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Crossing has been the first ingredient used to make Regge theory a predictive
concept in high-energy physics. However, a complete and satisfactory way of imposing
crossing and crossed-channel unitarity is still lacking. We can look at the recent inves-
tigations on the properties of Reggeization at {=0 as giving a first encouraging set of
results along this line of thinking (). A technically different approach, based on super-
convergence, has been also recently investigated (2), and the possibility of a self-con-
sistent determination of the physical parameters, through the use of sum rules, has
been stressed.

In this note we propose a quite simple expression for the relativistic scattering am-
plitude, that obeys the requirements of Regge asymptotics and crossing symmetry in
the case of linearly rising trajectories. Its explicit form is suggested by the work of
ref. (3) and contains only a few free parameters (**).

Our expression contains automatically Regge poles in families of parallel trajectories
(at all ¢) with residue in definite ratios. It furthermore satisfies the conditions of super-
convergence (4 and exhibits in a nice fashion the duality between Regge poles and
resonances in the scattering amplitude.

(*) On leave of absence from the Weizmann Institute of Science, Rehovoth. Address after 1 Sep-
tember 1968: Department of Physics, M,I.T., Cambridge, Mass.

(1) For a general review of these problems see L. BERTOCCHI: Proc. of the Heidelbery International
Conference on Elemenlary Particles (Amsterdam, 1967),

(%) Such an approach was proposed independently by M. ApEmorLo, H. R. RUBINSTEIN, G. VE-
NEZIANO and M. A, VIRASORO: Phys. Rev. Lett., 19, 1402 (1967) and Phys. Left., 27, B 99 (1968), and
by S. MANDELSTAM: Phys. Rev., 188, 1539 (1968). Further developments and a number of references
to related works can be found in ref. (%).

(*) M, ApEMOLLO, H. R. RUBINSTEIN, G. VENEZIANO and M. A, VIRASORO: Weizmann Institute
preprint (1968), submitted to Phys. Rev.

(**) We shall mostly work here in the approximation of real, linear trajectories and conscequently
of narrow resonances, We briefly discuss the effects of a nonzero imaginary part in the trajectory
function which, in any case, we demand to have a linearly rising real part. ’

(*) For superconvergence we mean both the original sum rules proposed by V. DE ALFAR0, 3. FU-
BINT, G. FURLAN and C. RoSsSgrTI: Phys. Lett., 21, 576 (1966), and the more recent generalized super-
convergence (finite-energy) sum rules (see ref. (*) for detailed references). A unified treatment of all
superconvergence sum rules has been given by S. FUBINI: Nuove Cimenlo, 52 A, 224 (1967).
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The first example we want to discuss is the scattering nw— ww, whose convenient
properties have been already stressed in ref. (3). We introduce the invariant amplitude
A(s, t, w) through the definition of the 7T-matrix

(1) T= E,uVQGe[l,Pl’V PZQP:M' ‘4(8v t’ ’l,l/) ’

where P, are the pion momenta and e, is the w polarization vector. A(s, ¢, ») has only
dynamical singularities as it is free of kinematical ones. It is also completely sym-
metric in the three Mandelstam variables.

It was found in ref. (*) that a « good » parametrization of .1 at high s and fixed ¢
could be written as

(2) A(s, t,u) ~ B T(1— () (—a(s))* ™ + (s ¢>u)

s>® 7T

with f=const. We use the word « good » in the sense that eq. (2), when used as an
input, is able to reproduce itself quite consistently through the use of superconver-
gence sum rules.

What is the amplitude for nonasymptotic values of s? If eq. (2) were exact after
some §, analyticity in the s-plane (at fixed ¢) would require it to be valid at all s and
eq. (2) is certainly a solution of superconvergence. However, eq. (2) does not satisfy
8, t crossing as this demands poles in s such as those induced in # by the I'(1— «(?))
factor. On the other hand these poles in s could in principle destroy the asymptotic
behaviour (2) through the introduction of fixed singularities. The lowest-moment sum
rules are just imposing that this is not happening at the nearest negative integers.
Furthermore, we expect that the presence of bumps in the low-energy region will pro-
duce (through analyticity) a modification of the high-energy form which will not be
as smooth as eq. (2), but will rather show oscillations in s.

Consequently, we take out the factor (— «(s))*” ™' and we symmetrize eq. (2) mul-
tiplying by a factor I'(1— «(s)) and dividing by I'(2— «(s) — «(t)) in order to have
the correct asymptotic behaviour. Affer symmetrization in s, t, v we have

B
3)  A(s.t, u):y% [B(1—a(t), 1—a(s)) +B(1 — «(t), 1 — a(w)) +B(1 — a(s), 1 — a(w))] ,

where we have introduced the Euler B-funection
I'x)I'
B(x,y)= ———.
Y

Notice that, in eq. (3), f must be a constant if we want to have a Regge-like behaviour
which, together with crossing, also demands the 1/(I'(«)) t-dependence of the reduced
residue function. Equation (3) in fact is hard to modify if one demands an s* ! behav-
iour in all channels. The only simple generalization of eq. (3) seems to consist in the
addition of nonleading and similarly structured terms like B(m — «{t), n— a(s)) with
m, n>1.

We now discuss some properties of eq. (3) in detail.
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1. — Behaviour for large positive s and fixed .

The first two terms (we shall come to the last one in a moment) give

@ A B(t) [_ sin m(a(s) + a(f)) I'(afs) + a(t) —1) I(1—o(u))
sin za(t) sin za(s) I(x(s)) I(2— afu) — o)) |

The sccond term is purely real (for positive s) and goes like («(s))*“~". The first
term is the one that corresponds to the Regge term (— a(s))*”~* and has both a real
and an imaginary part. Some trivial algebra shows that, from the whole eq. (4), we
have a real piece like

1 —cosma(l) At—1 ~
, ty= g/l ,

pE— [a(s)] B(t) = BIT(a(t))
as in the Regge theory, while the s discontinuity is all contained in the form

(5) 4 S ﬂ(t) Ctg 06(8) [a(s)]“(t)—l .

If Im « is strictly zero, eq. (5) gives just poles in s and Im 4 is a sequence of J-fune-
tions. If Im « is different from zero and, for instance, increases with s (this happens
if the total width does not vary strongly with s), Im 4 will describe bumps for mod-
erate values of s, but will finally tend to B(t)(«(s))**~* as in the Regge theory (this
is due to ctg a(s)—>—1). Of course, the parametrization of eq. (3) can be taken as
such only for linearly rising trajectories in which case («(s))*® is equivalent to (s/s,)™".
However, we only need a leading term in «{s) going linearly in s, and this does not
imply Ima= 0. If Ima 0 one probably gets, besides moving poles, other singulaz-
ities (cuts?) as well.

2. — Singularities in the various channels.

Equation (3) has quite nice analytic features. It has cuts in all the three Mandel-
stam variables starting from the 2m threshold, where « begins to show an imaginary
part. However, if we restrict ourselves to real linear trajectories, our expression has
only poles whenever « passes through an integer bigger than 0. Furthermore, be-
cause of the I'(2— «(s) —«(t)) denominator, no double pole appears, in the sense that
the residue in a pole is a polynomial in the other variable.

At first glance our expression shows poles at even values of « as well, in contrast
with invariance principles. As these are always nonleading terms, one can in general
eliminate them by the addition of nonleading expressions at explained at the beginning.
More amusing to notice is the fact that, at least in this reaction, the elimination of
spurious singularities can be achieved with a single condition on the trajectory wf(?).
Take in fact «(f)= 2. The residue at the pole, produced there by I'(1 — «(t)) is simply
proportional to «(u)+ a(s). We then demand ’

(6) o(s) + a{u)=0 for oc(?) = 2,



CONSTRUCTION OF A CROSSING-SYMMETRIC, ETC. 193
which after some easy algebra gives (always for linear trajectorics)
(7) als) + o) + a(u)= 2.
Equation (7) can casily be transformed into the prediction
(8) a— 2my 4 mgy 4 3my) = o — 0.53 (GoV)2) = 0

which was derived in ref. (2) from the sum rules. -The reader can verify that eq. (7)
is enough to cancel all the undesired poles at even integer values of «. A further
interesting consequence of eq. (7) concerns the third term of eq. (3) which could in
principle violate the Regge behaviour. Instead, using (7), that terin can be rewritten as

9) By I{als) + oft) — l_)_
sin mro(s) I’(rx(s))

which is still Regge-behaved. The whole eq. (3) can be rewritten in the form

(10) A= p() f,(f(s) + “(Q,,ﬁ,l) [1 - eXpE’?‘l(s),] + 1— eiliﬁim‘(tﬂ} ,

T{als))  sin wals) sin ma(t)

which shows the automatic cancellation of the poles at even integer values of a. By
use of (7) one can also write (3) in the very symmetric form

(11) 4= % I(1—a(8)) I'(1 — «(t)) I'(1 — a(u))[sin wa(s) + sin za(t) + sin ma(u)].

3. — Analysis in terms of Regge poles.

From the asymptotic (Stirling) formula of the I-functions in eq. (10) it is seen
that our expression corresponds to an infinite family of Regge poles which are equally
spaced at all ¢ by two units of angular momentum and with definite relations among
their residua. Such a structure of poles was found already both by use of super-
convergence (°) and in some recent work (¢) based on O,-symmetry concepts.

4, — Superconvergence sum rules.

Equation (4) has to satisfy all the superconvergence relations. In order to check
this in detail we have to introduce a kind of « smoothed » Regge form for Im A(s, ¢).

(*) H. R. RUBINSTEIN, A. SCHWIMMER, (3, VENEZIANO and M. A. VIRASORO: Weizmann Institute
preprint (1968), submitted to Phys. Rev. Lett.; see also ref, (%),

(*) G. COSENZA, A. SCIARRINO and M. ToLLER: University of Izome preprint no. 158 and Trieste
preprint.

13 — Il Nuovo Cimento A.
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TFrom eq. (4) it can be seen that a form of this kind is

I(a(s) + aft) — 1)

12 Im Ag, , 0 ~ B(t) —
( ) m Ag, zge(s ) Pl ﬁ( ) I’(ex(s))
Next we observe that the representation

a()—1 aft) — 2]t
(13) Tm Aregee(8, 1) ;32 BE)(2a'v)™ 07 = B(2) | als) + —-——] ,
where

s—u
y= 1 of8) = g+ o's,

is a good approximation of eq. (12) as it coincides also in the next-to-leading term.
The form (13) is also the one used in ref. (3).
The first moment sum rule (even moments are trivial) reads then

a(t)—1 2
(14) f » Tm Ay, t)dy = POCE T
alt) + 1

0

For positive s the first and third terms of eq. (3) give

T'(1
(15) Im Ay, t) = — Z»~,—T(§) ((2 C(T))a(i)-)a(s—-sJ =1+ (tu).

The ¢, » symmetry has the effect of washing out the poles of even J. If we get ¥
midway between the n-th resonance on the leading trajectory and the (n+1)-th reso-
nance, eq. (14), after some algebra, reads (writing o«= a(t))

(e 4n) I+ 2n) Ilat 27+ 2)
(16) [1 "‘,gl I+ 1) (20 + 1)] “I’(a+ ) I@n+ 1) (%) 5
where (3)
n a+l
(17) ¢F+1(0¢)= F(2W—{- 1)[’-—1(“_,_ 27 -+ 2) (d—}%ﬁ}ﬁ) L .

It is easily seen, by induction, that the two sides of eq. (14) are equal apart from
the @(x) function, so that eq. (16) reduces to @(x)=1. This condition is very well
verified (3) for ]oc(t)| < 27 and is mathematically true for fixed ¢ and #— oo a8 we wish.
If oft)<<—1, vA is superconvergent in the stronger sense of de Alfaro et al. (%) and we
get from (16)

(¢ + 4n) '« + 2n)
(18) [1+,.§_;F(a+1 Ir@n+1 )] 0
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which is just a solution of a superconvergence equation for all ¢ in terms of an infinite
number of resonances. 1f «>—1, eq. (16) is a solution of a gencralized supercon-
vergence relation (%) and, in this context, the common origin of the two kinds of sum
rules is quite elear. In the special case «= —1 all but the o contribution vanish and
we get «t) = «(f). Similar considerations can be made for higher-moment sum rules.
Note that we have neglected in the right-hand side of eq. (14) the contribution of
the u-channel Regge exchange. This approximation is justified by the fact that such
a term oscillates in » as to give an almost zero integral over each range of integration.

5. — Duality of Regge poles and resonances.

It is clearly seen that, in the present model, we have no interference between the
Regge term and direct-channel resonances. In a sense, the amplitude is all built up
by resonances in such a way that their sum is Regge behaved. In this sense eq. (3)
can be considered the inverse of a point of view recently expressed by ScHMID (7)
according to which the usual leading Regge term may contain the direct-channel reso-
nances in it.

5. — Possible validity of the Regge formula at subasymptotic energies.

Suppose we have a process whose s-channel quantum numbers are such to prevent
any known trajectory to occur. In that case our representation of the amplitude will
be given by BB(n— «,(t), m —a (u)) and consequently

B (o=, w) B I'(a,(s)+ ¢)
sinwo(t) I'(m+ n—o,(u) — (1)) sinma(t) I(a,(8) + ¢ —oy(t) + n)’

(19) 4=

where ¢ is a constant. Expression (19) has the property of being a real and quite
smooth function of s (for positive s). In other words, the absence of resonances in a
channel implies for the scattering in the same channel a real Regge term and the
validity of the Regge regime at subasymptotie values of the energy. Similar conclu-
sions were reached by use of a different method by HARART (8).

7. — Predictions for large-: scattering.

Equation (3) predicts the existence of sccondary dips and peaks as given by the
I at)) factor in p(f). Furthermore we can draw conclusions for fixed-angle scat-
ering, namely for s, £ and u going to infinity at the same time. Fetting z = cos 6,
and using the Stirling formula we eagily get, apart from constant and oscillating factors,

l-—2z 2 1+ 2 2
1 — —1 .
Ogl—w+ 2 Ogl—{—x

(20) A 5, oxp = f@)als)].  fl@)=
fixed @

(") C. Scuyip: Phys. Rev. Lett,, 20, 639 (1968).
¢y H. Harari: Phys. Rev. Lett., 20, 1395 (1963).
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f(x) is positive for physical angles and turns out to be well represented by f(x) = log 2-
-sin §,. Equation (20) is similar to the form-fitting experiments in pp large-angle
scattering (?).

8. — Factorization.

This is perhaps the most delicate point of the discussion. In the scheme proposed
here each trajectory is not really an independent object. In most cases (as in wr scat-
tering) more than one trajectory must coexist in a kind of « conspiratorial » situation,
namely with certain relations among their trajectory and residue functions, as was
found already in the sum rule work (3). Factorization should be intended here as the
existence of a self-consistent set of Regge poles (and relative daughters) whose tra-
jectory functions are independent of the external lines, but consistent in the sense of
producing particles at the external-mass values. Furthermore, the reduced residue
(defined in a suitable way) should factorize (). This is certainly an ambitious and
difficult task, which would essentially amount to a complete bootstrap solution of
strong interactions.

As a second example let us consider the process mn — wp. According to our pre-
geription the invariant amplitude A defined as in eq. (1) will be given by

(21) -Anm—mp=

— %1 [B(1—ay,(8), 1 — ap(8)) + B(1— og,(u), 1 — (1)) — B(1 — oy, (8), 1 — “A,(“))] s

where nm > np is the f-channel. Imposing to find no poles at even integer value for
op(t) we obtain

(22) oca, (8) + og, () + ap{t) = 2.

Imposing absence of poles at the odd integers for «, we find again eq. (22). This demands
(28) o= al, .

Using mg =0.6 (GeV)? and eq. (7) we obtain

1 3m3 —m> —m2 + m2
(24) 4 (0) =1—5 ——— m My

~ 0.36.
2 3my—m}, — 3my

We thus predict m, ~ 1350 MeV.

(*) G.CocconI, V., T, CoccoNTt, A. D, KriscH, J. OREAR, R, RUBINSTEIN, D, B, SEARL, B. T, ULRICH,
W. ¥. BAKER, E. W, JENKINS and A. L, READ: Phys. Rev., 138, B 165 (1965). Havinglinearly rising
trajectories we are also consistent with the Cerulus-Martin bound. See C. B. CHIU and C. I. TAN:
Phys. Rev., 162, 1701 (1967).

(1°) We know that, at ¢{ = 0, a simple (irreducible) Lorentz pole does obey factorization ( see ref. (1)),
It seems also plausible to conjecturc (M, TOLLER: private communication) that this is the only case
in which factorization is fulfilled. Since our expression does not probably correspond to a single Lorentz
pole, nonleading terms might be needed in order to have factorization. We thank M. TOLLER for
discussion on this point,
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As a third example one could try to build up a scattering amplitude for s+s —s+s
(s being a scalar particle with the vacuum quantum numbers) and try to ask dominance
of a leading trajectory passing by the particle itself. This is seen to be impossible with
a positive slope of «, since the equation similar to (7) gives «(0) = 1.

It is possible to extend the above considerations to the more interesting case of
nr scattering and to obtain a crossing symmetrie amplitude in the approximation of p
and f trajectory dominance and disregarding the Pomeranchuk contribution, according
to a now accepted philosophy (*'). We find consistency only if «,= ;= a and
«(0) =~ %. Furthermore, we can prediet nr scattering lengths in terms of g, and
obtain (apart from the Pomeranchuk contribution)

ay=§ @y~ —1.25m;" .

Further details as well as applications of this scheme to more complicated cases
will be considered elsewhere.

The author wishes to acknowledge interesting discussions with D. Amari, 8. FuBINI
and M. TOLLER.

(1) It may be, however, that one runs into difficulties in adding the Pomeranchuk contribution
at the end in a crossing-symmetric way. An alternative interesting possibility would be to consider
it as originated somehow by the other trajectories (through their nonresonating parts) and not as an
independent object. This problem, which certainly requires further study, is closely connected to that
of the nature of the Pomeranchuk singularity.



