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It is shown that in CP non-conserving theories, the electric charge of an 't Hooft-Polyakov magnetic monopole will not 
ordinarily be integral, or even rational in units of the fundamental charge e. If a non-zero vacuum angle 0 is the only mech- 
anism for CP violation, the electric charge of the monopole is exactly calculable and is -e0/2~r, plus an integer. If there are 
additional CP violating interactions, the monopole charge must be computed as a power series in the coupling constant. 
These results apply in realistic theories such as SU(5). 

Long ago, Dirac showed [1] that the quantum 
mechanics of  an electrically charged particle of  charge 
e and a magnetically charged particle o f  charge g is 
consistent only if eg = 2rm, n being an integer. 

Zwanziger [2] and Schwinger [3] generalized this 
condition to allow for the possibility of  particles 
(dyons) that carry both electric and magnetic charge. 
A quantum mechanical theory can have two particles 
of  electric and magnetic charges ( e l , g l )  and (e2,g2) 
only i f e l g  2 - e2g  1 = 27m. 

This formula may be heuristically derived [4] by 
considering the classical formula for the angular mo- 
mentum of the electromagnetic field. The angular mo- 
mentum in the field of  the two particle system can be 
calculated readily. It has magnitude ( e lg  2 - e 2 g l ) /  
47rc. This has an integer or half-integer value, as ex- 
pected in quantum mechanics, only i f (e lg  2 - e  2 g l ) /  
hc = 27rn. 

Since in nature there are electrons of  charges (e,0), 
the quantization condition, applied to a hypothetical 
magnetic monopole of  charges (q ,g) ,  requires eg = 2zrn. 
Notice that, because the electron has no magnetic 
charge, the electric charge of  the monopole does not 
contribute to e I g2 - e2 gl" Therefore, the quantiza- 
tion condition, by itself, says nothing about the elec- 
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tric charge that a magnetic monopole should be ex- 
pected to have. 

The quantization condition does say something 
about the difference between the electric charges of  
two magnetic monopoles. Given, for instance, two mo- 
nop oles o f minimum allowed magne tic charge g= 27r/e 
and of  electric charges q and q' ,  one finds e I g2 
- e 2 g  1 = 2 n ( q -  q') /e ,  so that the Dirac-Schwinger-  
Zwanziger condition gives 

q - q '= ne.  (1) 

Thus, the difference q - q '  must be an integral mul- 
tiple of  e. But, as Zwanziger and Schwinger noted, 
there is no restriction on q and q '  separately. 

If, however, the Dirac quantization condition is 
supplemented by CP conservation, the allowed values 
of  the electric charge of  a magnetic monopole are 
quantized. In fact, although the electric charge is odd 
under CP, the magnetic charge is even. (This is so be- 
cause electric and magnetic fields transform opposi- 
tely under parity.) Applied to a monopole of  charges 
(q, 27r/e), a CP transformation gives a monopole of  
charges ( - q ,  27r/e). For these two particles, e l g  2 

- e2g  1 = 4nq/e ,  and is a multiple of 27r only if 

q = n e ,  or q = ( n + ~ ) e .  (2) 

Thus, the monopoles must have integer or half-integer 
charges, Moreover, in view of  eq. (1), if monopoles 
of  integer charge exist, then monopoles of  half-integer 
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charge do not, and vice-versa. 
Apart from CP conservation, there is no general rea- 

son to expect magnetic monopoles to have integral 
(or even rational) electric charges. In nature, CP is vi- 
olated, but only weakly. One may therefore suspect 
that monopoles, if they exist, have charges that are al- 
most, but not quite, integers. The deviation of the mo- 
nopole from integral charge would be proportional to 
the strength of CP violation. The purpose of this pa- 
per is to discuss this question within the context of 
current-day gauge theories. 

Gauge theories in which electromagnetism arises 
from the spontaneous breakdown of a compact gauge 
symmetry are known to have magnetic monopoles, 
with values of the magnetic charge that satisfy the 
Dirac condition. This was originally discovered by 
't Hooft [5] and Polyakov [6], who found solutions 
of the classical field equations with non-zero magnet- 
ic charge. (For some reviews, see ref. [7] .) 

The classical field equations also have dyon solu- 
tions [8], that is, solutions describing configurations 
of both electric and magnetic charge. After quanti- 
zation, these become quantum states carrying both 
types of charge. 

To determine the electric charges carried by the 
dyons at the quantum level is somewhat delicate. At 
the classical level, the dyon charge is completely un- 
restricted-classical solutions exist for any value of 
the dyon charge. 

The question of the charge of the quantum dyons 
has been studied carefully by semi-classical reasoning 
[9] and it has been concluded that the dyon charge is 
quantized to be an integer multiple of the fundamen- 
tal charge, q = he. These analyses, however, have been 
carried out in CP conserving theories; here we will con- 
sider the consequences of CP violation. 

Although the arguments that follow are general, 
and apply also to "realistic" theories such as the 
SU(5) grand unified theory [10], it is useful to con- 
sider the simplest theory that has magnetic mono- 
poles. This is the theory of an 0(3)  gauge group, 
spontaneously broken to U(1) by the vacuum expec- 
tation value of an isovector field~: 

1 2 + 1 D u 0 2  ~.(02 a2)2 (3) 
~ = - -4 F fiv 2 - • 

An interesting way to introduce CP violation into this 
theory is to consider a non-zero value of the recently 
discovered [11] vacuum angle O. One adds to the 

lagrangian an additional, CP violating interaction 

A~?= O(e2/32rr2) Fuv . Fur .  (4) 

As has been discovered in the last few years, this addi- 
tional interaction, despite being superficially a total 
divergence, modifies the physics. When 0 is not zero, 
CP is not conserved. 

As will become clear, there is a rather close con- 
nection between 0 and the electric charge of the dyon. 
The effect of 0 on the dyon charge will be explicitly 
computed below. The effects of other forms of CP 

violation will be discussed qualitatively. 
To determine the effect of CP violation on the 

dyon charge, one must repeat the existing semi-clas- 
sical analysis of the dyon charge in the presence of 
CP violation. A particularly simple approach is to fol- 
low the reasoning of Tomboulis and Woo [12]. They 
described a semi-classical quantization of the classical 
dyon solutions. In a gauge in which the gauge field 
vanishes at infinity, the classical dyon solution is peri- 
odic in time. The semi-classical quantization condition 
is that S + E T ,  the action in a period plus the energy 
times the time, should be a multiple of 2rr. 

The action S of the dyon solution in a period is 
equal to the period T times the action per unit time 
I, so the requirement is T ( I  + E) = 2rrn. The classical 
period T and the "abbreviated action" I + E were cal- 
culated in the absence of CP violation by Tomboulis 
and Woo, who found 

I + E = cq 2 , (5) 

T = (27flee) ( l /q) ,  (6) 

where q is the charge of the dyon, and c is a certain 
constant. (It is not easy to calculate c, but a simple 
argument shows that the same constant c appears in 
eqs. (5) and (6).) The condition T ( I  + E )  = 2nn now 
gives simply 

q = ne ,  (7) 

so that the dyons have integral charges, as one might 
expect in the absence of CP violation. 

Let us now repeat this calculation at non-zero 0. 
At non-zero 0 the equations of motion are unchanged, 
and there is no change in the period T or energy E. 
However, there is an extra contribution to the action 
I from the extra term (4) in the lagrangian. The extra 
term can be readily evaluated, and one finds that 
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at non-zero 0 

I + E = cq 2 + ceqO/2zr, (8) 

with the same constant c as before. Semi-classical 
quantizatio n of  T(I  + E) now gives 

q = ne - Oe/2n, (9) 

so the allowed values of the magnetic monopoles elec- 
tric charge depend on 0 and are not integral if 0 is not 
zero. In particular, if 0 is not zero, there does not exist 
an electrically neutral magnetic monopole. 

It may come as a surprise that the 0 dependence 
can be calculated in this way, without mentioning in- 
stantons. In the absence of  magnetic monopoles, there 
are, in this theory, no classically allowed motions 
with non-zero f d4x  Fur • Fur" The 0 dependence 
arises therefore as a tunnelling effect, connected with 
instantons, and is of  order exp(--1/c  0. (Because of  
the Higgs field, the instantons have a natural size, and 
there are no divergent scale integrations.) But in the 
monopole sector, there are classically allowed mo- 
t i ons -dyons -w i th  non-zero fd4x F.v • Fur" (This 
aspect of  the monopole has been stressed before by 
Pagels and Marciano [13] .) As a result, the 0 depen- 
dence in the monopole sector has nothing to do with 
instantons, and is of  leading order rather than order 
e-1/a. 

What happens in theories in which CP is violated 
by some mechanism other than 0? 

The fact that at 0 = 0 the dyons have integer 
charges is related, as the above derivation shows, to 
the fact that I + E in eq. (5) is quadratic in q, with no 
linear term. A linear term, as in eq. (8), leads to non- 
integral charges, the non-integrality being proportion- 
al to the coefficient of  the linear term. 

CP forbids a term linear in q because q is odd 
under CP. If  CP is violated, regardless of  the mecha- 
nism, a linear term may be present. 

Even if the linear term is absent at the classical lev- 
el (this happens, for instance, if only the couplings to 
fermions violate CP, since the fermions do not enter 
in the classical solutions), loop corrections can still 
generate an effective linear term. Roughly speaking, 
one should recalculate I + E from the quantum effec- 
tive action rather than the classical action. If  CP is vi- 
olated, loop correction to the effective action should 
be expected to induce a term linear in q in the effec- 
tive I + E and therefore to cause the monopole charges 

to be not quite integers. 
In general, the monopole charges have the form 

(n + 8 ) e  where 5, the deviation from integrality, can 
only be computed as a power series in the coupling 
constant. But remarkably, if 0 is the only source of  
CP violation, formula (9), 8 = - 0/2n, is exact 
with no higher order corrections. 

This can be established by canonical reasoning. Let 
us attempt to define the operator N that generates 
gauge transformations around the direction ~ - these 
transformations would ordinarily correspond to elec- 
tric charges. Nwill  generate the transformation 5u = 
(I/a) ~ X u for any isovector field o, and 8Au = (1/ea) 
X Du~ for the gauge field (a is the vacuum expectation 

value of  ¢). 
The eigenvalues of  the operator N are integers; in- 

deed, as an operator statement, e 2~iN = 1. This state- 
ment usually corresponds to quantization of  electric 
charge; here we will see it corresponds to quantization 
of  a certain linear combination of  electric and mag- 
netic charge. The reason that e 2'tiN equals one is that 
it generates a 2n rotation around ~. A 2rr rotation is 
no transformation at all, and so leaves the states in- 
variant, giving e 2n'iN= 1. 

More accurately, only at spatial infinity, where 
has magnitude a, does e 2~riN generate a 2rr rotation 
around ~. Elsewhere the rotation angle is 2rr!4)~/a. 
But for gauge invariant physical states the action of  
a gauge transformation depends only on the behaviour 
of  the transformation at infinity; if it equals one at in- 
finity, it leaves the states invariant. (In the formula- 
tion used here, in which 0 is regarded as a coupling 
constant, this is true even for a topologically non- 
trivial gauge transformation.) So e 2~riN = 1. 

Now let us compute N. We use Noether's formula, 

5__~_~ . 8 A u + 6_~O0~ . 5 ~ . (10) 
N =  500A~, 

With 5 A .  = (1/ea)Du@ and 5~=  0, and remembering 
to include the contribution from the OFF term, one 
finds 

N =  1 f d3 x DiOP" FO i 

Oe f d3x Di~ .  1 + - -  (~e i ik  6'k)" ( l l )  
8rr2a 
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In this theory a conventional definition of  the electric 
and magnetic charge operators Q and M would be 

= l  f d 3 x D i * ' F o i = ~ f d 3 x O i ( ~ ° F o i ) ,  O a 

M= l f d3x Di¢~. ' 

(12) 

where the equations of  mot ion have been used to re- 
late the middle and last terms of  each equation (recall 
that (1 / a )~"  Foi is the gauge invariant electric field, 
whose divergence is the electric charge density). So 
we have 

N = ( ( l / e )  Q + (0e/87r 2) M)) = 1 ( 1 3 )  

Since e 2ÈiN= 1, we obtain an operator s tatement 

exp [2hi ((1/e) a + (Oe/87r2)M)] = 1 (14) 

and it is ( I / e ) Q  +(Oe/87r2)M that has integer eigenval- 
ues. 

Applied to the ' t  Hoof t -Po lyakov  magnetic mo- 
nopole,  which has M = 4rr/e (twice the Dirac value, be- 
cause in this theory one could introduce isospinor par- 
ticles of  charge e/2), this leads us back to our previous 
conclusion that the allowed eigenvalues of  Q satisfy 
q = ne - eO/2g. 

Some readers might wonder whether the same re- 
sult is obtained if one regards 0 not as a coupling con- 
stant multiplying a certain term in the lagrangian but  
as the phase that the states acquire under a topologi- 
cally non-trivial g a u ~  transformation. In this case, be- 
cause there is no OFF term in the lagrangian N is sim- 
ply Q/e. However, it is no longer true that exp(2rriN) 
= 1. In the magnetic monopole  sector, exp(2niN) gen- 
erates a gauge transformation which is topologically 
non-trivial, with winding number - 1. This is related 
to the way that ~ in the Higgs sector is topologically 
twisted. In the formalism in which 0 resides in the 
states rather than in the lagrangian, the magnetic mo- 
nopole states transform under exp(2uiN) like e - i °  . 
With N = Q/e, we have exp(27riQ/e) = e -i0 in the mag- 
netic monopole  sector, leading again to the allowed 
values of  electric charge q = ne - Oe/2rr. 

Notice that in the magnetic monopole sector the 
"topologically non-trivial" gauge transformations do 
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not  really deserve that name. For  exp(2~riN) can be 
reached continuously from the ident i ty  as exp(ioaV), 
with a varied from 0 to 27r, and N is an "al lowed" 
gauge transformation that does not change the values 
of  the fields at infinity. In the vacuum sector exp 
(27tiN) has zero winding number, and there is no way 
to obtain a gauge transformation of  non-zero winding 
number as the exponential  of  an allowed gauge trans- 
formation. The fact that  the "topologically non-trivial" 
gauge transformations can be reached continuously 
from the identi ty in the magnetic monopole  sector is 
another way to understand the fact that in this sector 
0, rather than being a tunnelling effect, is present in 
the leading semi-classical approximation.  

Eq. (14) is a symmetry  statement and shows that  

the formula q = ne 0e/2rr is exact. 
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