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Crossing has been the first ingredient used to make Regge theory a predict ive 
concept in high-energy physics. However, a complete and satisfactory way of imposing 
crossing and crossed-channel uni ta r i ty  is still  lacking. We can look at  the recent inves- 
t igat ions on the properties of Reggeization at  t ~ 0  as giving a first encouraging set of 
results along this line of thinking (1). A technically different approach, based on super- 
convergence, has been also recently invest igated (2), and the possibil i ty of a self-con- 
sistent determinat ion of the physical  parameters,  through the use of sum rules, has 
been stressed. 

In this note we propose a quite simple expression for the relativist ic scattering am- 
pli tude,  tha t  obeys the requirements of Regge asymptotics  and crossing symmetry  in 
the case of l inearly rising trajectories.  I ts  explicit  form is suggested by the work of 
ref. (z) and contains only a few free parameters  (**). 

Our expression contains automat ical ly  Regge poles in families of parallel  t rajectories  
(at all t) with residue in definite ratios. I t  furthermore satisfies the conditions of super- 
convergence (4) and exhibits in a nice fashion the dual i ty  between Regge poles and 
resonances in the scattering ampli tude.  

(*) On  l eave  of absence  f r o m  t h e  W e i z m a n n  I n s t i t u t e  of Science,  R c h o v o t h .  Addre s s  a f t e r  1 Sep- 
t e m b e r  1968:  D e p a r t m e n t  of Phys ic s ,  M.I .T . ,  C a m b r i d g e ,  Mass.  

(1) F o r  a g e n e r a l  r ev i ew  of these  p r o b l e m s  see L.  BERTOCCHI: Proe. o! the Heidelberg International 
Conference on Elementary Particles ( A m s t e r d a m ,  1967). 

(2) Such  a n  a p p r o a c h  w a s  p r o p o s e d  i n d e p e n d e n t l y  by" M. AD]~MOLLO, I~. ]:~. RUBINSTEIN', G. VE" 
NEZIANO a n d  M. A.  VIRASORO: Phys. Rev. Left., 19, 1402 (1967) a n d  Phys. Left., 27, B 99 (1968), a n d  
b y  S. MANDELSTAM: Phys. Rev., 166, 1539 (1968). F u r t h e r  d e v e l o p m e n t s  a n d  a n u m b e r  of r e fe rences  
to  r e l a t e d  w o r k s  c a n  be  f o u n d  in  ref .  (3). 

(a) ~r ADEMOLLO, H .  R .  RUBINSTEIN, G. VENEZIANO a n d  M. A.  VIRASORO: ~Veizmann I n s t i t u t e  
p r e p r i n t  (1968), s u b m i t t e d  to  Phys. Rev. 

(**) W e  s h a l l  m o s t l y  w o r k  he re  in  t h e  a p p r o x i m a t i o n  of rea l ,  l i n e a r  t r a j e c to r i e s  a n d  c o n s e q u e n t l y  
of n a r r o w  resonanceS.  W e  br ief ly  d i scuss  t h e  effects of a nonze ro  i m a g i n a r y  p a r t  in  t h e  t r a j e c t o r y  
f u n c t i o n  w h i c h ,  in  a n y  case ,  we d e m a n d  to  h a v e  a l i n e a r l y  r i s i n g  r ea l  p a r t .  

(4) F o r  s u p e r c o n v c r g e n c e  we m e a n  b o t h  t h e  o r ig ina l  s u m  ru les  p r o p o s e d  b y  V. DE ALFARO, S. FU* 
BINI, G. FURLAI~ a n d  C. ROSSETTI: Phys. Left., 21, 576 (1966), a n d  t h e  m o r e  r e c e n t  g e n e r a l i z e d  super* 
c o n v e r g e n c e  ( f in i te -energy)  s u m  ru les  (see rc f .  (*) for  d e t a i l e d  re fe rences) .  A uni f ied  t r e a t m e n t  of a l l  
s u p e r c o n v c r g e n c c  s u m  ru l e s  h a s  b e e n  g i v e n  b y  S. FUBINI: NUOVO Cimento, 52 A,  224 (1967). 
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The first example  we wan t  to discuss is the  scat ter ing r:~-~ =(~, whose convenient  
propert ies  have  been already stressed in ref. (a). We  in t roduce  the  invar ian t  ampl i tude  
A(s, t, u) through the  definit ion of the T-ma t r ix  

(1) T - -  %~o.et, Pl~ P2qP3~" A(s, t, u) , 

where P~ are the pion m o m e n t a  and eg is the ~o polar iza t ion  vector .  A(s, t, u) has only 
dynamica l  singulari t ies as it  is free of k inemat ica l  ones. I t  is also complete ly  sym- 
met r ic  in the three Mandels tam variables.  

I t  was fomld in ref. (~) t ha t  a (~ good )) pa ramet r i za t ion  of A at  h igh s and fixed t 
could be wr i t t en  as 

(2) A(s, t, u) ~__ -/~ r(1--~(t))(--~(s))~")-* + (s c-~u) 

with  f i =  const.  We use the  word  (( good )) in the sense tha t  eq. (2), when used as an 
input ,  is able to reproduce  itself qui te  consis tent ly  th rough  the use of superconver-  
gence sum rules. 

W h a t  is the  ampl i tude  for nonasympto t i c  values of s? If  eq. (2) werc exac t  af ter  
soine ~, ana ly t i c i ty  in the  s-plane (at fixed t) would  require  i t  to be val id  at  all s and 
eq. (2) is cer ta in ly  a solution of supereonvcrgence.  However ,  eq. (2) does not  satisfy 
s, t crossing as this  demands  poles in s such as those induced in t by the  F ( 1 - - ~ ( t ) )  
factor .  On the  o ther  hand  these poles in s could in principle  des t roy the  asympto t i c  
behaviour  (2) th rough  the  in t roduc t ion  of fixed singularit ies.  The  lowes t -moment  sum 
rules are jus t  imposing  t h a t  this  is not  happen ing  at  the  nearest  nega t ive  integers.  
Fu r the rmore ,  we expec t  t ha t  the  presence of bumps  in the  10w-energy region will  pro- 
duce ( through analyt ic i ty)  a modif icat ion of the  h igh-energy form which will not  be 
as smooth  as eq. (2), bu t  will  ra ther  show oscillations in s. 

Consequently,  we take  out  the  factor  ( - -~(s ) )  a(t)-* and we symmetr ize  eq. (2) inul- 
t ip ly ing by a factor  F(1 ~(s)) and dividing by T'(2--a(s)--o~(t)) in order to have  
the  correct  a sympto t i c  behaviour .  Af te r  symmet r i za t ion  in s, t, u we have  

(3) .-! (s .  t, u )  = ~ [ B (  1 ~(t ) ,  1 - -  ~ ( s ) )  + B (  I - -  ~(t) ,  1 - -  zr + B (  1 - -  ~ ( s ) ,  1 - -  ~ ( u ) ) ]  , 

where we have  in t roduced  the  Eulcr  B-funct ion  

F(x) F(y) 
B(x, y) 

F(x -- y) " 

Notice  that ,  in eq. (3), fi must b c a  cons tan t  if we wan t  to have  a Regge-l ike behaviour  
which, together  with crossing, also demands  the  1/(F(a)) t -dependence of the  reduced 
residue funct ion.  E q u a t i o n  (3) in fact  is ha rd  to modi fy  if one demands  an s ~-1 behav-  
iour  in all channels.  The  only simple general izat ion of eq. (3) seems to consist in the  
addi t ion of nonleading and s imilar ly  s t ruc tured  te rms  like B(m a(t), n--~(s))  with  
m, n ~ l .  

We  now discuss some proper t ies  of cq. (3) ill detail .  
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1. - Behaviour for large positive s and fixed t. 

The first two terms (we shall come to the last  one in a moment) give 

(4) 
A - -  fl(t) [ s inn(zt(s)+ a(t)) F ( ~ t ( s ) +  c t ( t ) - - l )  _r'(1--zc(u)) ] 

sin na(t) L sin za(s) P(a(s)) + F ( i  ~ ( a ( u ~ a ( t ) ) J  " 

The second term is purely real (for positive s) and goes like (a(s)) ~ct)-l. The first 
term is the one tha t  corresponds to the Regge term ( - -  a(s))  ~(t)-x and has both a real 
and an imaginary  part .  Some t r ivia l  algebra shows that ,  from the whole eq. (4), we 
have a real piece like 

fl(l) 1 - - c o s z ~ ( t )  [~(s)]~,(t,_~, fl(t) : f i /F(cc( t ) ) ,  
sin n~(t) 

as in the Regge theory,  while the s discontinuity is all contained in the form 

(5) A ~ - -  fl(t) ctg a(s) [a(s)] ~'(t)-L . 
s---> ~ 

If  h n  ~ is s tr ict ly zero, eq. (5) gives just  poles in s and Im A is a sequence of &func- 
tions. If  Im c~ is different from zero and, for instance, increases with s (this happens 
if the to ta l  width  does not  vary  strongly with s), hn  A will describe bumps for mod- 
erate values of s, but  will finally tend to f l ( t )(a(s))  ~ct)-I as in the Rcgge theory (this 
is due to ctg ~ ( s ) ~ - - i ) .  Of course, the parametr iza t ion  of eq. (3) can be taken as 
such only for l inearly rising trajectories in which case (~(s)) a(~ is equivalent  to ( s l s J  'u). 
However, we only need a leading term in a(s) going l inearly in s, and this does not  
imply hn  a = 0. I f  Im ~ r  0 one probably  gets, besides moving poles, other singular- 
ities (cuts?) as well. 

2 . -  Singularities ia the various channels.  

Equat ion (3) has quite nice analyt ic  features. I t  has cuts in all the three Mandel- 
stam variables s tar t ing from the 2~ threshold, where a begins to show an imaginary  
part .  However, if we restrict  ourselves to real l inear trajectories,  our expression has 
only poles whenever a passes through an integer bigger than  0. Fur thermore ,  be- 
cause of the F ( 2 - - a ( s ) -  ~(t)) denominator,  no double pole appears,  in the sense tha t  
the residue in a pole is a polynomial  in the other variable.  

At  first glance our expression shows poles at  even values of ~ as well, in contras t  
with invariance principles. As these are always nonleading terms, one can in general 
el iminate them by the addit ion of nonleading expressions at  explained at  the beginning. 
More amusing to notice is the fact that ,  at  least in this reaction, the el imination of 
spurious singularities can be achieved with a single condition on the t ra jec tory  ~(t). 
Take in fact a ( t )=  2. The residue at  the pole, produced there by  F ( 1 -  a(t)) is s imply 
proport ional  to ~(u)+a(s ) .  We then demand 

(6) a(s) + a(u) = 0 for a(t) = 2, 
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which af ter  some easy a lgebra  gives (always for l inear  t rajectories)  

(7) a(s) ~- c~(t) ~- ~(u) : 2 . 

Equa t i on  (7) can easily be t ransformed into the predict ion 

2 (s) ~ ( -  2.,~ + m~ + 3m~) = ~(- 0.53 (GcV)~) = 0 

which was der ived in ref. (2) f rom the  sum rules. -The reader  can ver i fy  tha t  eq. (7) 
is enough to cancel all the  undesired poles at even in teger  values of ~. A fur ther  
in te res t ing  consequence of eq. (7) concerns the th i rd  t e rm of eq. (3) which could in 
principle  violate  the  Regge behaviour .  Instead,  using (7), t h a t  t e rm can be rewri t ten  as 

/~(t) F(~(s) + ~(t)--  l)  

which is still Regge-behaved.  The  whole eq. (3) can be rewr i t t en  in the  form 

F(a(s) § a(t)- 1) [ 1 - - e x p  [iza(s)] 1 - -  exp [--  iza(t)]]  
(10) A 

which shows the  au tomat i c  cancel lat ion of the  poles at  even  in teger  values  of a. By  
use of (7) one can also wri te  (3) in the  very  s y m m e t r i c  form 

(11) A = ~  F(1--e(s))F(1--~(t))F(1--e(u))[sin~e(s)~_sin~cc(t)~_sinn~(u)]. y-~2 

3 . -  Analysis in terms of Regge poles. 

F r o m  the  asympto t ic  (Stirling) formula  of the  /"-functions in eq. (10) i t  is seen 
tha t  our  expression corresponds to an infinite fami ly  of Regge poles which are equal ly  
spaced at  all t by  two units  of angular  momentun~ and wi th  definite re la t ions among  
thei r  residue.  Such a s t ruc ture  of poles was found a l ready bo th  by  use of super- 
convergence (5) and in some recent  work  (6) based on On-symmetry concepts.  

4 . -  Superconvergence sum rules. 

Equa t ion  (4) has to sat isfy all the  superconvcrgence  relat ions.  In  order to check 
this in detai l  we have  to in t roduce  a kind of <( smoothed  ~ Regge form for h n  A(s, t). 

(5) H.  1:~. RUBINSTEIN, A. SCIIWIMMER, G. VENEZIANO and  M. A. VIRASORO: W e i z m a m l  In s t i t u t e  
p repr in t  (1968), s u b m i t t e d  to l 'hgs .  Rev .  Let t . ;  see also rcf. (~). 

(~) G. COSENZA, n .  SCIARRINO a nd  M. TOLLER: Unive r s i t y  of Rome  p rep r in t  no. 158 an d  Tries te  
p rep r i a t .  

13 - I I  Nuovo Cimento A .  
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From eq. (4) i t  can be seen tha t  a form of this kind is 

(12) 
Y'( a(s) + a(t) - -  1) 

Im AR,,~,(s, t) ~ .~  fl(t) I'(a(s)) 

Next  we observe tha t  the representat ion 

(13) 

where 

:~(t) - -  2]r 
Im A~g,o(s, t) ~ fl(t)(2~'v)~")-l= fl(t) ~(s) + 2 J ' 

v = - - ,  a(s) = a0 + a's,  
4 

is a good approximation of eq. (12) as i t  coincides also in the next- to-leading term. 
The form (13) is also the one used in ref. (3). 

The first moment  sum rule (even moments are trivial) reads then 

(14) f v Im A(v, t ) d v =  

0 

a(t) + 1 

For  posit ive s the first and third terms of eq. (3) give 

05)  ImA(v,  t) ---- - -  ~; - flE(1-~-~(t)) -- y s , ) ( -  1 / +  (t 

The t, u symmetry  has the effect of washing out the poles of even J .  If we set # 
midway between the n-th resonance on the leading t ra jec tory  and the (n+  1)-th reso- 
nance, eq. (14), after some algebra, reads (writing a =  a(t)) 

(16) 

where (3) 

(17) 

~ (a + 4n) r ( a  + 2n)] = T(a + 2n + 2) 

�9 Z+I(~)---- F ( 2 ~ +  1 ) F - a ( a +  2 ~ +  2 ) (  a +  4~+2 2) a+l" 

I t  is easily seen, by induction, tha t  the two sides of eq. (14) are equal apar t  from 
the r  function, so tha t  eq. (16) reduces to ~ ( a ) = l .  This condition is very well 
verified (3) for ]~(t) I < 2~ and is mathemat ica l ly  true for fixed t and ~--> co as we wish. 
I f  r  vA is superconvergent in the stronger sense of de Alfaro et al. (4) and we 
get from (16) 

~ (a + 4n) r ( a  + 2n)] = 
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which is jus t  a solution of a superconvergenee  equa t ion  for all t in ~erms of an infinite 
number  of resonances.  If  a > - - l ,  eq. (16) is a solut ion of a general ized supcrcon- 
vergence re la t ion (a) and,  in tiffs context ,  the  common origin of the  two kinds of sum 
rules is quite  clear. In  the special case ~ = - - 1  all bu t  the  o cont r ibut ion  vanish and 
we get  ~ ( t )~  a(t). Similar  considerat ions can be made  for h igher-molncnt  sum rules. 
Note  tha t  we have  neglected in the  r igh t -hand  side of eq. (14) the cont r ibu t ion  of 
the  u-channel  Regge exchange.  This approx ima t ion  is justif ied by the  fact  t ha t  such 
a te rm oscillates m v as to give an ahnost  zero in tegra l  over  each range of in tegra t ion .  

5 . -  Duality of Regge poles and resonances. 

I t  is clearly seen tha t ,  in the  present  model,  we have  no in terference be tween the  
Regge  terni  and direct -channel  resonances.  In a sense, the  ampl i tude  is all bui l t  up 
by resonances in such a way  t h a t  the i r  sum is Regge behaved.  In  this sense eq. (3) 
can be considered the  inverse of a point  of v iew recent ly  expressed by SCHMID (7) 
according to which the  usual  leading Regge t e rm m a y  conta in  the  direct-channel  reso- 
nances in it. 

5 . -  Possible validity of the Regge formula at subasymptotic energies. 

Suppose we have  a process whose s-channel  quan tum numbers  are such to p r even t  
any known t r a j ee t e ry  to occur, h i  t ha t  case our representa t ion  of the  ampl i tude  will 
be given by fiB(n--~t(t ), m - - a ( u ) )  and consequent ly  

(t9) A = 
~(t) r ( .~  -~.,(u)) ~(t) r(~,.(s) + c) 

s i n  na(t) F(m § n -- a~ (u) ~ at(t)) = Sin  ~a(t) F(% (s) + c - -  at(t) § n) ' 

where  c is a constant .  Express ion (19) has the p roper ty  of being a real and qui te  
smooth  funct ion of s (for posi t ive  s). In o ther  words, the  absence of rcsonanees in a 
channel  implies  for the sca t ter ing  in the same channel  a real  Regge te rm and the  
va l id i ty  of the  Regge regime at  subasympto t ic  values of the  energy.  Similar  conclu- 
sions were reached by use of a different me thod  by HARARI (s). 

7 . -  Predictions for large-t scattering. 

Equa t ion  (3) predicts  the  existence of secondary dips and peaks as g iven by the  
F-l(a(t)) factor  in fl(t). F u r t h e r m o r e  we can draw conclusions for f ixed-angle scat- 
ering, namely  for s, t and u going to inf ini ty  at  the  same t ime.  Le t t ing  x =  cos 0, 

and using the  Stif l ing formula  we easily get,  apar t  f rom cons tan t  and oscil lat ing factors,  

i ---X 
(20) A , , -~  cxp [ ](x)a(s)], /(x) = log 

fixed x 2 

(7) C. SCII.~tlD: Phys. l~ev. Left., 20, 689 (1968). 
(s) l I .  HARAI~[: Phys. ReV. Left., 20, 1395 (1968). 

+ log . 
1 - - x  l t - x  



196 G. VENEZIANO 

](x) is positive for physical angles and turns out to be well represented by ](x) = log 2. 
�9 sin0, .  Equation (20) is similar to the form-fitting experiments in pp large-anglo 
scattering (~). 

8 .  - F a c t o r i z a t l o n .  

This is perhaps the most delicate point of the discussion. In the scheme proposed 
here each trajectory is not really an independent object. In  most cases (as in r:r: scat- 
tering) more than one trajectory must coexist in a kind of (~ conspiratorial ,> situation, 
namely with certain relations among their trajectory and residue functions, as was 
found already in the sum ruIe work (3). Factorization should be intended here as the 
existence of a self-consistent set of Regge poles (and relative daughters) whose tra- 
jectory functions are independent of the external lines, but  consistent in the sense of 
producing particles at the external-mass values. Furthermore, the reduced residue 
(defined in a suitable way) should factorize (lO). This is certainly an ambitious and 
difficult task, which would essentially amount  to a complete bootstrap solution of 
strong interactions. 

As  a second example let us consider the process r:~ ~ r~p. According to our pre- 
scription the invariant  amplitude A defined as in eq. (1) will be given by 

( 2 1 )  A = - ~  p = 

= /~--: [B(1 - -  aA,(s), 1 - -  ~p(t)) ~- B(1 - -  ~A,(u), 1 - -  ap(t)) - -  B( 1 - -  ~A,(s), 1 - -  ~A,(u))], 

where =~-~ ~9 is the t-channel. Imposing to find no poles at even integer value for 
ap($) we obtain 

(22) ~A,(s) ~- ~A~(u) ~- ~p(t) : 2 . 

Imposing absence of poles at the odd integers for ~A, we find again eq. (22). This demands 

( 2 3 )  i , 

2 =0.6  (GeV) 2 and eq. (7) we obtain Using mp 

2 2 2 2 
1 3 m e - - t o o - - m = +  m~___ 0.36" 

(24) ~AJo) = 1 2 3m~--m~--  3m~ 

We thus predict mA,--~ 1350 MeV. 

(9) G. CoccoNi ,  V. T. COCOONr, A.  D. KRISCH, J .  OREAR, R .  RUBII~STEIN, D.  B .  SEARL, B.  T.  ULRICH, 
W.  F.  BAKER, E .  W .  JENKINS a n d  A.  L.  READ: Phys. Rev., 138, B 165 (1965). H a v i n g l i n c a r l y  r i s i n g  
t r a j e c t o r i e s  we  a re  a l so  cons i s t en t  w i t h  t h e  C e r u l u s - M a r t i n  b o u n d .  See C. B. CHIt: a n d  C. I .  TAN: 
Phys. Rev.,  162, 1701 (1967). 

(10) W e  k n o w  t h a t ,  a t  t = 0, a s imple  ( i r reducib le)  L o r e n t z  pole does o b e y  f a c t o r i z a t i o n  (see ref .  (1)). 
I t  seems  a lso  p laus ib le  to  con j ec tu r e  (M. TELLER: p r i v a t e  c o m m u n i c a t i o n )  t h a t  t h i s  is  t h e  on ly  case  
in  w h i c h  f a c t o r i z a t i o n  is  fulfil led. Since our  express ion  does  n o t  p r o b a b l y  c o r r e s p o n d  to  a s ingle  L o r e n t z  
pole,  n o n l e a d i n g  t e r m s  m i g h t  be  needed  in  o r d e r  to  h a v e  f a c t o r i z a t i o n .  W e  t h a n k  M. TELLER for  
d i scuss ion  on  t h i s  po in t .  
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As  a third example one could t ry  to bui ld  up a sca t t e r ing  amp l i t ude  for s §  -~ s + s  
(s being a scalar  par t ic le  w i th  the  vacuum q u a n t u m  numbers )  and  t ry  to ask dominance  
of a leading t r a j ec to ry  pass ing by the  par t ic le  itself. This  is seen to be imposs ib le  wi th  
a pos i t ive  slope of a, since the  equa t ion  sinfilar to (7) gives a ( 0 ) ~  1. 

I t  is possible  to ex t end  the  above cons idera t ions  to the  more  in te res t ing  case of 
roT: scattering and to ob ta in  a crossing s y m m e t r i c  ampl i tude  in the  ap p ro x i ma t i o n  of p 
and  f t r a j ec to ry  dominance  and d is regard ing  the  P o m e r a n e h u k  con t r ibu t ion ,  according 
to a now accep ted  ph i losophy  (s.n). We  find cons is tency  only if % = a~ = a and 
~(0) ~_ 1. F u r t h e r m o r e ,  we can pred ic t  ~7: sca t t e r ing  leng ths  in t e rms  of gp~2 and 
ob ta in  (apar t  fl 'om the  P o m e r a n c h u k  cont r ibu t ion)  

a 0 = ~-.a2_~ - -  1.25m~ 1 . 

F u r t h e r  detai ls  as well as appl ica t ions  of th is  scheme to more  compl ica ted  cases 
will be considered elsewhere.  

The au thor  wishes to acknowledge in te res t ing  discussions wi th  D. AMATI, S. FUBINI 
and M. TOLLER. 

(11) It may be, however, that one runs into difficulties in adding the Pomeranchuk contribution 
at the end in a crossing-symmetric way. An alternative interesting possibility would be to consider 
it as originated somehow by the other trajectories (through their nonresonating parts) and not as an 
independent object. This problem, which certainly requires further study, is closely connected to that 
of the nature of the Pomeranchuk singularity. 


