimensions the Lorentz group O(1, n - 1) has only one type 
of spinor representation. Its couplings to gravity conserve parity, leading to a real 
effective action that is free of perturbative anomalies. 

In an even number of dimensions, the group O(1, n - 1) has two spinor representa- 
tions related to each other  by parity. One might hope to make a theory with 
parity-violating gravitational couplings by including fermions of one chirality only. 
This is only possible in 4k + 2 dimensions, for the following reason. 

Let  3'0, 3'1 . . . .  3',_~ be the Dirac gamma matrices, obeying {3',, 3'~} = 2 ~ .  (Our 
signature is (+ . . . . . . .  ).) The operator  that distinguishes the two spinor rep- 

resentations is 3'5 = 3'03'1... 3'n-1. It commutes with all generators of O(1, n - 1 ) .  
Now in 4 k dimensions, one may readily see that (3'5) 2 = -1 .  Hence the eigenvalues 

of 3'5 are +i, and are exchanged by complex conjugation. This means that in 4k 
dimensions the CPT operation reverses the chirality of fermions. Acting on fermions 
of 3'5 = +i, CPT gives fermions of 3'5 = - i ,  and vice versa. Hence in 4k dimensions, 
CPT conservation requires the existence of an equal number of fermions of positive 
and negative chirality. The couplings of fermions to gravity in 4k dimensions 
conserve parity (or violate parity only by irrelevant non-minimal terms) an d  the 
effective action is real. 

In 4 k + 2  dimensions, the story is different. In this case 3 '2=+1,  so 3'5 has 
eigenvalues + 1. A CPT transformation maps particles of given helicity into particles 
of the same helicity. In this case, it is possible to consider a theory in which the 
gravitational couplings are chirally asymmetric. One may have more fermion multi- 
plets of one chirality than of the other. For such theories, the gravitational couplings 
violate parity, the euclidean space effective action is complex and, as we will see, 
there are anomalies. 

One more side to this story deserves a mention. Specializing to fields of spin 1, 
in four dimensions the basic object is the four-component Majorana field. General  
covariance permits this field to have a mass, and hence its couplings to gravity can 
be regularized in a generally covariant way by the Pauli-Villars method. This being 
so, the effective action to which it gives rise is generally covariant. 

However,  in 4 k +  2 dimensions the basic object is the fermion field of definite 
chirality. General  covariance (or even global Lorentz invariance) forbids such a 
field to have a bare mass; a fermion mass term in 4k + 2 dimensions is not allowed 
for Fermi fields all of the same chirality. Because the mass is forbidden, Pauli-Villars 
regularization cannot be performed, and anomalies may occur. 

Our discussion so far has concerned the question of whether the effective action 
is invariant under in f ini tes imal  general coordinate transformations. If so, one must 
still address the question of whether the effective action is invariant under non-  

in f in i tes imal  general coordinate transformations - transformations that cannot be 
reached by exponentiating an infinitesimal transformation. This question which is 
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analogous to certain considerations in gauge theories [16], will be our subject in 
sect. 10. Here  let us simply note a few kinematical facts that are relevant. 

In dimensions other than 4k +2 ,  the basic Majorana spinor representation* of 
O(1, n -  1) is either real or pseudoreal,  that is, it admits a second-order  invariant 
tensor that is either symmetric or antisymmetric. For instance, in four dimensions 
the four-component  Majorana spinor representation admits an antisymmetric 
invariant tensor e~t3. Corresponding to this the mass term is ie~qJ~O t3 is possible 
(it is usually written ~qJ). 

In eight or nine dimensions, or more generally in 8k or 8 k +  1 dimensions, the 
situation is different. In 8 k or 8 k + 1 dimensions, the Majorana spinor representation 
admits only a symmetric invariant c~t3. One cannot in 8k or 8k + 1 dimensions write 
a mass term for a single Majorana fermion, since c~t~O~0 t3 = 0 by Fermi statistics. 

Given several Majorana fermions ~O"i, i = 1 . . .  k, one can write the mass term 
c~qJ~iqJt~jMij where Mij is an antisymmetric mass matrix. If k is even, all fermions 

can obtain mass this way, but if k is odd, the antisymmetric matrix M necessarily 
has a zero eigenvalue. This means that with an odd number  of Majorana spinors 
in 8 k or 8 k + 1 dimensions Pauli-Villars regularization is not possible - the regulator 
field would always have had an even number  of components.  This suggests that 
non-perturbatively there may be difficulties with an odd number  of Majorana 
fermions in 8k or 8k + 1 dimensions, and we will see in sect. 10 that this is the case. 
As in the case of the Z2 anomaly in gauge theories, the difficulty has to do with the 
sign of the fermion integral. 

5. The spin-~ anomaly in two dimensions 

In this section we will illustrate the preceding discussion with a detailed calculation 
of the gravitational anomaly for a spin -1 Weyl fermion in two dimensions. We will 
carry out this discussion with a Minkowski signature. The advantage of two 
dimensions is that because of the simplicity of the relevant diagram we can calculate 
explicitly the whole relevant amplitude and then study its behavior under coordinate 
transformations. In our subsequent study of loop diagrams in more  than two 
dimensions, we will only be able to study the anomalous behavior of the loop 
diagrams. 

In two dimensions the Dirac lagrangian for a fermion in a gravitational field can 
be written 

~ =  J d2x det e e~a(ltffi'yaO'*~tb). (10) 

Here  eva is the tetrad; the spin connection drops out of the Dirac lagrangian in two 
dimensions because of Fermi statistics. We will study the propagation of fermions 

* By the Majorana spinor representation we mean  the minimum-dimensional  representat ion of the 
Clifford algebra by gamma matrices that are all real or all imaginary. In 8k or 8 k +  1 dimensions 
they are real; for other values of the dimension they are imaginary. 
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in the weak gravitational field g,~ = ~7,v + h~.  We will investigate the behavior of 
the effective action under coordinate transformatiot~s, not local Lorentz  transforma- 
tions, so it will be adequate to make a simple gauge choice for the tetrad: e~a = 

1 _ _  1 / , . / ~ , v  T rh,, + 2h~a. At the linearized level, the interaction lagrangian is simply a ~  -- 2,, • ~,~ 
where T ~  = ¼i~(3'~ 0"~ + 3'v 0"~,) @ is the fermion energy-momentum tensor. 

We wish to calculate the effective action for fermions that obey a Weyl condition 
3 '55=-@, where 3'5= 3'03'1. (We will discuss complex fermions that obey this 
condition, although in two dimensions one could impose a Majorana-Weyl  condition; 
this involves dividing the effective action by two.) It is convenient to introduce 
light-cone coordinates x±=x/~(x°+xl). The corresponding gamma matrices 
3, ± = x/~(3,° + 3,1) obey (3,+)2 = (3,-)2 = 0, 3,+ 3,- + 3,- 3, + = 2. Indices are raised and 
loweredas follows: V ÷=  V_, V-= V÷, V~W, = V+W++ V-W_ = V÷W_+ V_W÷. 

A fermion obeying 3"5~ = - ~  also obeys 0 = 3,-~b = 3'÷~b. For this reason, the free 
equation of motion 0 = (3,÷0_ + 3'_a+)~ reduces to 0 = 0_~b = x/~(O/~t-a/~x)~. So in 
two dimensions a fermion of negative chirality is simply an object that travels 
constantly in the +x direction at the speed of light. Such an object, of course, cannot 
have a mass - it cannot be brought to rest - and this is ultimately why anomalies 
are possible, as we have previously discussed. 

With y_ ~ = a_$ = 0, the only non-vanishing component of the energy-momentum 
tensor is T÷÷ = ½i~3'÷~'÷~, and the linearized interaction of fermions with the gravita- 
tional field is AZP=-h__~i@3'÷g÷O. We will study the effective action to second 
order  in the metric perturbation h, by studying the two-point function 

U(p) = f d2x e~P~(OIT(T÷+(x)T÷+(O))IO)" (11) 

Now, it is possible to see without any computation that there must be an anomaly. 
The naive conservation law for T÷+ is a_ T÷+ = 0; it leads to the naive Ward identity 
p _ U = 0  *. If true, this would imply U = 0  for all non-zero p_, and hence (by 
analyticity) for all p_. But U, as the two-point function of the hermitian operator  
T÷+, cannot vanish. So there must be an anomaly. 

In fact, the anomaly is easily computed, using tricks introduced in [19], After 
performing the Dirac algebra in fig. 7, one finds 

U(p) = _ 1  1 dk+dk_ (2k +p)+2 k÷ (k+p)+ 
(2rr) 2 k+k_+ ie (k +p)+(k+p)_+ ie 

=_l l dk+dk_ (2k+p)+2 1 "1 
(2~r) 2 k_+ie/k+ (k+p)_+ie/(k+p)+" (12) 

* Naively there is no equal time commutator term in this Ward identity. If one looks at (11) as a 
two-point function in flat space, the anomaly we will find can be regarded as an anomalous commutation 
relation [T++(x), T++(y)] = (i /481r)6"(x-y)+tree level terms. It is closely related to the anomaly 
in the Virasoro algebra in string theories. But we will see that upon coupling T+÷ to the gravitational 
field, the anomaly is a breakdown of general covariance. 
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(7) p+k 

T++(p) 

k 

T++(-p) 

Fig. 7. The gravitational anomaly in two dimensions. 

One now performs first the k_ integral by contour integration. It vanishes unless 
the poles at k_ = - i e / k +  and k_ = - p _ - i e / ( k + p ) +  are on opposite sides of the 
real axis. So if, say, p+ > O, the k+ integral can be restricted to 0 > k+ > -p+. We 
have then 

_ i ~ dk+ (2k+p+)2 
U ( p )  - ~--£~ .-p+ P-  

i p+3 

247r p_ (13) 

So U(p)  # O. What is more, as expected the anomaly is finite and is a polynomial 
in the momenta: 

i 
_ _  3 

p_ U ( p ) - ~-~-~rTr P + . (14) 

Now, let us discuss the question of the covariance of the effective action. If we 
couple -½h__ at each vertex in fig. 7, then this diagram represents iSf~n(h__), £~ef 

being the effective action for the gravitational field. Remembering to include a 
factor of ½ for Bose statistics, (13) corresponds to the effective action 

1 f p+3 - d2p - h _ _ ( p ) h _ _ ( - p ) ,  (15) ~efr(h~) 192~r p_ 

where, of course, h__(p)  is the Fourier transform of the metric perturbation. We 
wish to discuss the behavior of (15) under coordinate transformations. 

Under  an infinitesimal general coordinate transformation 6x ~ = e ~, h , ,  transforms 
as 6h~,~(x) =-O~e~(x) -O~e~, (x) .  A coordinate transformation therefore 
corresponds in momentum space to 

6h++(p) = -2ip+e+ , 

6 h + _ ( p ) = - i p _ e + - i p + e _ ,  

8h__(p)  = - 2 i p _ e _ .  (16) 

Now, it is obvious that (15) is not invariant under this transformation; but that does 
not quite prove the existence of an anomaly. We must try to use our freedom of 
adding to the effective action a local functional of the fields so as to obtain a gauge 
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invariant effective action. So we try ~e~ --> ~e~ + A~, where 

A.~ = f d2p[Ap+2h__(p) h+_(-p) + Bp+p_h+_(p) h+_(-p) 

+ Cp+p_h++(p) h__(-p) + Dp_2h++(p) h+_( -p ) ] ,  (17) 

this being the most general Lorentz invariant polynomial of appropriate dimension. 
It is easy tO see that regardless of the choice of A, B, C, and D the modified action 
Zp ~ + / t ~  is not invariant under (16). This concludes the demonstration that the 
effective action for a Weyl fermion in two dimensions is not generally covariant. 

To complete the picture, suppose we consider a massless Dirac fermion in 1 + 1 
dimensions, with both chiralities present. The effective action obtained from 
Feynman diagrams can be found by adding (15) to its parity conjugate: 

~Dirac 1 I /P+3 p3 ) 
en = - 1 9 2 7 r  d2p l - -h - - (P)h - - ( -P)+  - h++(p)h++(-p) . (18) \ p -  P+ 

Again, this is not invariant under coordinate transformations. Now, however, we 
can add a local counterterm to form an action 

- 192--~ d2p h__(p)h__(-p)+ p-- h++(p)h++(-p) 
P+ 

+ 2p+p_ h++(p) h__( -p )  - 4p+2 h__(p) h+_(-p)  

-4p_2h++(p)h+_(-p) + 4p+p_h+_( p)h+_(-p) ) , (19) 

which is easily seen to be invariant under coordinate transformations. It can be 
written more succinctly as 

~ = 1 I R(p)R( -p)  
- 192--~ d2p p+p_ ' (20) 

where R = p+2 h__ + p 2  h++ - 2p+p_ h+_ is the linearized form of the curvature scalar. 
As a by-product of this investigation we can extract a formula for the well-known 

trace anomaly. Classically, the energy momentum tensor for the massless Dirac 
field is traceless; it obeys T+_ = 0. As a consequence, at the linearized level h+_ 
does not couple to fermions and should not appear in the linearized effective action. 
We see, indeed, that h+_ is absent in the effective action (18) obtained from diagrams, 
but a dependence on h+_ is needed in (19) for general covariance. 

The trace of the induced energy momentum tensor for a Dirac field in curved 
space is 

(2T+_(p)} = - 2  8h+_(-p) 24rr R ( p ) ,  

this is the equation of the trace anomaly. 
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The evaluation of Feynman diagrams in more than two dimensions is considerably 
more difficult. It is useful to note that a simple argument ensures that if there is 

an anomaly in two dimensions, there is also an anomaly in 4k + 2  dimensions, for 
any k. 

Consider a theory of spin-½ Weyl fermions in 4 k + 2  dimensions. Suppose that 

the 4k + 2 dimensional space is of the form M2x B where M 2 is an asymptotically 
Minkowskian two-dimensional world and B is a compact space of 4k dimensions 

on which the Dirac field has a non-zero index. Massless fermions in the effective 

two-dimensional world are zero modes of the Dirac operator on B. The usual 

relation YlY2" " " Yak+2 = ( Y 1 ~ / 2 ) "  ( Y 3 ' Y 4  " " " Y a k + 2 )  shows that for chiral fermions in 

4k + 2 dimensions (say Yl T2 " " " T 4 k + 2  = ÷ 1) the two-dimensional chirality (eigen- 

value of T I T 2 )  equals the 4k-dimensional chirality (eigenvalue of T3T4" " " T 4 k + 2 ) .  

Hence if there is a non-zero index of the Dirac operator on B, so that the zero 
modes on B have preferentially one chirality, then the chiral theory in 4 k + 2  

dimensions reduces macroscopically to a chiral theory in two dimensions. 

An anomaly free theory in n dimensions always remains anomaly free after any 

process of compactification. After all, absence of anomalies means that the Dirac 
determinant in n dimensions is well defined and generally covariant; if this is so 

the Dirac determinant must remain generally covariant after any valid approxima- 

tion, such as an approximate reduction to a two-dimensional determinant. Since 
the Weyl theory in 4k + 2  dimensions can reduce - in the manner just described - 

to a Weyl theory in two dimensions, which we know to have an anomaly, the theory 

of Weyl fermions in 4k + 2 dimensions must have an anomaly for any k. 
The restriction to 4k + 2 dimensions emerges, in this context, because the index 

of the Dirac operator always vanishes except in 4k dimensions. 

As we will see in detail in subsequent sections, the anomaly in 4k + 2 dimensions 

involves several tensor structures. Not all of them survive reduction to two 
dimensions, so the trick of dimensional reduction is not a full substitute for a 

computation in 4 k + 2  dimensions. But it does show that there is an anomaly in 

4 k + 2  dimensions for any k. 

6. The spin-~ anomaly in 4k +2  dimensions 

In this section we will perform a diagrammatic evaluation of the gravitational 
anomaly in 4k + 2  dimensions. 

We consider a diagram with n external graviton lines. The amplitude will depend 

on the n momenta p~), i = 1 • • • n of the external gravitons and on their n symmetric 
-(~) i = 1 . . -  n. The momenta are not independent but obey polarization tensors ~,~, 

n 

one constraint, ~=1 F,-(~) = 0. 
By our general considerations, only the parity-violating amplitudes are anomalous. 

A parity-violating amplitude is necessarily proportional to the Levi-Civita symbol 
e,,~,2...,,k+ 2, which must be contracted with the external momenta and polarization 
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vectors. The epsilon symbol, being antisymmetric, can be contracted with at most 
one index from each symmetric tensor e.~, and with at most ( n - l )  linearly 
independent momentum vectors p.. To saturate the epsilon symbol it must be, 
therefore,  that n + ( n - 1 ) ~ 4 k + 2  or n~>2k+2.  We see, then, that in 4 k + 2  
dimensions, diagrams with less than 2 k + 2  external gravitons are free from 
anomalies. We will evaluate the anomaly in one-loop diagrams with precisely 2 k + 2 
external gravitons. Diagrams with more than 2k + 2 gravitons also have anomalies 
which probably can be determined in terms of the anomalous diagrams with 2k + 2 
gravitons by consistency conditions of the Wess-Zumino type. 

The lagrangian for a Weyl fermion in 4k + 2 dimensions is 

I 1 - Y5 
S = dx det e e"~½~iya/9 [ '~-' (21) _ 

The covariant derivative of a spinor is D . 0  = 0 .~  +lo).cacrCdqJ, where ~o. ca is the 

spin connection and o "ca= ¼[yc, 3/] .  So S = $1 + $2, with 

I a- .  - [ 1 - y s \  
S,=½ d x d e t  e e "  ~ , y , ~ O , ~ - - ~ ) ~ ,  

$2 = ½ dx det e e o), t~{Ya, ½~rca} ~,  

----41 dx det e e"a~o i~OFaca , (22) 

where Face is the antisymmetrized product of three gamma matrices, Fa~a = 
~-(TaY~3'a + permutations). We will take ~ to be a complex spinor restricted only by 
the condition YsqJ =-qJ.  In 8 k + 2  dimensions (but not in 8 k + 6  dimensions), it 
would be possible to restrict ff by a Majorana condition, and in this case our 
subsequent formulae must be divided by two. 

As in sect. 5 we study a metric g.~ = ~.~ + h . .  and work in the gauge e.~ = 
1 rl . .  +~h.~. The restriction to this gauge means that we will study anomalies in 

general coordinate transformations but not in local Lorentz transformations (though 
these could be studied by similar methods). 

Vertices originating in S1 have one or more external gravitons. Vertices originating 
t~a cd in $2 have at least two external gravitons, because, although e o9. contains a piece 

linear in h . .  this vanishes when antisymmetrized in a, c, and d. 
Parity violation only appears because of the factor of ½(1- Ys) in the lagrangian. 

Of course, a trace containing Y5 will vanish unless at least 4k + 2 gamma matrices 
are present. Actually, as we will see, in contracting a graviton line with its momentum 
to test for conservation, we alivays lose two gamma matrices. Hence, only diagrams 
with at least 4k +4  gamma matrices in the numerator  will be anomalous. 

Consider a one-loop diagram with n 1 vertices originating from S 1 and n 2 vertices 
originating from $2. Such a diagram has nl 4- n2 internal propagators, each with one 
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gamma matrix in the numerator.  It also has one gamma matrix at each vertex 
originating in S~ and three gamma matrices at each vertex originating in $2. The 
number of gamma matrices in the numerator  of such a diagram is therefore (n~ + 
n2) + n~ + 3n2 = 2(nl + 2n2). We need, therefore, 2(nl + 2nz) i> 4k + 4 if the diagram 
is to be anomalous, so n I +2n2 ~> 2k +2.  

We can get an inequality that runs in the opposite direction by counting external 
graviton lines. We want to look at diagrams with 2k + 2 external gravitons. There 
will be at least one external graviton for each vertex originating in S~, and at least 
two for each vertex originating in Sz so 2k + 2 ~> n~ + 2n2 for the diagrams of interest, 

Combining these inequalities, we see that the anomalous diagrams with 2 k + 2  
gravitons have n 1+2n2 = 2k + 2, with precisely one graviton line attached to each 
vertex that originates in $1 and precisely two attached to each vertex that originates 
in Sz. The interaction lagrangian therefore simplifies drastically; we may take 

a~t(hx~O~h,,~)~F ~;~" l~Ys~b. ZP2=---" ( z / (23) 

The Feynman rules for these vertices are given in fig. 8. 
Now we must discuss how we will regularize the one-loop diagram. We will use 

a procedure discussed at the end of sect. 2 and originally due to Adler. Although 
the one-loop diagrams have Bose symmetry in the external lines, the simplest 
method for extracting the anomaly does not preserve this symmetry. Instead of 
placing a factor ½(1 - 3'5) at each vertex, we place such a factor at one vertex only. 
Then we introduce a Pauli-Villars regulator, subtracting from our diagram a similar 
diagram with a massive fermion of mass M (or we add and subtract suitable diagrams 
with regulator fields of suitable masses; but it is not necessary to do this explicitly). 
The amplitude constructed in this way has an anomaly only in the channel where 
½(1- Ys) is inserted. By Bose symmetrization, one can construct the anomaly that 

E,q ,e (I,)q (I) E(l!q (i) 

+q +ql+q2 

(i-r 5) 
4--i E'u'~ )",u. ~ (2p+q)u 

- i X m u  

5~-F 
(I-Y5), (I) (2). (I) . (2 )  

2 tq -q ),u.%a ~:ka 

Fig. 8. The relevant interaction vertices for gravitons interacting with spin-½ fermions. The two vertices 
originate from Za I and ZP2, respectively. 
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Fig. 9. An anomalous diagram with vertices originating from &¢1 only. Shown is the anomalous box 
diagram of six dimensions. A factor ½(1- 75) is inserted at one vertex only. From this amplitude is 

subtracted a like amplitude for a regulator fermion of mass M. 

the Bose symmetric amplitude would have; it is equal, in each channel, to 1 / (2k  + 2) 
times the anomaly we will calculate in one channel. 

To indicate how the calculation goes we consider first a diagram (fig. 9) with 
vertices coming from ~1 only. In the dangerous channel with an insertion of 1(1 - 75) 
we take the graviton momen tum to be p~, and its polarization tensor to be i(p~,e~ + 
p~e,~); the amplitude with this polarization tensor should vanish because of invariance 
under the general coordinate transformation x ~ ~ x ~" + e ~'. The other gravitons have 

_(i) and to keep the algebra so simple as possible we assume a factorized m o m e n t a / : , , ,  
form -(~ -_(~)_(i) for their polarization tensors; the general result can easily be 
reconstructed from this case. 

As pointed out originally by Adler, in the regularized amplitude naive manipula- 
tions can be carried out. The anomaly appears only because for the massive regulator 
fermion, which we will call h, the energy momentum tensor with insertion of ~(1 - 75) 
is not conserved even formally. And it is only the regulator diagram that contributes 
to the anomaly. 

In fact, if the regulator ;t obeys ( i D - M ) A  = 0 ,  then Dv(X7~, /~½(1-75)h)= 0 
while D~,(~7~,/9~1(1 - 75)h) ~ 0. Hence in the polarization tensor i(p~,e~ +p~e,,) of 
the dangerous channel, the term p~e~, can be dropped;  the other term causes trouble. 

In fact, for a fermion of mass M, D,~(hv~'D~I(1-'),5)A)=-iMhD~ysA. Con- 
sequently, in the dangerous channel we may replace i(p~e~ + 
p~e,) 1.- ~ 1 1 v - ~  • ( -z thy~,D~:(1-75)A)  by - z M e  ),D~ysh. (Note the promised disappearance 
of a gamma matrix in this manipulation.) 

In effect, then, fig. 9 becomes fig. 10, with 2 k +  1 external gravitons and one 
insertion of - z M e  hD,ysA. 

As the amplitude of fig. 10 is somewhat complicated, let us proceed in stages. 
First we carry out the Dirac algebra, after putting the propagators  in the usual 
rationalized form i(l~+ M ) / ( p  2 -  M2). The diagram contains exactly one factor of 

75, at the anomalous vertex labeled Q. Remember ing  that the polarization vectors 
have been written -(i) (~) (~) ~ . .  = e .  e . ,  so that each non-anomalous vertex contains a factor 
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Fig. 10. After manipulations described in the text, the diagram of fig. 10 reduces to a one-loop diagram 

with one insertion of Q = -@4.~“~L?~j,y,h and several external gravitons. Fig. 10 is labeled more explicitly 

than fig. 9, to facilitate comparison with eq. (24). 

of dCi), the Dirac trace that must be performed is 

A =Tr ~~(k+M)e”“(k-d”‘+M)k*‘(k-1’~‘-6’*’+M) 

xe’(3). . . e,(*k+l)(j+l). . .+k+l) +M). (24) 

The same trace was encountered in ref. [7]. There are at most 4k + 3 gamma matrices 

multiplying y5. A non-zero trace requires 4k + 2 gamma matrices, so we must pick 

out terms that are precisely linear in M. The various terms obtained by extracting 

M from different places nearly cancel each other. Bearing in mind that 

Tr YSY~,Y~~ * * * Y,,,,, = -22k+1~~,p~..P4k+27 

the result is A = 22k+1 MZ7 (E ‘i), p”’ ) where 

R(c(i), #j)) =-E IL,ILz...cL4*+* P jfJEJL:)pl:)EF; . . . p~~,k,~,“E~$:;) . (25) 

The important point is that the kinematical factor R depends only on the external 

momenta and polarization vectors, and not on the loop momentum. 

After eliminating the Dirac algebra in this way, the propagators are effectively 

i/(p’- M*) - the propagator of a massive scalar field. At the ith vertex is a factor 

-$E:’ (p+~‘)~ where p and p’ are the incoming and outgoing momenta of the 

scalar particles. At the anomalous vertex is a factor -$is, ( p + p’)” where cP,, which 

we will henceforth call E:‘, is the parameter of an infinitesimal coordinate transfor- 

mation. 

These diagrams will appear formidable. But a little thought shows that the vertex 

factor -$is~‘(p+p’)‘” has a simple interpretation. It is the amplitude for the 

absorption by a charged scalar of charge 4 of a photon of polarization elf’) and 

momentum ( p’ - p)“. 

A charged scalar also has seagull vertices, of course, where two photons of 

polarization 8(l) and E(*) are simultaneously absorbed, the amplitude being 

2ie*E(‘)E(‘). In our problem, however, there are gravitational seagull diagrams, 

coming from T2 of eq. (23). It is easy to see that after factoring out the Dirac 
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algebra in the way just described, the gravitational seagulls become electromagnetic 
seagulls in the analogue problem. Putting the pieces together, the anomalous 
divergence of the amplitude with 2k + 2 gravitons is 

I1/2 = 2 2k+l iM2R (e (i), p(J))Z(e(1), p(J)), (26) 

where Z is the amplitude for a charged scalar of mass M and charge 1 interacting 
with 2k + 2 photons of momentum and polarization p(J) and e (°, i, j = 0 . . . . .  2k + 1. 

In general, the evaluation of Z is quite formidable. However, we are interested 
in the limit as the regulator mass M goes to infinity. Z is gauge invariant and so 
must be constructed from the electromagnetic field strength F~,~ and its derivatives. 
Since Z is of order (2k +2) in the field strengths, we see by dimensional analysis 
that in 4k + 2 dimensions, Z vanishes at least as 1 / M  E for large M. Moreover, terms 
in Z involving derivatives of field strengths will vanish for large M faster than 1 / M  2 
and are negligible. This means that we can regard Z as the amplitude for a scalar 
propagating in a constant electromagnetic field 

2k+1 

F ~ = - i  Z (_O)_(J) -(J)_(J)x /1~ e v - - F v  e ~  ) .  
j=0 

The amplitude Z for propagation in a constant field is to be evaluated and then 
expanded in powers of F to extract the term linear in each p(0 and e (j). 

A diagrammatic evaluation of Z would still be formidable, but the amplitude for 
propagation in a constant field can be evaluated by a method due to Schwinger 
[20]. It is convenient to perform the rest of the calculation in euclidean space. The 
effective action density is 

Z =  1 vol In det ( - D . D "  + M  2) 

_ 1  f ~dSTr eS(Do. ) e_SM2 (27) 
vol J 0  s 

The electromagnetic field can be brought to canonical form 

Xl 

--X 1 

F ~ = 2 ,  
m X  2 

X2 

- - X 2 k + l  

X2k+l  

(28) 

with "eigenvalues" 2X1, 2X2 . . . . .  2X2k+l. (The factor of 2 is included for later 
convenience.) 
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For a particle of charge e interacting in two dimensions with a magnetic field of 
strength B, it is a classic result that [20] 

1 1 e B  T ~(o O u) (29) 
Vol r e  ~ 41r s i n h ( e B s ) "  

With the field brought to the canonical form (28) the "hamiltonian" H = - D . D  ~ 

in (27) is a sum of 2k + 1 commuting two-dimensional operators. The trace in (27) 
is therefore a product of two-dimensional traces, so we get 

Z do s ,:=1 \ 4 1 r s i - ~ ( x d ) )  e x p ( - s M 2 ) "  (30) 

In (30) the factor in brackets is to be expanded to order 2 k + 2  in the x~; terms of 
lower or higher order are irrelevant. The term of order (2k + 2) in xi is of order s, 
cancelling the 1 / s  singularity in (30). The s integral is then ~ ds e -~M:. So (30) 

reduces to 

1 1 2k+lvi. 1Xi 
Z =  (31) 

(4~r) 2k+l M E ill I sinhlxi ' 

where it is understood that the right-hand side of (31) is to be expanded in powers 
of the xi, with all terms dropped except terms of order 2k + 2. 

Combining (26) and (31), we have finally for the anomaly due to a complex spin -1 

Weyl fermion 

_ _ 2 k + l  lx i  
• 1 R ( e ~ ° , P  (j)) I] • (32) 

11/2= t (2~):k+l i=l sinhlxi 

In interpreting this formula, it is to be understood that (32) is regarded as a function 
of F~,~ via eq. (28), and that F ~  is to be expressed in terms of the %-u) and p~J) by 
a formula given earlier• The product on the right-hand side of (32) is to be expanded, 
extracting terms linear in each e ~) and p~J). 

For k - -0 ,  (32) agrees with our earlier two-dimensional results (13) and (15)• 
The comparison of (32) with those results is somewhat subtle because (15) was 
defined to obey Bose symmetry while (32) was computed with a regularization that 
violates Bose symmetry. The simplest way to make the comparison is to add to (13) 
suitable contact terms to construct a non-Bose-symmetric functional of the two 
graviton channels that is conserved in one channel. One then obtains (32) as the 
anomalous divergence in the other channel• 

Eq. (32) is related to the formula for the Dirac index density in 4k + 4 dimensions, 
in agreement with remarks originally made by M.F. Atiyah (private communica- 
tion)• The linearized Riemann tensor of a graviton is 

- ~( pt,p~e~t~ + p~p~e~,~ - p , ,p t je~ - p~p,~e,,~). R~ua~ - 1 
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If e ~  = e~e~ this becomes 

½( p ~ e ~ -  p . ~ . )  ( p ~ ,  - p~e~) . 

In the mathematical literature one introduces "curvature-two forms"; this amounts 
to absorbing the (p~e9 - p , e ~ )  in our kinematical factor R. The standard mathemati- 
cal formulae are then written in terms of "eigenvalues" of the "curvature-two 
forms";  this amounts to working with the eigenvalues xi of ½ ~  (ptJ)e~ j) -~,,-(J)~(J)~ ), 
as we have done. The connection of our results with the index theorem in 4k + 4  
dimensions will become clearer in sect. 11". 

In sects. 7 and 8 we will calculate the gravitational anomalies due to fields of 
spin 3 and due to antisymmetric tensor fields. Happily, the tricks we have used in 
the spin-½ case will suffice, with a few minor modifications. 

7. Gravitational anomalies  for fields of spin 3 

Now we turn our attention to calculating the gravitational anomaly for fields of 
other spin. First we will consider the Rarita-Schwinger field ~ ;/~ is a vector index 
and o~ a spinor index. We wish to calculate the anomaly for a field that obeys a 
Weyl condition ys~b~ = - 0 ~ .  We will not impose an additional Majorana condition; 
if this is done our answer must be divided by two. 

In the quantization of the Rarita-Schwinger field, it is necessary to introduce 
several spin-½ Faddeev-Popov ghosts. Specifically, one needs two ghosts of the same 
chirality as 0~ and one of opposite chirality. Although this counting of ghosts sounds 
odd at first, it really has a simple explanation. Consider a physical propagating spin -3 
particle of momentum k~. The constraints k~b ~ = 0 and the gauge invariance under 
~b~--> 0 ~ + k~a (for any spin-½ field a)  remove two spin-½ degrees of freedom of 
the same chirality as 0, .  The additional constraint y~'0, = 0 removes one spin-½ 
degree of freedom of opposite chirality to ~b~. These conditions leave only a physical 
spin -3 particle. 

As far as the anomalies are concerned, the effect of the ghosts is very simple. 
Two ghosts with the same chirality as $ and one of opposite chirality contribute 
the same anomaly as one ghost of the same chirality as 0. Hence we must simply 
compute the 0 ,  anomaly (using some non-singular lagrangian constructed by gauge 
fixing) and then subtract the spin-½ anomaly (already computed in sect. 6) for one 
ghost field with the same chirality as ~ .  

What non-singular lagrangian for 0~ may be used? The simplest !agrangian one 
might hope for would be a simple Dirac-like lagrangian: 

1 --  ~ . / '  1 - Ys\ 
~ = - ~ O . i D ~ - - - - ~  ) ~ ~" . (33) 

* For gauge theories, such a connection was made by Goldstone (unpublished). 
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(The minus sign reflects a (+ - - - - -. . . -) signature.) Actually, standard gauge 

fixing in the Rarita-Schwinger lagrangian leads not quite to (33) but to a lagrangian 

with some extra terms. But now we may make great use of the remarks at the end 

of sect. 2. The difference between (33) and the standard gauge-fixed Rarita- 

Schwinger lagrangian does not influence anomalies. 

Now we can carry out an analysis similar to the one in sect. 6. Eq. (33) is almost 

equivalent to a theory of 4 k + 2 decoupled spin-4 fields. The only difference arises 

because there is an extra term in the covariant derivative of I,V‘: D,+!P = 

a,+” +$J,,~(+~~I+V’ + rra+*. The last term, proportional to the Christoffel symbol 

rrm:,, gives rise to additional interaction vertices. 

Counting of gamma matrices similar to that which we carried out in sect. 6 shows 

that, to extract the anomaly in a diagram with 2k + 2 external gravitons, it is adequate 

to use for l% the linearized expression rrO = inPm(a,h,, + a&,, -a,&,). The term 

proportional to &,h, can be discarded. It cancels upon including the covariant 

derivatives of $ and & in t,%@b (essentially it cancels because for Majorana fermions, 

&cry$a is antisymmetric in u and (Y by Fermi statistics). 

generalization of eq. (23), 

Apart from the obvious 

(34) 

the new interaction vertex is 

Now we carry out an analysis similar to the discussion in sect. 6. For diagrams 

with 2 k + 2 external gravitons coupled to arbitrary vertices of 9?,, TZ, or Z3, the 

Dirac algebra leads to the same kinematical factor R (Ed, pi) defined in sect. 6. After 

eliminating the Dirac algebra in this way, we are left with a theory of a boson 4” 

which in this case has spin one because it inherits the vector index carried by $“. 

As before, in the effective boson theory, the vertices in Ze, and .& represent the 

minimal interaction of 4” with an electromagnetic field. What about L&? It has a 

very simple interpretation - it describes the magnetic moment of 4”. This arises as 

follows. For interaction with a graviton of momentum pP and polarization Ed,, = EWE,,, 

(35) becomes ~(~P~,-~,~P)$“~$“. The factor of d disappears in doing the Dirac 

algebra and passing from I,V to an effective boson 4“. So X3 reduces to $F&*“4” 

in the effective boson theory. 

The effect of this is that the anomaly in the vector-spinor loop is 

J = 22k+l&f2R(E(i), P(i))z(E(i), P(j)) , (36) 

where ,? is the effective action for a charged vector meson interacting with the 
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constant electromagnetic field 

2k+l  
(--(J)~(J) n(J)~(J) F . ~ = - i  Y. . p .  e~ - r ~  % i .  

j=O 

The effective hamiltonian for the charged vector meson is (with now a euclidean 
signature) defined by 

As in sect. 6, 

+z~A~) 4,. +: tFj ,~.  H c b ~ = - ( O , ~  1. 2 1. 

Z, = Tr  In H = - Tr  e - m  . (37) 

The trace in (37) is simple because H = H~ +H2 where H1 =-6,~(O,~+¼iA,~) 2 and 
HE = ½iF,~. For a constant field, Ha commutes with/-/2. Since HI acts only on spatial 
variables and H2 acts only on the spin, the trace in (37) factorizes as 
(Tr e-ml)space " (Tr e-SH2)spin . T h e  spatial trace in that product is the trace discussed 
in sect. 6. The spin trace is the trace of a constant finite-dimensional matrix; in the 
notation of eq. (28), this trace is easily seen to be 

2k+l  
Y~ 2 cosh xj. 

j=l 

Evaluating (37) by analogy with the treatment of (27), and remembering to subtract 
the contribution of a spin -1 ghost, the anomaly for the spin -3 field is 

1 
_"  R ( e ( O , p ( i ) )  I3 /2= t(21r)2k. 1 

/ k +  _Iv \ 12k+1 \ 1 , ,  
\ i=1 sinh ( ½ x i ) ] \  j=~oS" 2 cosh x i -  1 ) .  (38) 

Again, (38) is to be expanded in a power series in the xi, only the term of order 
2 k + 2  in the xi being relevant. 

8. The antisymmetric tensor field 

Unlike fermion integrals, which are formal constructions, euclidean space integrals 
for Bose fields are real, honest integrals. For  fermions it is possible to integrate 
over a field 0 without integrating over its complex conjugate 0".  For bosons, instead, 
one always integrates over both the fields and their complex conjugates. In any 
theory that has a covariant formulation, the bosonic integration variables form a 
representation of the O(n)  euclidean symmetry group, and it is always a real 
representation, for the reason just stated. Moreover,  for bosons the euclidean action 
(or at least its real part) must be positive definite, and the kinetic energy is usually 
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a sum of squares S dx ~ 0i(x) 2 where the 0i (linear in derivatives of Bose fields) may 

have various labels. Such an expression can always be regularized in the manner  
Y, 0 ~ ~ ~i (( 1 - D , D "  / A 2) 0~)e and so leads to an effective action free of anomalies. 

The only apparent  exception to this reasoning would arise in the case of a boson 

theory  which is Loren tz  covariant  or  generally covariant  but does not  have a covariant  

lagrangian. There  is no  obvious, general way to regularize such a theory  or prove 
the absence of anomalies. 

There  seems to be only one known case of a covariant  Bose field without  a 

covariant  lagrangian [17]. This is the case of a theory  in 4k + 2  dimensions with a 

field A~l...lx2k that  is an ant isymmetric  tensor  with 2k indices. The curl of such a 

field F,1,2...,2k+ ~ = (a~,lA,2...,2k. 1 +cycl ic  permutat ions)  is an ant isymmetr ic  tensor  

with 2k + 1 indices. A~I. . . ,~ is a gauge field; under  a gauge t ransformat ion  it changes 

as the curl of an object  with one less index; but its curl F is gauge invariant. In 
Minkowski  space such F~r..~:~. 1 can be constrained to obey a self-duality condit ion 

F,~...,~.~ = (1 / (2k  + 1)!)et~llX2...tX4k+2F~2k+2...P.4k~2. Together  with the Bianchi identity, 
the self-duality condit ion serves as a covariant  equat ion of motion.  We  will consider 

A and F to be real; if they are complex, the anomaly  is twice as big. 

In Minkowski  space of 4k  dimensions, the self-duality condit ion would necessarily 

contain a factor  of i (or - i ) ,  and CPT would relate the self-dual field to an 

anti-self-dual field. However ,  this is not  t rue in 4k  + 2 dimension; the self-dual field 
is self-conjugate under  CPT. The self-dual field appears  in certain supergravi ty 

theories in six and ten dimensions. 

It seems that a l though there are covariant  field theories containing the self-dual 

field, these theories have no covariant  lagrangian. This suggests that  there  might 

be an anomaly  in the coupling of the self-dual field to gravity. Indeed,  we can 

immediately see that this is the case in two dimensions. In two dimensions k = 0 

and the ant isymmetric  tensor  of 2k indices is just a scalar field ~b. In terms of 
l ight-cone variables x ± = x/~(x° + x 1), the self-duality condit ion is just 0_~ = 0. Thus,  
the self-dual field corresponds  to "ha l f"  of a massless scalar. A massless scalar tr 

in two dimensions, which obeys a+a_ t r=0 ,  can be written or=o '++~r_,  where 
a+tr_ = a_o-+ = 0; the self-dual field is o-+. 

In two dimensions, by bosonizat ion of fermions [21], a real scalar field is equivalent 

to a complex spinor field. The real self-dual field 4~ or  o-+ corresponds  to the positive 
chirality complex spinor studied in sect. 5 and has exactly the same anomaly.  

Now let us consider the situation in more  than two dimensions. Precisely because 

a covariant  lagrangian is not  known (and the coupling to gravity has not  been 
worked  out  even in the l ight-cone approach  of [17]), we will have to be pragmatic  

and invent suitable Feynman  rules. 

Our  discussion below simplifies slightly if we work  in euclidean space. When  we 
use gamma y,~, y,~ . . . . .  %,~ matrices, they will be real, symmetr ic  2N/2×2  N/2 

matrices ( N  = 4k + 2) that obey T,3,~ + T~3,, = 2g,,~. We define 3'5 = ioq 3'2 • • • 3,N; it 
is ant isymmetr ic  and its square is unity. We also define F ~ 2 . , . =  
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(1 / n !) ( 'Y/~I ~///~2 ° ° ° ")#b~n ::1: permutations).  Note that the transpose of F,1...~,n is F ,  ...~1 
and that Tr  F,~...,=F~. .... = 2N/2(&,, ~ •, • g , , , ,  + permutations).  

The coupling of the graviton to the antisymmetric tensor field A~,,...,2k is normally 
2" a ~,~, where the energy momentum tensor is normally 

1 1 F 2 
T,,~(F)=(--~.F,,,~r..,~2kF~,w..a=~ 2 ( 2 k + l ) ! g , ~ ( , , . . . ~ )  . (39) 

Notice that the energy-momentum tensor does not involve A,~r..~2 ~ explicitly hut 
only the gauge invariant curl S o. 1 . . . J ~ 2 k + l .  This means that to construct Feynman 
diagrams with external gravitons we do not need to construct a propagator  for the 
gauge field A. It is enough to know the gauge invariant free propagator  of F: 

_ q~,l q ~  
(F~. . . , :~+,  (q)F~,...~2k+ 1 ( - q ) ) =  q2 g,=~" " " g~,=~+~+~ 

+ permutat ions of #z~vj. (40) 

Now, to deal with the self-dual field we will assume that it is correct to use the 
propagator  (40) without modification, while modifying the energy-momentum 

1 txu 1 tensor. We take the interaction with gravity to be -~h T,~=(~(F-iF)), where 

/~,...,.=~+~ = 1 / ( 2 k +  1)! 8tZl...#,,k . . . .  ...~.2k+l ° F vl"''v:k+'. Thus, we permit  both self-dual 
and anti-self-dual fields in propagators,  but only self-dual fields can be emitted or 
absorbed at vertices, since the energy-momentum tensor is constructed from the 
self-dual part  of F only. 

In practice, when we actually compute  diagrams, we will use the ordinary energy- 
momentum tensor at every vertex except one, and T,.~(12-(F - il~)) at one vertex 
only. Since duality is conserved at vertices, in that 

T~(F) = T~(½(F- iF)) + T.~(½(F + iF)), (41) 

and since the propagator  also conserves duality, it suffices to project out the self-dual 
part  of F at one vertex only. 

We now have a well-defined prescription for loop diagrams, and we could proceed, 
for instance, to compute  hexagon diagrams in 10 dimensions (fig. 11). But the 
algebra would be quite cumbersome.  

"- .S 
I I 
I I 
I I 
I I 

Fig. 11. A hexagon diagram in ten dimensions; the internal lines are antisymrnetric tensor fields and 
the external lines are gravitons. 



300 L. Alvarez-Gaum~, E. Witten / Gravitational anomalies 

To achieve some simplification we introduce additional fields that are free ot 
anomalies but permit a covenient reorganization of the algebra. We introduce not 
just the 2k rank tensor field A~,v..~,~ but the whole Complement of antisymmetric 
tensors A, A, ,  A~lm, A~,~,:~,~ . . . . .  A~,r..~, ~. (Recall N = 4k + 2 is the dimension ot 
space-time.) And we define the gauge invariant curls 

F = 0 ,  

F .  = O~A , 

Fg~.2 = O.l A. l  .~ + cyclic permutat ions,  

E l ' t 1  " " ~ N  = O~,A~,~...~,N + cyclic permutations.  (42) 

The lagrangian for the antisymmetric fields are simple generalizations of the Maxwell 
lagrangian: 

. ~ =  f dNx x/g - . 2~  g~',",g~'a"2 . . . g~',"~F~,,...~, F,,. .... . 

The energy-momentum tensor 

(43) 

1 1 
T(") = G- , .  . . . .  F l ~ o ~  1 " . . . . .  - - - -  F 2 ~'~ ( n - l ) !  "- - 2 .  n!  g~'~( - r  . . . .  ) , ( 4 4 )  

and the free propagator 

• • ° 

(F~,~...~,,(q)F~r .... ( - q ) )  = - q,~qv~g~'2~;2 g,°~. 

+ permutations of tz~, uj, (45) 

are simple generalizations of previous formulae. 
The utility of introducing this host of new fields springs from a simple group 

theoretical fact. The tensor product of the spinor representation of O(N)  with itself 
is precisely the direct sum of the nth rank tensor representation of O(N)  for 
0 ~< n ~< N. Thus we can describe the whole collection (42) by a single field &~ with 
two spinor indices a and/3. We define 

N 

q~,~/3 =2-N/4 E (F~,,...~,,)~,t3F"C"". (46) 
n=O 

The inverse formula is 

F l d l  ""1 ~ - -  2-N/4[ F ~ ~t (47) 

as one may show by simple gamma matrix algebra. The point is that Feynman rules 
for &~ are much more manageable than Feynman rules for the F~,l...,°. Eqs. (45) 
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are reproduced by a simple equation 

1 ((Ysq),~v(Y5q)t3~ +qZ6,~z,6t38) (48) (~b~t3 (q) ~bv~ ( - q ) )  = 2q----- 2 

for the 4)~t3 propagator  (recall Y5 = iY ly2 . . .  yN) .  T h e  total energy momentum tensor 
N T(n) y(n) T~,~ = 2 , = 0  (with in (44)) is  

T ~  = ~6,~t~d~,~((%,ys),~,(y~ys)t38) + (/z o u) .  (49) 

Eqs. (48) and (49) are much simpler than they may at first look. In (48) the second 
term lacks a pole at q2 = 0 and can be discarded; it is a non-minimal term that does 
not affect the anomalies (though it is needed to reproduce (45)). The first term in 

(48) describes independent propagation of the two spinor indices a and /3. The 
energy momentum tensor also propagates a and 13 independently. So the com- 
binatories involves a product of two independent Dirac traces and is very simple. 

We must generalize the duality operation F ~ / 3  to the ~b~t3 field. A suitable 
generalization, as one may see from (46), is 

~ -~ (~ '5 )~ ,~ ,~  • (50) 

For the (2k + 1)-rank antisymmetric tensor, (50) is the old duality operation. For  

the other components,  (50) is an operation that exchanges n- rank  tensors with 
(4k + 2) -n- rank  tensors. The fact that (50) does not annihilate the n-rank tensors 
for n ~ 2k + 1 is unwanted, in the sense that we do not wish to probe for anomalies 
in those fields, but it is harmless, in the sense that we know that the tensors with 
n # 2 k +  1 have no anomalies. 

The Feynman rules (48) and (49) describe a theory with both self-dual and 
anti-self-dual fields propagating. We wish, instead, to compute the anomaly in a 
theory with only self-dual fields. As in our previous discussion we accomplish this 
as follows. At every vertex but one we use the energy-momentum tensor (49), but 
at one vertex, the anomalous vertex (indicated by a box in fig. 12) we use instead 

Fig. 12. The diagram of fig. 11, but with extra fields added and expressed in terms of a field q~t3 with 
two spinor indices. 4)~0 is denoted as a double line to suggest independent propagation of the a and/3 

indices. A box is drawn around the anomalous vertex. 
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a projected energy-momentum tensor 

:~.~ = ¼(½(1 + r s L o , , ~ , ~  • 1(1 + 75)~'~b~'~)((7~,3'5)~r(7~Y5)~) + (/x ~ u). (51) 

_!/, T~ u . We now evaluate diagram (12). At the ordinary vertices, the coupling is 2,~p.~,~t , 

the ith graviton has momentum, p~) and polarization ~,,~-(° = e,-(°-(°~ . At the anomalous 
vertex, the coupling is e~O,T~, where e~ -- e~ > is the parameter of an infinitesimal 
coordinate transformation. 

We regulate diagram (12) by the Pauli-Villars method. The regulator field ~ 
has propagator 

( ~  (q )g~  (-q))  - 
1 

2(q2+M2) ((75(q+ iM)),,~,(75(q+ iM))~ + (q2+ M2)t~rS~) .  

(52)  

Of course, in the regulated diagram, one may use naive manipulations and one need 
only keep the regulator loop. And the last term in (52) is irrelevant and may be 
dropped, for reasons mentioned earlier. 

The actual evaluation of diagram (12) is rather simple*. Of the two Dirac traces, 
one contains at the anomalous vertex an insertion of p, p~ being the graviton 
momentum. Let us call this trace the a trace and the other one the/3 trace. The 
a trace just gives 22k+liM2R (e (i), p(J)) where R is the familiar kinematic factor of 
sect. 6. The remaining expression is very simple; it is one half the amplitude for a 
Dirac spinor of charge J interacting with operators of momenta p~) and polarizations 
e(o This should not be too surprising in view of our results of sects. 6 and 7. (Note / z  • 

that after dropping the irrelevant last term and performing the a trace, (52) reduces 
to 175 times the standard Dirac propagator (q+iM)/(q2+M2). Likewise after 
performing the a trace (49) becomes a standard Dirac vertex e" times ~75.) 

Our anomaly is hence 

= - l i M E 2 2 k + l R  ( e (0, p(J) )Z, (53) 

where Z is the amplitude just mentioned for a charged spinor interacting with 
photons. As in our previous problems, Z can be computed as the amplitude for 

* The interested reader should note the following points. One has, of course, a minus sign for the 
regulator loop. In matrix elements (or Feynman vertices) of the energy-momentum tensor one must 
include a factor of two from Bose statistics. The 75's in the propagators and vertices cancel harmlessly, 
leaving only ys's from projectors ½(1 + 75). The 75 in the a trace goes into making the kinematic 
factor R, but the F in the 13 trace can be dropped (it gives terms that vanish as M ~ co). So the 
1( 1 + 75) in the/3 trace gives a factor of ½. Another factor of ½ occurs because the fields are real, but 
there is a factor of 2 from choosing which Dirac trace is the a trace and which is the/3 trace. Because 
of the two factors of ½ and one factor of 2, we get eventually ½ the amplitude for a charged Dirac 
particle in an external field. 
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propagat ion in the constant field F~,~ defined in sect I 7. So 

Z = Tr  In ( i D +  iM) 

-2-!Trln ( - D  2+M2)  

= ½ Tr  In ( - D . D  ~" + M 2 +  iF"~F.~) 

f0 o = -½ ds e -,M2 Tr  e - s < - D - ° ~ + i r ~ )  . (53) 

(Here  F "~ =½[F ", FV].) For  a constant field, - D ~ D "  and iF"~F,v commute  with 
each other,  so the trace in (53) factorizes as a product of traces. The trace of 
e - ' ( -D-  D") was evaluated in sect. 6, while in the notation of that section 

2 k + l  

Tr e - l s r ~  ~ = 22k+1 l-I (cosh (½xi)). (54) 
i = l  

Evaluating the s integral in (53) as in sect. 6, we find that the anomaly/~ of a real 
self-dual antisymmetric tensor field is 

..~_1 • 1 P(J) ) 22k+1 2 k + l  ½X i 
I = zt (2,rr)2k+l R(e (i), i----I~I1 sinh (½xi) cosh (½xl), (55) 

which, as always, is to be expanded to order 2 k + 2  in the x~. As far as the te rm of 
order  2k + 2 is concerned, (55) is equivalent to 

1 • 1 2 k + l  Xi 
I =~t (2,rr)--2k+l R ( e  (i), P(J)) i=ll-I tanh xl " (56) 

A special case of (56) can easily be tested. In two dimensions, by a bosonization 
argument  mentioned earlier, the anomaly for a real self-dual scalar must equal that 
of a complex fermion of definite chirality. Hence as one can easily check, for k = 0 
the te rm of order x 2 in (56) must coincide with the term of order  x 2 in eq. (32) 
for the spin-½ anomaly. 

9. Mixed anomalies 

Until now, our object has been to analyze anomalies that arise for theories with 
mat ter  fields coupled to gravity only. 

Higher-dimensional anomalies for theories with mat ter  fields coupled to gauge 
fields only have been computed previously by several authors [7]. 

In this section, we will consider a more  general problem that encompasses these 
two cases: we will calculate the anomalies for mat ter  fields coupled to both gravity 
and gauge fields. Since (as far as is known) antisymmetric tensor fields cannot be 
consistently coupled to gauge fields, the relevant cases are the fields of spin ½ or 
spin 3. 
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Fig. 13. The anomalous diagrams in eight dimensions. Gluons are wavy lines and gravitons are loopy 
lines. At one vertex (with a box around it) there is a projection operator ½(1- Ys). 

In any even number  of dimensions 2n, we will study diagrams with n + 1 external 
boson lines, which may be gluons or gravitons. We will see that diagrams with r 
external gluons and n + 1 - r  external gravitons are always anomalous, as long as 
n + 1 - r is even. For instance, in eight dimensions, the diagrams with five external 
gluons, three external gluons and two gravitons, or one external gluon and four 
gravitons are all potentially anomalous, depending on the gauge group (fig. 13). 
The cancellation of anomalies in higher-dimensional theories is much more  difficult 
than in four dimensions; implications for some pseudo-realistic models will be 
described elsewhere [13]. 

So far, we have only discussed the particular case of diagrams with no external 
gluons and n + 1 external gravitons. There is something very special about this case. 

The triangle anomaly in four dimensions has two important but fundamentally 
different interpretations. If one external current is the generator of a global symmetry 
while the other two are coupled to gauge mesons, the anomaly represents the 

breakdown of the global symmetry in the presence of gauge fields. As such it can 
be related to the index theorem [22] for the four-dimensional Dirac operator.  The 
anomalous part of the triangle can be deduced from the index theorem; calculating 
the triangle is a way to prove the index theorem. 

The triangle anomaly has another  interpretation, which has been stressed in this 
paper  and is no t  directly related to any four-dimensional index theorem. If all three 
currents are coupled to gauge mesons, the anomaly represents a breakdown of 
gauge invariance. 

The gravitational anomaly with external gravitons only has the second sort of 
interpretation. In gauge theories we can distinguish local symmetries from global 
symmetries; we can distinguish conserved currents coupled to gauge mesons from 
conserved currents that generate global symmetries. If precisely one of the currents 
is a global current, an anomalous diagram is related to an index theorem. In gravity 
we cannot distinguish a "global energy momentum tensor"  from a "local energy- 
momentum tensor";  there is only one energy momentum then, and it couples to 
gravity. The anomalies evaluated in previous sections represent violation of general 
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covariance. They cannot be interpreted as violations of a global conservation law 
in the presence of gravity. They cannot be derived from an index theorem or any 
known mathematical theorem*. This fact was one of the main motivations for the 
detailed calculations (and exposition) in this paper. By contrast, we now will examine 
anomalies in diagrams with gravitons and currents. By regarding one of the currents 
as the current of a global symmetry, these anomalies can be interpreted as breakdown 
of a global conservation law; and they can be deduced from (or used to prove) 
known index theorems. This was noted for the case of diagrams with external 
currents only in some of the papers of ref. [7]. 

We now turn to the detailed evaluation of the relevant diagrams, considering first 
the case of particles of spin 4. Somewhere in the loop (fig. 13) there is a chirality 
projection operator 4( 1 - -yJ. We are really dealing, of course, with the one-loop 
diagram of a massive regulator field. At a vertex with gluon emission there is a factor 

-i$‘TE, (57) 

where TE is the relevant group generator in the representation furnished by the 
left-handed fermions. Of course, the group theory factor associated with a given 
diagram is 

TrTflT?**.Tp. (58) 

After extracting this factor, what appears at a gluon vertex is just -if‘. At graviton 
vertices there appears instead 

-&(P+P’).. (59) 

Now, recall that to deal with the graviton vertices our first step was to carry out 
the gamma matrix algebra. This depends only on the y, factor in (59). Since that 
factor appears also in (57), the gamma matrix algebra goes through in the same 
way whether the external particles are gluons or gravitons. So all diagrams receive 
the same kinematic factor R( .sci), p”‘) discussed in sect. 5. 

After removing this factor and the group theory factor (58), what remains of the 
graviton vertex is -fi( p+p’)p, corresponding to a particle of charge a interacting 
with “photons”; what remains of a former gluon vertex is just (-i), which one can 
think of as a vertex for absorption of a scalar U. Of course, our propagators are 
now i/( p2-M’), so we have an effective theory of charged scalars coupled to 
external photons and scalars (fig. 14). 

We now wish to extract the limit as M2 + co. Summing over permutations of 
gluons and gravitons, the one-loop diagrams give an effective action for Fpy and u. 
Terms involving derivatives of Fpy or of c vanish, on dimensional grounds, as 

* M.F. Atiyah (private communication) pointed out that a relation between the gravitational anomaly 

in 4k + 2 dimensions and the index theorem in 4k +4 dimensions should exist. This remark was based 

on certain properties of the diffeomorphism group in 4kx2 dimensions. Our formulae for the 

anomalies are compatible with this idea. 
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I 
i 
t O "  
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Fig. 14. After performing Dirac algebra, the Dirac propagators reduce to scalar propagators, the graviton 
vertices reduce to "photon" vertices, and the gluon vertices reduce to vertices for interaction with an 

effective scalar cr. The first diagram of fig. 13 is redrawn appropriately. 

M ~ 0o, so F,~ can be t reated as a constant  e lectromagnet ic  field and the or particles 
can be taken all to  have zero momentum.  

All dependence  on m om e n t a  and polarizations of external gluons (which have 

been reduced to or particles) is hence conta ined in R ( e  ~i), p~J)). Since this factor  is 
symmetr ic  under  permutat ions  of the external lines, the g roup  theory  factor  (58) 

must  also be symmetr ized,  yielding what  we will call S Tr (T~ I • • • T~ r), the sym- 
metr ized trace of the genera tors  T~ . . . .  T~_r. 

For  emission of a z e r o - m o m e n t u m  scalar, the vertex - i  has a simple and well- 

known interpretation.  It  can be interpreted as resulting f rom differentiation with 
respect  to M2: 

i i a i 
p 2 _ M  2 ( - i )  p 2 _ M 2 - a M  2 p 2 _ M  2 . (60) 

So a diagram with external photons  and r external or particles of zero m o m e n t u m  

equals the r th derivative with respect to M 2 of a diagram with external  photons  

only. But  the ampli tude for  propagat ion  in an external e lectromagnet ic  field only 

we have already evaluated. We may hence  bor row our  old results, just replacing 

(30) by 

( Z ' = - S T r  r ~ l . . ,  r~k ~ s k=l 4~r sinh (½xd) e x p ( - s M 2 ) ,  (61) 

which now is to be expanded to order  ½(n + 2 ) -  k in the x~. The  s integral can be 
done  just as before,  so 

1 1 n/2 lxi 
Z '  = - S  Tr  ( T g l .  • • Tg, ) (47r)2k+ 1 M2 __[I 1 sinh ½xi (62) 

and the anomaly  (since nothing else changes in the derivation of (32)) is 

) i R ( e  ~°,p~i)) ~/2 ½xi 
11/2 = - S  Tr (T~ . . . .  T~, (2,/r)n/2 ] - I  . (63) 

i= 1 sinh lxi 
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Eq. (63) is to be expanded to order ½(n + 2 ) - r  in the xi, and expressed in terms of 
e (i) and p<J) by rules explained in sect. 6. 

Since (63) is even in each of the xi, we see there is an anomaly only if ½(n + 2 ) - r  
is even. There is potential trouble if the number r of external gluons is r = Xn + 1, 
in  - 1,½n - 3, .  • •. The condition for cancellation of anomalies (assuming only spin-½ 
fields are considered) is 

S Tr  T~ ~ T~ . . . .  T~, = 0 ,  (64) 

for all such r and all a~ • • • a .  For  large n, (64) is very restrictive, since many values 
of r must be considered. For r = ½n + 1, this result was obtained in ref. [7]. 

In general, we must also include the contribution of possible charged fields of 
spin 3. No new features arise in generalizing the conditions of sect. 7, and we get 

13/2 = - S  Tr (T[x 7~ ~ . . .  T ~ )  i p(~)) (27r)./2 R (  e~°, 

n/2 l r .  In~2 
x I] ~ ×  ~,~1 2 cosh x j -  1 ) ,  (65) 

i=1 sinh ~xi = 

where now T~ are the group generators for left-handed fields of spin 3. 

10. Global gravitational anomalies 

So far we have considered anomalies that show up in perturbation theory. Such 
anomalies represent the lack of invariance of the effective action under infinitesimal 
general coordinate (or gauge) transformations. 

Even if perturbative anomalies are absent, we must ask whether the effective 
action is invariant under coordinate or gauge transformations that cannot be reached 
continuously from the identity. Actually, in n dimensional euclidean space, we 
should restrict ourselves to coordinate transformations that approach the identity 
at infinity. Invariance under such coordinate transformations is needed for the 
internal consistency of a generally covariant theory, for reasons analogous to similar 
considerations in gauge theories. Let 7r be a hypothetical coordinate transformation 
that approaches the identity at infinity under which the effective action is not 
invariant. To be specific, suppose (since this is the case we will find) that the fermion 
integral changes sign under zr in some theory. In this case, the theory is inconsistent 
because the euclidean path integral vanishes. The contribution to the path integral 
from any metric g,~ would be exactly cancelled by the contribution of the conjugate 
metric g~,~ induced from g ~  by the coordinate transformation ~. Because ~r 
approaches the identity at infinity, one could not exclude g ~  by a boundary 
condition. Moreover,  g . ~  can be reached continuously from g ~  (but not by means 
of coordinate transformations) by the interpolation t g . ~ + ( 1 - t ) g . ~  ~, O~ < t ~  < 1, so 
it is not possible to eliminate g . ~  by integrating over only "half"  of field space. 
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Let us refer to coordinate transformations that are trivial at infinity and cannot 
be reached continuously from the identity as disconnected coordinate transforma- 
tions. Finding such transformations is a difficult problem. It is known that in two 
or four dimensions there are no disconnected coordinate transformations, but this 
is unknown in three dimensions. The first example of a disconnected coordinate 
transformation was given by Milnor, in the six-dimensional case [23] (in constructing 
so-called exotic seven spheres). Typically, in n dimensions, for large n, there are 
many disconnected coordinate transformations. For instance, in six dimensions the 
group of coordinate transformations that are trivial at infinity has 28 components  

(the identity and 27 disconnected transformations); in eight dimensions this group 
has 8 components;  in ten dimensions it has 992 components;  in fourteen dimensions 
there are 16 256 [24]. 

There are three situations in which one might envisage global anomalies associated 

with disconnected general coordinate transformations: 
(i) Matter  fields in 4 k + 2  dimensions which cannot have bare masses because 

they transform in a complex representation of O(4k  + 2). 
(ii) Theories in 8k or 8k + 1 dimensions with a single Majorana Fermi field (or 

an odd number  of them). As discussed at the end of sect. 4, because of Fermi 
statistics a single Majorana field cannot acquire a mass in 8k or 8k + 1 dimensions; 
only in 8k or 8 k +  1 dimensions does this phenomena occur. 

(iii) Theories in which bare masses are possible. 
We will not consider here cases of type (i). In these cases, infinitesimal anomalies 

appear  in perturbation theory, as we have already discussed. The constraints from 
cancellation of infinitesimal anomalies are much more  severe than any additional 
constraints that would come from global anomalies; however,  we do not know if 
such additional constraints exist. 

Regarding theories of type (iii), when bare masses are possible, Pauli-Villars 
regularization is possible. Since this regularization preserves general covariance, 
general covariance does not suffer from any local or global anomaly. However ,  in 
certain cases Pauli-Villars regularization violates parity, and in those cases there 
can be a global anomaly leading to breakdown of parity conservation. Although it 
is outside our main theme we will digress to consider this point. 

In an even number  of dimensions, Pauli-Villars regularization, if possible at all, 
always preserves parity. In an odd number  of dimensions this is not the case. For 
instance, a Majorana fermion in 2 +  1 dimensions may have a bare mass, but its 
bare mass violates parity. More generally, in 4 k - 1 dimensions the sign of the mass 
term of a Majorana fermion is odd under parity. An even number  of Majorana 
fermions can always receive parity-conserving bare masses (give positive bare 
masses to half of them and negative bare masses to the other half). With an 
odd  number  of Majorana fermions in 4 k - 1  dimensions, parity conserving bare 
masses are not possible, and in this case a rather subtle global anomaly can ruin 

parity conservation. 
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If a bare mass is possible, the anomaly for any physical field ~b equals the anomaly 
of a very heavy regulator field X that may be introduced. Since the whole effective 
action F(X) of the very massive regulator )¢ i~ a local functional, any anomalous 
behavior of F(X) (under coordinate transformations) can be cancelled by a local 
functional; therefore, any anomalous behavior of F(qJ), the physically relevant 
effective action, can be cancelled by the same local counterterm. However,  even if 
F (~ )  conserves parity, it may be impossible to choose the local counterterm that 
cancels its anomalous variation to be parity conserving. 

Since there is no trouble with two Majorana fermions, e -2r(~) (or e -nr(~') for even 
n) is generally covariant with no need for parity-violating counterterms. The worri- 
some possibility is that e - r ( ~  may change sign under a disconnected coordinate (or 
gauge) transformation ~r. If so, the anomalous behavior can be cancelled by adding 
to F (~ )  the same local functional that cancels the anomalous behavior of F(X). 

F(X) is local, and, like F(~) ,  it is infinitesimally generally covariant. The local 
functionals of the metric that are infinitesimally but not globally generally covariant 
are the Chern-Simons secondary characteristic classes Q~. They are odd under 
parity and exist in 4 k - 1  dimensions (in gauge theories the Chern-Simons classes 
exist in any odd number of dimensions). Our worry is that the Qa may appear in 
F(X). Because the Q~ are multivalued, their coefficients must ordinarily be integers 
in quantum field theory [25]. However,  matter  fields can modify this quantization. 
If F(X)=~ c~Qa, with non-integral ca, then to cancel the anomalous behavior of 
F ( X ) - o r  more pertinently to cancel the equivalent anomaly of F ( O ) - t h e  
coefficients of Q~ in the lagrangian must be n ~ -  ca, with some integer n,. In 
particular, the coefficient of Q~ in the lagrangian cannot vanish, and the quantum 
theory cannot conserve parity. There are non-trivial examples of this bizarre 
phenomenon,  which is related to discussions of the ~ invariant in mathematics [26]. 
For  instance, consider an SU(2) gauge theory in 2 + 1 dimensions*. Ordinarily the 
coefficient of the Chern-Simons term (or "topological mass term")  must be an 
integer [25]. If, however, a single Majorana SU(2) doublet is included, one finds 
(by reasoning similar to that in ref. [16]), that e - r  is odd under a certain disconnected 
gauge transformation. To compensate for this the Chern-Simons coefficient must 
be a half-integer. It cannot vanish, and the quantum theory cannot conserve parity, 
contrary to what one would think classically. We do not know under what conditions 
such phenomena occur in general relativity. 

Returning to our main theme, we now consider case (ii) in our previous catalogue 
of possibil i t ies-the theory of a single Majorana Fermi field in 8k or 8 k + l  
dimensions. In this case we will actually meet a breakdown of general covariance. 
We will consider only the case of fermions of spin ½. 

As discussed in sects. (2) and (4) (and in the remarks just concluded) for a Dirac 
field the fermion integral det iD is perfectly invariant under general coordinate 

* This point has been discovered independently and discussed in more  detail by N. Redlich, ref. [25]. 
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transformations. The difficulty arises in taking a square root to find the fermion 
integral x / ~ - i D  of the Majorana field. The sign of the square root is potentially 
ambiguous. 

Is there in 8k or 8 k +  1 dimensions a disconnected coordinate transformation 
under which x/det iD changes sign? Remarkably enough this question has already 
been answered by Hitchin [27] who proved the existence of such a transformation 
(this reference was pointed out by M. Atiyah). 

Hitchin's interest was actually to prove the existence of riemannian metrics on 
an arbitrary manifold of 8k or 8k + 1 dimensions for which the Dirac operator  has 
a zero eigenvalue. He did this as follows. In 8k dimensions (for example) the Dirac 
operator  D is a real, antisymmetric operator,  just like the Dirac operator  for SU(2) 
gauge fields in four dimensions. Its non-zero eigenvalues therefore occur in complex 
conjugate pairs. Hitchin proved the existence of a disconnected coordinate transfor- 
mation • r with the following property. In interpolating from g,~ to g , ~  there are, 
for topological reasons, an odd number of "level crossings" in which an eigenvalue 
changes place with its complex conjugate (fig. 15). This guarantees the existence 
of zero eigenvalues somewhere between g,~, and g ,~ .  As in ref. [15], it also means 
that x / ~  is odd under the transformation ~-. 

We conclude, therefore, that in 8k or 8k + 1 dimensions it is inconsistent to couple 
to gravity an odd number of Majorana fermions of spin ½. We do not know if there 
is a similar problem for spin -3 fields, or whether, if so, spin -1 anomalies can be 
cancelled by spin -3 anomalies. 

11. An alternative computation of the gravitational anomaly 

In sects. 6-9 we have presented a diagrammatic calculation of the gravitational 
anomaly in 4 k + 2 dimensions for Weyl fermions of spin ~ and 3 and for antisymmetric 
self-dual tensor gauge fields, as well as the combined gravitational and gauge 

g d.// 

J 

f 

"/F 

t/.~/ 

Fig. 15. An odd number  of positive eigenvalues become negative in interpolating from g ~  to g~,~. This 
is why .,/~-i-/~ is odd under  ~r. 
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anomalies (figs. 9-14). In the detailed evaluation of the Feynman integrals, we 
arranged the trace over Dirac matrices and the Lorentz algebra in a convenient 
way so that the remaining integral could be reduced to the problem of evaluating 
the propagator of a particle in the presence of a constant external electromagnetic 
field. The fact. that this method works for all the cases considered, suggests that 
there should be a method of computing the anomaly that exhibits the relation to 
the propagation of particles in constant external fields from the beginning. 

In this section we will present an alternative way of evaluating the gravitational 
anomalies with or without gauge fields based on a generalization of a procedure 
first introduced by Fujikawa [28]. The basic idea of Fujikawa's procedure is to 
notice that the symmetries of the classical action are not necessarily symmetries of 
the measure in the functional integral which defines the graviton theory, and 
therefore classical symmetries may cease to be conserved at the quantum level. If 
one applies this method of computing anomalies to the usual axial anomaly [1], one 
gets a very clear connection between the anomaly and the Atiyah-Singer index 
theorem for the Dirac equation [22]. As will be fully explained below, this method 
proves to be very useful in relating (at least formally) the gravitational anomaly in 
4k + 2 dimensions with the index theorem for certain operators in 4k + 4 dimensions, 
thus supporting the remark by M. Atiyah which was mentioned previously. 

We illustrate the method we will use, by first computing the gravitational contribu- 
tion to the axial anomaly for a fermion coupled to gravity in an arbitrary number 
of dimensions. Besides purely illustrative purposes, the results of this example will 
be very useful to us later. 

Let O(x) be a Dirac fermion defined on a 2n-dimensional manifold M2, with 
metric gij, and euclidean signature. The coupling of O(x) to the gravitational field 
can be read off from (22) 

~£ = e ~ ( x ) i y ~ D ~ .  (66) 

(66) is invariant under a global axial U(1) transformation: 

@(x) ~ ei~Vs~b(x). (67) 

Under an infinitesimal space-time dependent chiral transformation (67) the action 
changes by 

8S = f dx ea(x)D~(~7~ys~) .  (68) 
d 

In order to check whether the axial current ~Y, Ys@ is still conserved at the quantum 
level, we consider the effective action 

e-r(g) = I d~ dqJ exp {-S(e ,  ~, ~)}, (69) 
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and make a change of variables qJ + ~O'= qJ+ ia(x)75~O(x). As was pointed out in 
[28] the only term which could lead to anomalous contributions to the Ward identities 
is the measure in (69). The easiest way to define the measure in general, is to expand 
~b and q~ in terms of the eigenfunctions of the Dirac equation 

iD~b,, = a.~b., 

q, =2 a.q,., ~=E q,.+ (x)&, 
t l  n 

so that the measure becomes 1-I,,,~ db,,,da,. Under the change of variables qJ 
+ i~(x)ysqJ, the measure changes by a jacobian factor 

,H d6,da,~->( ~,md6,dam) exp(-2i f dx ~ qJ+~(x)a(x)ysqJ,(x) } . (70) 

The minus sign on the exponent is due to Fermi statistics. If we let a(x) be a 
constant for simplicity, we have to evaluate 

f (dx)O*,(x)750,,(x). (71) 

This trace is clearly ill-defined. A simple way to define (71) is to use a gaussian 
cut-off [28]: 

~ f qJ~(x)ys~On(x)edx=-lim (dx)eth*"(x)YsqJ"(x)e-t~az" 

= lim Tr 75 e -¢(i~)2 • (72) 

The anomaly, if any, is given by the/3- independent  term of the right-hand side of 
(72). The procedure used in [28] to evaluate (72) becomes very cumbersome when 
trying to obtain the gravitational contribution to the axial anomaly in an arbitrary 
number of dimensions. The general philosophy of our procedure is to find a 
one-dimensional quantum mechanical system defined on the manifold M2n such 
that its hamiltonian is (i~)2. Thus (72) becomes the partition function for an 
ensemble with the density matrix p = 75 exp [-/3(il~) 2] at temperature fl-1; or just 
Tr p. Since Tr p has a functional integral representation, the evaluation of (72) is 
equivalent to the high-temperature expansion for the functional integral representa- 
tion of Tr  p, which as will be shown below is a much simpler problem than the 
direct evaluation of (72). 

The (0+  1)-dimensional field theory we need is given by: 

1 d x i d x / ,  1 " "  i t / d  i d x /  l \ L=~gi/(x) -~r d-rv -e~igij(x)q~ ~-~ ~J + F Jk-'d"~T ~b ) ,  (73) 

where the x i are the coordinates on M2,, Fjk is the standard Cristoffel symbol 
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constructed in terms of the metric gi~(x), and the 0 ' ( t )  are one-component  real 
fermionic variables. The form of (73) is suggested by the supersymmetric non-linear 
i t-model in two dimensions [29]. If we dimensionally reduce the (1 + 1)-dimensional 
it-model to 0 + 1 dimensions, we obtain 

dxi dxJ 1. i (  d , d x '  k)  1 i r k ,  

a = 1, 2 ,  (74) 

(where Rijkt is the curvature tensor on M2,). If we impose the additional condition 
= - x/~¢, we obtain (73). Before imposing this constraint, (74) is invariant that0~ qj~_ 7 i 

under two supersymmetry transformations generated by two constant anticommut- 
ing real numbers el, e2. After the constraint is implemented, (73) is still invariant 
under a single supersymmetry transformation with e I = - - e  2 = e. The supercharge is 
given after canonical quantization by x/~iD, so that the hamiltonian of (73) becomes 
H=x/~(iD) 2. If we define a new set of fermion fields qja , i = ei (x)O, the canonical 
commutation relations which follow from (73) are: 

{¢a, cb} = 6.b, (75) 

and in terms of ~b", cb, the canonical conjugate momentum to x i is 

Pi = gij(x)x j + litoi~b[¢ a, cb]. (76) 

Notice that (75) implies that the fermions generate a clifford algebra on M2,, and 
that 3'5 = ( -1 )F ;  (i. e. (--1)F is the operator  that anti-commutes with all Fermi fields), 
hence Tr  p = T r  ( - 1 )  F e -tin which is the index for supersymmetric theories intro- 
duced in [30]. In fact, Tr  p in this case is just the index of the Dirac equation [31]. 
The evaluation of Tr p is carried out in terms of its functional integral representation. 
Standard arguments imply [32] 

Tr o = fpBc dx(r) d¢('r)exp{-f;LE(r)dz}, (77) 

with bosons and fermions integrated over with periodic boundary conditions (PBC) 
with period /3 due to the presence of ( - 1 )  v in the trace. LE(r)  stands for the 
euclidean version of (73). In the 13 ~ 0 limit, (77) is dominated by constant paths 
X i - -  i ~ i  ~ i 

- Xo, ~'o, which in this case are zero-action solutions of the classical equations 
of motion. Hence the leading fl --> 0 behavior of (77) is given by the quadratic term 
in the expansion of LE(~) around the constant configurations (x~, 0~ ). This expansion 
is greatly simplified if we use normal coordinates on M2~ [31, 33]. If (~:(r), ~7(~')) 
are respectively the bosonic and fermionic non-constant small fluctuations around 
(Xo, ~bo), the small-fluctuation lagrangian is 

L~)= lgq (x0  )d~ :id~ :j , a b id{  j , ~ d 
dz ~ zRij~b¢OOO~ -d-~+~i~ ~r rl"" 
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Thus, the computation of the trace is reduced to the evaluation of a one-dimensional 
determinant. Since the fermionic fluctuations do not couple to the curvature to 
second order, they will cancel with the normalization factor (we normalize the trace 
with respect to the flat space case). Hence, the normalized trace is" 

i n f det -1 /E( - - t~ab  d E / d ~ ' 2 + R a b  d /d r )  
(Tr p) . . . .  = (2rr)" _ (dx0)(d~bo) det -1/2 (--Sab dE/dr 2) , (79) 

__ 1 D  . t , c . l , d  where g a b  -- 2~tXabcdtl~ Ott* O • 

Despite the dependence of R~b on fermion zero modes, we will treat the R~b d/dt  
term as part of the boson kinetic energy. In (79) we have redefined ~i to include 
the vierbein at x0: ~ = e~ (x0)~ :i. Consequently the ~ kinetic term has the standard 
form, furthermore, the factor of (2rr) -n comes from the standard Feynman measure 
for the bosonic degrees of freedom, and the factor of i" is present because we are 
integrating over 2n real fermionic variables (the ~b0's). Since Rab is an antisymmetric 
2n x 2n matrix, we can skew diagonalize it, and call its eigenvalues x~ a = 1 . . . . .  n. 
Now (79) becomes 

(~lx~) 
( T r p ) = ( 2 ~ ) , ,  dVol  H I~-I>, 1 " - - ~ n 2 , ]  d0o 

2 n  / 

= d Vol (d~b0) [I (½ix,,)" (80) 
2 n  

Since the x~ are bilinear in the 00's, and the polynomial appearing in the integrand 

of (80) is even under the interchange of x~ ~ -x~ for any number of a 's ,  the number 
of ~b0's in each monomial of the Taylor expansion of the integrand of (80) is a 
multiple of four, and thus the Grassmann integral will vanish unless the manifold 
has dimension 4k. Formally, the constant anticommuting numbers 08 form a 
realization of the basis of 1-forms on the manifold~.and the (08) integral just projects 
out the term proportional to 001. • • ~b 2". More geometrically, let R~b = ½R~be ~ ̂  e b 
be the curvature of the manifold referred to orthogonal frames, and let x~, oz = 
1 . . . . .  n be the set of skew eigenvalues of R~b, then (80) can be rewritten as follows 

(Trp)= fM ° (U ( x J 4 ~ )  
sinh (x,~/4~)/vol" (81) 

The subscript "Vol"  means that we have to pick out the term in the expansion of 
the integrand which is proportional to the volume form of M2,. The function of the 
x~ appearing in (81) is the index density for the Dirac operator,  and it is known 
in the mathematical literature as the Dirac genus, o r /~  polynomial [6]. Its expansion 
in terms of the x~ is 

1 ( _ 1 6 p 3 + 4 4 p l p z _ 3 1 p 3 ) + . . . ;  A(M2,)  = 1 - l p l ( M )  + 5-~060(7pl 2 -4p2)  + 2615120 

(82) 
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the pi(M) are known as Pontryagin classes and are defined by: 

1 1 1 1 1 
d e t (  --2--~ R ) =  l + ~ - ~ p l  + ~ - - ~ p 2 +  (-~)6P3+" " , 

p , ( M ) - ~ ]  w 2 = - 1 T r  R z , 
ot 

pz(M)= • O)°eO)/32 2 = _ ¼ T r R a + ~ ( T r R 2 ) 2  
c~</3 

p3(M) 2 2 2 2=_~TrR6+~TrRZTrR4_4~(TrR2)3  0d a 0d/3 O) 3, 
a < / 3 < 3 ,  

315 

(83) 
Thus, the anomaly in four dimensions is given by pl(M) [5]: 

(D~,J~ )= 2i !o  oba cd#_ 2i RI~ (84) 
24(27r)28a'abcd~t~ e r e  - -  384¢r2 • 

The factor of 2 in the numerator  appears because we have been using a Dirac spinor. 
For  a Weyl fermion, the result is half of (84). 

The long exercise we have just gone through is not without sense. First it has 
permitted us to introduce our method and some useful notation, and second, the 
gravitational anomaly in 4k + 2 dimensions will be shown to be closely related to 
the axial anomaly in 4k + 4 dimensions. 

In applying Fujikawa's method to the gravitational or mixed anomalies, care must 
be taken in interpreting the results. As it stands, this procedure does not generate 
the complete solution to the Wess-Zumino consistency conditions. The regulator 
we will use explicitly violates Bose symmetry because the gravitons have V - A  
couplings with the matter  fields, not the vectorial couplings which appear in i~. 
However,  if we only look for the leading term in the anomaly (the n + 1 polygon 
in 2n dimensions), i.e. the term with the highest number of external momenta,  the 
results that will be obtained are correct up to a factor of 1/(n + 1) required to restore 
Bose symmetry in the leading term as explained thoroughly in sects. 2 and 6. The 
subleading terms could in principle be obtained using the Wess-Zumino consistency 
conditions. Conversely, we could start with the complete answer provided by 
Fujikawa's method which explicitly violates Bose symmetry and then use the 
Wess-Zumino consistency conditions to obtain the appropriate contact terms which 
need be subtracted in order to obtain the complete Bose symmetric solution of 
the consistency conditions. Thus in the final formulae for the anomaly which will 
follow, the curvature tensor should be understood to stand for R~,~t3 = 
3~,, h~  2 2 2 a + 0,t3h~ - 0 ~  h~t~- 0~,t3hv~, and similarly, the gauge field strength F~,~ stands 
for O~A~ - 0~4~ as should be in the leading approximation. As will be shown below, 
this procedure gives the same answer as the diagrammatic calculation and thus 
provides an independent check on the computation of previous sections. 

Let  us now turn to the computation of the gravitational anomaly. Following the 
outline presented above, we first write down the transformation rule for spinors 
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under an infinitesimal general coordinate transformation xi~xi+~Ti(x). Up to a 
local Lorentz transformation: 

~,~ = -~'D,O. (85) 

Since we are interested in the case when ~ is a Weyl fermion in 2n dimensions, the 
first problem we encounter is that, as explained in sect. 2, the operator i/~L = 
1i/~(1 -- 3'5) is not self-adjoint. Thus in order to define the measure for the fermionic 
functional integral, we expand ~ in terms of the eigenfunctions of (i/~L)+(iDL). We 
expand ~ in terms of the eigenfunctions of (iDL)(i./~L) ÷ [28]. With this definition 
of the functional integral and the measure, the jacobian induced by the infinitesimal 
coordinate transformation (85) is 

g = e x p ( ~ ;  (dx)e4s:(x)~i(x)D~,(x)-~f (dx)efb+~(x)~7'D,~,(x)). (86) 

Regularizing the trace as before: 

f (dx)e(b+.(x)Tq'(x)Di~,.(x)-~ f 

= lira Tr rliD~y5 e -~(i~)2 , (87) 
~ 0  

which is very similar to (80) and can also be represented as a functional integral 
associated to (73). In terms of the fields defining the (0 + 1)-dimensional field theory 
(73), ~D~ can be represented as i~(x) dx~/dr, and the trace (87) is just 

~olimfpBcdX(r) dO('r)(-~i(x)dX'~d,/exp { - f ~  LE(~') d , }  . (88) 

As before, (88) is dominated in the fl-~ 0 limit by the constant configurations so 
that the only extra bit of information needed to evaluate (88) is the expansion of 
~7~(x) dx~/dr around a constant configuration (Xo, ~b0). It is easy to see that to second 
order the expansion is given by D~Tb(Xo)~-i~ s. The computation is further simplified 
if we exponentiate D~s(Xo)~ j, and at the end expand the result to first order in 
rl ( Once we exponentiate the only term which contributes is the antisymmetric part 
of D~r b, the symmetric part cancelling due to the periodicity of the boundary 
conditions. Thus, the only change with respect to the previous computation of the 

1 D . i c , l d  t axial  anomaly is that  Rab = 2"Xabcd~OtPO is subs t i tu ted  by Rab + O a r l b -  Db~a =- Rab.  

If we denote the skew eigenvalues of R~ab by x. a = 1 . . . . .  x~, and normalize the 
trace as before. The answer can be literally copied from (80): 

~tx~ (89) 
(27r)~ dvol  d~olqsinh 1. 2 - 

2 ~  o ( ~ x o )  
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Taylor expanding (89), the anomaly will be given by the term which is first order 
in ~7 i and contains 2nff0's. It is not hard to convince oneself that such a term can 
only occur if 2n = 4k +2, which provides a nice check on the general arguments 
presented in sect. 4. To obtain the anomaly, we just expand the integrand in (89) 
to order 2k+2  and then extract the term linear in i ,  which is exactly the same 
thing as writing the gravitational contribution to the axial anomaly in 4 k + 4  
dimensions with the substitution Rab -~ Rab + Darlb -- Db~a, and afterwards extracting 
the term proportional to 7/i, as well as integrating over the constant fermionic 
variables. It is now a tedious exercise in elementary algebra to insert (82) in (89) 
and expand to the appropriate order. We will present the result in two ways. First 
we will give the combination of modified Pontryagin classes p~ which contain the 
anomaly, and then we will explicitly display the anomaly in terms of the curvature 
tensor (by modified Pontryagin classes we mean the polynomials defined in (83) 
but with the substitution Rab ~ Rab + Darlb--Dbrla understood). In 2 dimensions, 
the anomaly is contained in 2~ip~: 

f i l  d2x eniDJ(r~i) = 48~-  d2x eDir/Rqkle kt ; ijkl = 1, 2. (90) 

For d = 6, the corresponding coefficient is -5¢6oi(7p~ 2 - 4p~): 

I d6x erliDJ(Tq) - 2880(47r) 3 I D%?beiJkt~" 
1 

c d X(5Rba~jRjktRc~,+4RbCqR~UklRua,",~)e d6x. (91) 

Finally, in ten dimensions the anomaly is contained in 

-F 261512---- ~ (-16p~ +44p~p~ -31p]3),  (92) 

which yields 

f dl° X e~TiDJ( T/j)=(16~.)35670 dl°xeDarl b 

d c f e d e f c X (105RabijRc klRd , . ,Re pqR¢ rs + 84RabijRc klRd ,"nRe poRt rs 
c d f e + 168R~ ijR~ ktRab,"nR~ pqRr r, 

+ 192RaCi]RcdktRd,..RefpqRfbr~) e ijklrnnpqrs. (93) 

It is clear that we only need to use the modified Pontryagin classes when looking 
for anomaly cancellations between fields of different spin. (We return to this subject 
in the next section.) 

As pointed out in sect. 4, we have to calculate the anomaly for spin -3 Weyl 
fermions and self-dual antisymmetric tensors of rank 2 k + 1 (in 4 k + 2 dimensions). 

It is quite clear from the above, that we need to extend the (0+ 1)-dimensional 
theory (73) in order to deal with the spin -3 case. To do this, let us consider in 
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general a spinor field ~bA on M2n which contains some tensor indices A. If the index 
A is a vector index, we have the gravitino field; other type of tensor indices would 
imply that we are dealing with higher half-integer spin fields. Let  (Tab)AB be the 
generators of the corresponding tensor representation of SO(2n),  a , b =  
1, 2 , . . . ,  2n; A ,  B = 1, 2 . . . . .  dim T. In the presence of the external gravitational 
field, the Dirac equation satisfied by ~bA is the Dirac equation in the tensor product 
representation of the spinor representation and the tensor representation generated 
by T. Thus, if we want to calculate the gravitational anomaly, we have to extend 
(73) so that the hamiltonian of the new (0+ 1)-dimensional theory is the square of 
the Dirac operator in the representation of SO(2n) defined by ~bA. The only new 
ingredients required to achieve the desired generalization of (73) consist of including 
a new set of fermionic variables c*, cB which transform under SO(2n)  according 
to (Tab)AB. The relevant lagrangian is [31]: 

d x i d x J 1. a / .dtt ~ ic -~T ~' ,) L=lgii(X)_d_~T _~Z+~tS,~b~b b +wb dx' c 

• . [  d 1. ab. dxi ) 1. i j * ab 
+ tCa [-dtt CA +~tWi~b(T )AB-~T CB, +~t~b ~b RiiabCATABCB. (94) 

If we were to calculate the axial anomaly, we would have to calculate 
Tr T5 exp[- f l ( i .D)  2] in the fl-->0 limit with a constraint that will be mentioned 
shortly. The functional integral representation of the trace implies that (xi(~'), ~pi(r)) 
are again integrated over with periodic boundary conditions with period fl, while 
CA, C* are integrated over with antiperiodic boundary conditions. 

There is a further constraint to be imposed on the trace, which is that the trace 
should run only over one-particle states of the c-fermions. This is because we are 
interested only in the anomaly corresponding to the T representation of SO(2n) 
and not in any of its tensor products which are carried by the multiparticle states 
of c-fermions. Though this constraint may be difficult to impose in general, it is 
rather easy to implement in our case because we are only interested in the leading 
13 behavior• We can briefly check that our procedure and conventions are correct 
by computing the spin -3 contribution to the axial anomaly in four dimensions which 
is known to be minus twenty-one times the spin -1 contribution [6]. In this case 
(Tab)cd:--i(~ac~bd--~aa~bc). Following the arguments presented for the spin-½ 
contribution at the beginning of this section, we have to compute the following trace 

f, Tr' Y 5  e-¢(i~)2s=3/2 = dx(r )  d~0(z) dc*(r )  dc(r )  exp ( -$3/2) ,  (95) 

where the apostrophe means that the computation is restricted to one-particle states 
of c and c* and s3/2 is the euclidean action associated to (94). In the high-temperature 
limit we again expand around constant configurations (x0, 0o, c = 0). Notice that 
there are no constant c configurations due to the boundary conditions, so that tile 
lagrangian (94) is automatically second order with respect to the c's. Thus, in the 
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small-fl limit the terms involving the c's look like ordinary fermionic oscillators 
with a curvature dependent mass term, then the trace over one-particle states yields 

1 i j a Tr exp (~bo~boRijb (Xo)), while the integral over x(z) and ~/,(z) gives the same result 
as for the spin-½ axial anomaly. Including the ghost contributions discussed in sect. 
7, the final result is: 

i" I I (2~) n dVol  d~bo(Tren-1)~sinhi(~x~),  (96) 

in (30), R represents the matrix ½RabcdqJ~g. If we restrict (30) to a four-dimensional 
manifold, it follows after some algebra that the spin -3 contribution to the axial 
anomaly is twenty-one times the spin-~ contribution, and of opposite sign. It is now 
straightforward to compute the spin -3 contribution to the anomaly in the Conserva- 
tion of the energy momentum tensor. Up to a local Lorentz transformation, the 

i . . .> i i change of ~A under an infinitesimal coordinate transformation x x + ~ (x) is: 

- 77 D~A + D~b(  T~b)AB~'B. (97) - 8 , ~ A -  i 

Following the steps of the spin-½ case, the jacobian induced by (97) can be rewritten 
on a trace in term of the theory (94) with (Tab)AB being represented by 
c'A( T"b)ABCB. It then follows that the only change with respect to the computation 

1,hi,hJl) 1 i j of the axial anomaly is again the replacement of 2~,o~,o--~j~b by ~bo~boR~jab + D=~Tb- 
Db?la. Hence (96) with this substitution gives the desired result. The final answer 

(2zr)" dVol  d~bo(TreR'-l)~sinhi(~x~),  (98) 

and R '  is the matrix R'ab = R~b + Da*lb- Dbrla. Eq. (98) is again non-vanishing only 
when the space-time dimension 4 k + 2 .  Writing out the anomaly in terms of the 
modified Pontryagin classes in two, six and ten dimensions, the result is: 

23i 
A3/2(d = -  2) = -487r  p~' (99) 

in two dimensions 

i 1 / 5 5  / 2  4 9  I x 
A3/2(d =6)  = (2~') 3 16 tT~Pl -r~P2),  (100) 

in six dimensions, and 

i t 5 / 3  3 t I - - 1 1  I x  A3/z(d = 10) = ~'~ )~"zr~ . 26 ~ P l  - ~ P l P 2  ~-~fP3), (101) 

if we wanted to obtain the final answer in terms of curvature tensors, we would 
have to substitute (82)-(83) in (99)-(101) and expand to first order in ~7 i. Since 
we will only be interested later on in anomaly cancellations, we will not display the 
final form of the anomaly in terms of curvature tensors. 
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With this method of computing the anomaly, we could in principle calculate the 
contribution to (DiTq)  due to higher half-integer spin fields s 7 ~, ~ . . . . .  Since at the 
moment it is not clear how to quantize spin ~ and higher in the presence of an 
external gravitational field [34], we won't discuss further this type of field. 

Finally, we still have to consider the contribution to the anomaly coming from 
the self-dual antisymmetric tensor gauge field. 

For this type of field, the methods presented so far in this section cannot be 
applied directly. The reason is that there is no generally covariant lagrangian leading 
to the equations of motion of the self-dual tensor field, as explained at length in 
sect. 8. Therefore there is no obvious (0+ 1)-dimensional field theory which could 
reproduce the anomaly for the self-dual tensor field. We will proceed in a manner 
similar to sect. 8. There, the anomalous polygon graph was calculated by noticing 
that the energy-momentum tensor only involves the gauge invariant field strength 

F~,v.-~,2k+l, and that it naturally splits between two terms, one containing the self-dual 
part of F and the other containing the anti-self-dual part. Then the computation 
of the anomaly for the self-dual fields was accomplished by inserting in all but one 
vertex the unconstrained energy-momentum tensor, and the projected energy- 
momentum tensor in the remaining vertex. 

After that, we included more tensor fields of lower and higher rank until we 
transformed the computation of the anomaly for a self-dual tensor field into an 
equivalent computation in terms of a bispinor field ~b~e with positive chirality in 
each of its spinor indices. This procedure is legitimate because we know that the 
new fields added t o  F~I ""~2k+, in order to obtain 4~t~ do not contribute to the anomaly. 

In order to apply Fujikawa's method, we consider the first-order formalism version 
of lagrangian (42). This simply means that we are integrating over both A~,r..~,~ 
and F~,...,~+~ as independent fields, and the lagrangian becomes: 

~,~] 0 ~ / ~ 1 " " / - 6 2 k + 1  V] " '"  V 2 k + l  

) 2 " ~ . . .  g~'2k.] l ~ 2 k + l F k c l . . . t L 2 k + l  G , A .  2 ..... ~+~ + permutations - - - -  1 

n ! g  • 

It is easy to check that the equations of motion for ~ are the same as those following 
from (43). From this point of view, the integration measure is [dA dF]. Now we 
can split F into its self-dual and anti-self-dual parts, so that the integration measure 
becomes [dA dF  ÷ dF-] .  So far we are still working in Minkowski space, where the 
self-duality condition is real in 4 k + 2  dimensions ( .2=  +1). If we perform an 
infinitesimal coordinate transformation, we will obtain three jacobians from the 
measure, one for each field A, F ÷, F- .  Since A~,1...~2 ~ is a tensor of rank 2k, it 
furnishes a real representation of the Lorentz group and therefore it should not 
contribute to the anomaly. If we concentrate on the jacobian for the fields F +, F - ,  
it is also clear that the anomalies that could arise from each of their jacobians cancel 
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out because F ÷ and F -  together  generate a real representation of the Lorentz  
group. However ,  we argue in analogy with sect. 8, the anomaly for the self-dual 

will be fully contained in the jacobian generated by the F ÷ field. If we perform an 
infinitesimal coordinate t ransformation x i --> x i + n ~(x), the change in F ÷ is given by 

--3nF+l...a2k+l i D  F + + ~ D ~" T +'~b~ F + = 1~ i a l . . . a 2 k + l  ~ a l ~ b ) ~  } a l . . . a 2 k + l , b l . . . b 2 k +  1 b l . . . b 2 k +  1 , 

(102) 

+ a b  where ( T ) a l . . . a 2 k + l , b l . . . b 2 k +  1 a r e  the matrices generating the self-dual (2k + 1)-rank 
representat ion of the Lorentz  group. 

If we were to work in Minkowski space, it is easy to check that the jacobian 
factor generated by (102) is given by the following trace 1 Tr(2k+l)* t~r/, where the 
subscript (2k + 1) means that the trace is taken over  (2k + 1)-rank antisymmetric 
tensor. Since this trace is very ill-defined in Minkowski space, we can regularize it 

by going to euclidean space and introducing a gaussian cut-off as we did for the 
spin-½ and 23- computations. 

Since the duality condition becomes complex in euclidean space ( ,2__-1) ,  we 

have to double the number  of fields so that F becomes complex. We can easily take 
care of this by extending the trace to a complex trace, and dividing by 2 in order 
to account for the doubling of the number  of degrees of freedom. Also, when 
rotating to euclidean space the duality operation * becomes i*. Hence we have to 
calculate T r ( 2 k + l )  (i * ~1) /4 .  In order to regularize this trace, we notice that the 
unconstrained field F~,1...~2~+ 1 satisfies the equations of motion [S]F = 0, where [] is 
the laplacian operator  acting on antisymmetric tensors. Since we are working on 

euclidean space, the laplacian is a positive definite operator ,  and therefore we can 
compute  the trace in the basis which make the laplacian diagonal. Thus we define 
the trace as the /3-->0 limit of T r ( 2 k + l ) ( i  * t ~ r / e - ~ [ ] ) / 4 .  Before we proceed, it is 
worth pointing out that the laplacian commutes with the duality operation i.e. 
[]* = *[-7, and that the equation [ I F  = 0 means that F considered as a 2k + 1 form 
is harmonic, which implies among other things that F~,r.. . . . . .  can be rewritten as 
O , , A , 2 . . ~ k ÷  , + perm. These two properties of [] make  the choice of regularization 
very well suited for our computation. In order to simplify the trace we follow 
arguments  of sect. 8. We add tensor fields of lower and higher rank so that the 
trace runs over tensors of all ranks: 0, 1, 2 . . . . .  2 k +  1 . . . . .  4 k + 2 .  That  this pro- 
cedure is legitimate was explained in sect. 8 and will not be further discussed here. 
The final step in the evaluation of the trace, is to find a (0 + 1)-dimensional theory 
whose hamiltonian is the laplacian on forms of arbitrary rank. Happily,  the answer 
to this question is already known [30]. It is given by the supersymmetric tr-model 
of eq. (74). In order to make  the connection more clear, let us rewrite (74) in terms 
of complex fermions O i =x/T2(o i • i + toe). After  simple manipulations we get: 

1 i j 1 , i / ~  " " L = ~ g o ( x ) x  x +~ ig , j ( x )@  - ~  O' q-¼RijklO*'o*Joko l, (103) 
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after canonical quantization the fermions obey the usual anticommutation relations 
{q/, qJ*J} = gi~, {g,~, 0 r} = 0. From this point of view, the fermionic vacuum state is 
given by arbitrary functions over the manifold M4k+2 where the theory is defined. 
The states with one fermion are represented by the action of the fermionic creation 
operators qJ* on the fermionic vacuum g,*lo). Since ~O* transforms like a vector 
under coordinate reparameterization of M a k + 2 ,  one-fermion states transform like 
vectors. Similarly, states with two fermions are represented by a second rank 
antisymmetric tensor, and so on, until we reach the states with 4 k + 2  fermions 
which correspond to totally antisymmetric tensors on Mak+2. Furthermore, the 
duality operation which in spinor language is given by y s ® l  (see sect. 8), is here 
represented by a discrete symmetry. Qs, which interchanges creation and annihila- 
tion operators [30]. Thus the trace we want to calculate is just Tr Q58~ e -tin, where 
H is the hamiltonian associated to (74), (103). In terms of (74), using real fermions 
~0~, g,~, the Q5 operation is (qJ~ ~ i ~ -q '2 ,  g'2 ~ qJ~), hence the functional integral 
representation for Tr Q56, e -tin will be as in (77) but with (x ~, ~O{ ) integrated over 
with periodic boundary conditions, whereas qJ~ has to be integrated over with 
antiperiodic boundary conditions. Finally, before we compute the trace, we have 
to identify 6, in terms of the operators defining (74), (103). This is easily done in 
analogy with the spin -3 case. In eq. (96) we consider the infinitesimal coordinate 
transformation of a spinor field qJ with an extra index (A) valued in an arbitrary 
representation of the Lorentz group. If we take this extra index to be another spinor 
index, we get the form of the infinitesimal coordinate transformation of a bispinor, 
and the c-fermions are now replaced by the ~O~. Thus the evaluation of Tr Q56~ e -tin 

is a rerun of the arguments which led to (98), where the trace in the integrand is 
carried out in the spinor representation. The final result is now 

1 i2k+l f z l ix,  \ 

J \ 2  a !  J . l  • 1 .  t 4 (2~r) 2k+1 dqJl01-Icoshtiix' ~ l r l  ~ t3 |92k+1 
~, \ t3 smh (~txa)1 

i2k+1 f tanhiX" 
--  8 ( 2 7 r )  2k+l d~bl°O ix" ' (105) 

which agrees with eq. (56). 
As in previous cases, we will write down the expansion of (103) in terms of the 

modified Pontryagin classes: 

ip~ 
A(d = 2 ) =  

24(27r) ' 

i 
A ( d  = 6) (16p] 2 -  112p~), 

5760(27r) 3 

i 
A ( d  = 10) - 967680 "2&gt ) (-256p~3+ 1664p]p~- 7936p~). (106) 
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Finally, the combined gravitational and gauge anomalies can also be dealt with 
by the methods of this section in a very simple way. In fact the only non-trivial 
result necessary to carry out the computation is to generalize (94) so that the 
connection oJ~ab and the curvature Rijab appearing in the last two terms of (94) can 
be substituted by the connection and curvature of an arbitrary gauge field defined 
on space-time. 

For  simplicity, we will only consider a Weyl fermion in 2n dimensions interacting 
with external gravitational and gauge fields. The extension of our results to include 
spin -3 Weyl fields is straightforward and will not be presented. Let  G be an arbitrary 
gauge group, and assume that the fermion representation is generated by (T~)AB 

= 1 . . . . .  dim G, A, B = 1 . . . . .  dim T. If we use Fujikawa's method [28], we have 
to find a (0+  1)-dimensional field theory whose hamiltonian is (iD)2 where Di is 
the covariant derivative with respect to the gravitational and gauge fields. In this 
case, by simple trial and error  we can easily find the suitable modification of the 
lagrangian (94). The only change required is that now the c-fermions couple to the 
gauge connection AT(x)  and the gauge curvature F~ and that the generators T ab 
appearing in (94) are replaced by the gauge group generators (T~)A, :  

dxi dxJ 1. a[ d ~ob dxi 

+ ~t~b ~b Fq + iC*A -~z cA + iA~'(x) dr (T~)A'C" (X)c* ( T~')AnC'" 

(107) 

Imagine that torah = 0, g~j = 6~j. In order to check our conventions, we will compute 
the gauge contribution to the axial anomaly in 2n dimensions using our procedure 
first and then comparing the result with the standard Feynman graph calculation. 
The computation of the Adler-Bell-Jackiw anomaly [1] beyond 4-dimensions was 
carried out in [7], and we will borrow some notation from the last reference. 

In the evaluation of the axial anomaly using our procedure we have to remember 
that when we write down the anomaly as a particular partition function for (107), 
we have to restrict the trace to one-particle states of the c-fermions for exactly the 
same reason as in the computation of the spin -3 contribution to the gravitational 
anomaly. If we rerun now the arguments which led to the computation of the spin -3 
contribution to the axial anomaly with the obvious change that the index A is now 
an internal rather than a Lorentz  index and that we are choosing for simplicity the 
space-time to be flat, we get for the axial anomaly: 

i" f ~Z~o~or~jT") + ~ S - g  i (d~o) Tr  (exp 1";i - / ~  

(2zr)"n!(-1)" eiljr..i,i,,F~jl(xo)... F,~,(xo)S Tr T ~' • • • T ~" , (108) 
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1 ( T . ,  1 S T r T  " 1 . . .  T "-=n--~ E Tr  - . . T " ' - ) .  (109) 
p e r m  
il"" in 

This result also follows from the index theorem for the Dirac equation [35], because 
as is well known, the axial anomaly is given by the local density of the Atiyah-Singer 
index theorem. If we also want to include the gravitational contribution to the 
anomaly, we just include t h e / ] ( M )  polynomial (82) in the integrand of (108) as 
follows from the arguments of the first part of this section. Thus the combined 
gauge and gravitational contribution to the axial anomaly in 2n dimensions is given 

by 

in f sinh ½ix, 1 .  i j a a 
(d~O0) Tr  exp (~tOot~oFi) T ) ~ (½ixr)" (110) (2rr) n 

We are interested not only in the axial anomaly but also in the gauge invariance 
of the effective action. When we have both external and gravitational fields, we 
may expect anomalies in one-loop diagrams with both external gluons and gravitons. 
These are the anomalies we intend to calculate in the remainder of this section. 

If we perform an infinitesimal gauge transformation 

&b = in~,T~O , 

and use the (0+  1)-dimensional theory (107), the anomaly will be given by: 

lim Tr ysirt~,(c*T~'c) e -t~H , (111) 
0 - + 0  

where as usual the trace is computed over one-particle states for the c-fermions. If 
we write (111) in terms of its functional integral representation, and exponentiate 
the term ~,c*T"c, we obtain 

o~olim Tr ysi'q~(c* r~c) e -¢H = (2~) n (d0o)(Tr ei(~°+~°)A(M) , 

g ~ _ ± ~  a,i a.]  
- 2--ij u'0v'0, (112) 

and the anomaly is extracted from (112) by expanding to first order in ~ .  The 
expansion of (112) in 2n dimensions will clearly contain one term with n-gluons, 
then a term with n - 2  gluons and 2 gravitons and so on. If instead we wanted to 
compute the variation of the effective action with respect to an infinitesimal general 
coordinate transformation, then we just have to set ~1~ to zero, and replace A(M) 
calculated with the standard curvature Rabcd by A'(M) calculated in terms of the 
modified curvature R,,b + Da~Tb- Dbrh, If one wants to have an effective action that 
preserves gauge invariance, one would have to require the cancellation of the 
different symmetrized traces (109) appearing in the anomalous graphs between left- 
and right-handed representations. For left-right asymmetric theories, this constraint 
is highly non-trivial beyond four dimensions [7]. 
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Explicit expressions for the combined anomalies can be obtained by combining 

(112) with the expression for A(M)  in (82)-(84).  In four dimensions we do not 
obtain any mixed anomaly unless the gauge group contains U(1) factors in which 
case there is a triangle anomaly with one external U(1) field and two external 
gravitons. This is the anomaly of refs. [5, 6] discussed at length in sect. 4. 

We would like to remind the reader again that formulae (89), (98), (105), and 

(112) should be understood in terms of the leading term, i.e. R ~ , ~ =  
2 2 2 . a __ a O~,~h~ + O ~ h ~ , ~ - O ~ h ~ , ~ - O ~ h ~ ,  F , ~ -  ~A~-O, ,A ,~ .  Non-leading terms should be 

obtained through application of the Wess -Zumino  consistency conditions. 

12.  Cancel lat ion of  anomal i e s  

We now turn, at last, to "phenomenological"  considerations. We have seen that 
mat ter  fields with chiral couplings to gravity exist only in 4 k + 2  dimensions, and 
that such couplings give rise to anomalies. Of course, in standard phenomenology 
the individual quark and lepton multiplets have triangle anomalies in their couplings 
to gauge fields, but the anomalies cancel between multiplets in a non-trivial way. 

It is natural to ask whether  a similar situation can occur with gravity. Although 
gravitational couplings of chiral fields of various spins give rise to anomalies, is it 
possible to cancel the anomalies between fields of different spin? 

We have seen that in 4 k + 2  dimensions, the gravitational anomalies are con- 
veniently written as polynomials of order 2 k + 2  in certain quantities x~, i =  
1 • • • 2k + 1. The spin-½, spin -a, and antisymmetric tensor anomalies are (apart  f rom 
a factor common to the three cases)* 

^ 2 k + 1  lXi 
I l l2= i=l[I sinh½xi'  

A / 2 k + 1  1~2.~i \/__ ÷ 2 k + l  ) 

13/2=~ i=[I1 s i n h ½ x J /  1 ,~1 2 c o s h x , ,  , 

L = _ l  2k.1 x, 
[I • (114) 
i=l tanh xi 

In 4k  + 2 dimensions, one is to expand these formulae in powers of the x~, keeping 
only the terms of order  2k + 2. 

We observe that the formulas in (1) are invariant under permutat ions of the xi 
and under x~ ~ - x ~  for any i So each term in their power series expansion has the 

* By 11/2 and I3/2 we mean the anomalies of positive chirality complex Weyl fields. For a real Weyl 
field (possible in 8k + 2 dimensions) one must divide by two. I A is the anomaly for a self-dual real 
antisymmetric tensor field. By a self-dual (rather than anti-self-dual) tensor we mean the representa- 
tion that arises in combining two positive chirality spinors. For a complex self-dual tensor one must 
multiply I A by two. The minus sign in IA arises from the Bose (rather than Fermi) regulator loop; 
the factor of ~ has a more complicated origin, which was explained in sects. 9 and 10. 
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same symmetries. To count the independent tensor structures appearing in the 
anomalies, it is enough to count the homogeneous polynomials of relevant degree 
and symmetry. In two dimensions (k = 0), there is one x and one homogeneous 
second order polynomial x 2. In six dimensions there are three xi and two linearly 
independent homogeneous fourth-order  polynomials with the right symmetry, 
namely ~ x 4 and (~ x3) 2. In ten dimensions there are five x~ and three relevant 
polynomials, namely ~ x 6, ()~ x4) • (Y~ x2), and (~ x2) 3. Cancellation of gravitational 

anomalies requires cancelling the coefficient of each dangerous operator• Beyond 
ten dimensions, the number of dangerous polynomials whose coefficients must cancel 
to avoid anomalies rapidly increases. 

We could expand the anomalies as functions of An = ~  x~". Instead, following 
mathematical usage, we recall the origin of the x~ as eigenvalues of a matrix 

0 x, 1 
-X 1 0 

R = 
0 X 2 

--X 2 0 
(115) 

0 X2k+l 

--X2k+l 0 

and we define polynomials p~ as follows. We note that d e t ( 1 - R / 2 ~ - ) =  
I-L (1 + x2/(2~r)2). We write a power series expansion of the determinant: 

oo p~ 
det (1 - R / 2 z r )  = n~o~- (2-~2n ' (116) 

where p, is a polynomial of order 2n. Thus, P0 = 1, Pl = ~ X2, P2 = ~i<j  Xi2Xj,2 P3 = 
~ i < j < k  2 2 2 xi xj Xk, etc. Every even symmetric polynomial of order 2n can be expanded 
in the Pm of m <~ n. We will express our results in this way*. 

The first case that arises is two dimensions. Of course, this case is of mathematical 
interest only. In two dimensions 

I1/2 = - - l p l  I3/2 ----- 23 I A  = 1 , ~ P l ,  --~Px~ • (117) 

Evidently, the anomaly can be cancelled in various ways. The fact that [1/2 = [A in 
two dimensions reflects the fact that a positive chirality fermion is equivalent to a 
right-moving scalar. 

* We are grateful to P. Ginsparg for correcting a variety of numerical errors in an earlier version of 
this section. 
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For Kaluza-Klein theory our interest is in six or more dimensions, k/> 1. In six 
dimensions power series expansion of eq. (114) yields 

^ 1 2 11/2 = 5~-~(7p1 - 4p2), 

I3/2 = 5-~6o(275p 2 - 980p2), 

Ia  = 57-~(16p 2 - 112p2). (118) 

It may be seen that any two of these expressions are linearly independent, so that 
anomaly cancellation is possible only if all three spins are present. However, since 
there are three fields and only two independent anomalies (pZ and Pz), there 
inevitably is a linear combination of these expressions that vanishes. The simplest 
non-trivial solution is 2 1 1 1 / z - I 3 / z +  8IA = 0. Thus a six-dimensional theory with 21 
positive chirality spin -1 fields, one negative chirality gravitino, and eight self-dual 
antisymmetric tensor fields is free of anomalies. Although these numbers might 
seem clumsy, six-dimensional supergravity theories with this field content (modulo 
anomaly-free fields) do exist and might be of interest. It is a very favorable fact 
that the minimal solution only requires one gravitino; while there can be any number 
of spin-½ or antisymmetric tensor fields in six-dimensional supergravity, the number 
of gravitinos is necessarily <~4. 

Turning now to ten dimensions, we find by power series expansion of (114) 

A 1 3 

11/2 = ~ ( - 3  lp l  + 44pl P2 - 16p3), 

^ 1 3 I3/2 = ~ ( 2 2 5 p l  -- 1620pl P2 + 7920p3), 

Ia = ~ ( - 2 5 6 p  3 + 1664pa P2-  7936p3). (119) 

Since there are three fields and three linearly independent anomalies, one would 
not a priori expect non-trivial calculation of gravitational anomalies to be possible 
in ten dimensions. But now we meet a real surprise, which is by far the most striking 
result of this paper. The expressions for [1/2, f3/2, and Ia in (119) are linearly 

A A A 

dependent. In addition, the minimal solution is remarkably simple: - I1 / z  + 13/2 + Ia = 
0. Thus, a ten-dimensional theory with one (complex) negative chirality spin-~ field, 
one (complex) positive chirality spin -3 field, and one (real) self-dual antisymmetric 
tensor is free of anomalies. What is more, modulo fields that do not contribute 
anomalies, this is precisely the field content of the chiral n = 2 supergravity theory 
in ten dimensions [11], which is the naive low-energy limit of one of the ten- 
dimensional supersymmetric string theories [12]. Since this theory cannot be coupled 
to supersymmetric matter multiplets, and cannot be extended to a theory with n > 2 
supersymmetry (Nahm, ref. [11]), it appears to be the unique theory in ten 
dimensions with non-trivial cancellation of gravitational anomalies. 
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Are non-trivial anomaly cancellations possible beyond ten dimensions? In fourteen 
dimensions, 

11/2 = 464 486 400 [38 l p  4 - 904p 2 P2 + 512pl P3 + 208p 2 - 192p4], 

I3/2 = 1 4 464 486 400 [6393pl - 4 2  472plZP2- 70 144pl P3 + 102 544p2 z - 9 4  656p4] , 

[A-- 1 464 486 400 [ 12 288p 4 -- 90 112p2p2 + 290 816pl P3 + 77 824p 2 

- 1 560 576p4]. (120) 

These expressions are linearly independent, so non-trivial anomaly cancellations 
are impossible in fourteen dimensions. (The situation becomes even worse if one 
considers that independent of anomalies consistent theories with massless spin -3 
fields presumably do not exist in fourteen dimensions.) 

A simple argument, similar to one in sect. 5, now shows that because non-trivial 
anomaly cancellation is impossible in fourteen dimensions, it is impossible in 14 + 4n 
dimensions for any n i> 1. Consider a (14+4n)-dimensional  manifold of topology 
M TM X B ,  M TM being fourteen-dimensional Minkowski space and B a compact mani- 
fold of dimension 4n on which the Dirac, Rarita-Schwinger, and antisymmetric 
tensor equations have non-zero index. (For instance, B may be a product of n copies 
of K3.) An arbitrary chiral theory in 1 4 + 4 n  dimensions will reduce on Ma4xB 
to a fourteen-dimensional chiral theory. Since this fourteen-dimensional chiral 
theory is necessarily anomalous, it follows that any chiral theory that might have 
been considered in 1 4 + 4 n  dimensions also has anomalies. 

In conclusion, in any number of dimensions non-trivial cancellation of gravitational 
anomalies requires massless spin -3 fields and hence supergravity. In six dimensions 
there are various theories with non-trivial cancellation of gravitational anomalies. 
They require a fairly elaborate field content, but may be of interest. In ten dimensions 
the unique theory with such non-trivial cancellation is the chiral n = 2 supergravity 
theory which is the low-energy limit of one of the superstring theories. Beyond ten 
dimensions non-trivial cancellations of gravitational anomalies does not occur. We 
will not explore here the phenomenological consequences of mixed gauge-gravita- 
tional anomalies. 

We wish to thank M.F. Atiyah for valuable comments that helped motivate this 
work, and P. Ginsparg for useful discussions and for writing a computer program 
to generate the complicated power series expansions in sects. 11 and 12. We wish 
to thank J. Bagger, P. Frampton, D.J. Gross, J. Schwarz, and A. Zee  for valuable 
discussions. We also thank R. Jackiw for discussions of global anomalies, and for 
drawing our attention to ref. [36], where an anomalous commutator  closely related 
to our discussion in sect. 5 is evaluated. (See footnote on p. 295.) 
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