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Why the Higgs?

• The Standard Model describes the properties and 

interactions of the fundamental constituents of 

all visible matter 

• It is an highly predictive theory that has been 

validated by a huge number of collider 

experiments 

• The Higgs boson is essential for the self-

consistency of the Standard Model!



• Its discovery, after decades of searches, brought 

great excitement...

Why (still) the Higgs?



• Its discovery, after decades of searches, brought 

great excitement...  

... followed by a bit of blues.. 

Why (still) the Higgs?



... this Higgs boson looks too “simple”!

Too predictable?!?

• In the “minimal” description of electroweak 

symmetry breaking, all the couplings of the Higgs 

are strictly fixed 

➡ once its mass is known, all the properties  

of the Higgs boson (production cross sections, 

decay rates,..) can be predicted
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Too predictable?!?

https://arxiv.org/pdf/1606.02266v2.pdf


(see also 
summary talk 
of F. Canelli at 
ICHEP 2016)
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https://indico.cern.ch/event/432527/contributions/2223630/attachments/1322019/1983314/ICHEP-Higgs-canelli-final.pdf


• Many observed phenomena (neutrino mass, dark 

matter, fermion mass hierarchy, inflation, ..) are 

not described by the Standard Model  

‣ can they be related to the origin of electroweak 
symmetry breaking? Can they affect Higgs 
physics? 

• The Higgs boson is “unnaturally” light  

‣ how does the electroweak scale emerge? Is the 
Higgs sector more complicated than in the 
Standard Model (new particles/interactions)?

So, what is the problem?



Precision Higgs physics

• Several scenarios of “physics beyond the 
Standard Model” try to address these questions 

• They typically predict modifications in the Higgs 
phenomenology (new decay modes, modification 
of the couplings,..) 

• These effects can be rather small (               )O(few%)



➡ to validate the Standard Model (or see hints of 
new physics) we need 

‣ very accurate measurements of the 
properties of the Higgs boson ..

Precision Higgs physics



Precision Higgs physics
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[−1.08,−0.88]∪
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[0.78, 1.00]
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−0.11
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https://arxiv.org/pdf/1606.02266v2.pdf


➡ to validate the Standard Model (or see hints of 
new physics) we need 

‣ very accurate measurements of the 
properties of the Higgs boson .. 

‣ .. and equally accurate theoretical predictions 
of these properties:  
the precision in the extraction of the Higgs 
couplings will soon be limited by the 
uncertainty in the theory predictions!

Precision Higgs physics



➡ which are the largest sources of error in the 
theory result? 

➡ what are the status and the prospects for 
improving it?

• How can we improve our theory predictions?

Precision Higgs physics



• on the branching ratios: under control

The theory error

De Florian et al., Handbook of LHC Higgs Cross 

Sections: 4. Deciphering the Nature of the Higgs 

Sector, arXiv:1610.07922

Decay channel Branching ratio
TU
[%]

PU(mq)
[%]

PU(αs)
[%]

H → γγ 2.27× 10−3 +1.73
−1.72

+0.93
−0.99

+0.61
−0.62

H → ZZ 2.62× 10−2 +0.99
−0.99

+0.99
−0.98

+0.66
−0.63

H → WW 2.14× 10−1 +0.99
−0.99

+0.99
−0.98

+0.66
−0.63

H → τ
+
τ
− 6.27× 10−2 +1.17

−1.16
+0.98
−0.99

+0.62
−0.62

H → bb̄ 5.82× 10−1 +0.65
−0.65

+0.72
−0.74

+0.78
−0.80

H → Zγ 1.53× 10−3 +5.71
−5.71

+0.98
−1.01

+0.58
−0.65

H → µ+µ− 2.18× 10−4 +1.23
−1.23

+0.97
−0.99

+0.59
−0.64

mH = 125 GeV

https://arxiv.org/pdf/1610.07922.pdf


• on the production: 
gluon fusion is the main Higgs production 
mechanism...

The theory error

WH

ZH

tt̄H

gg → H
V BF

bb̄H

(86%)
(7%)

(3%)
(2%)

(1%)

(1%)



• on the production: 
... and is the channel with the largest theory 
uncertainty (as of at the end of Run I)

The theory error

ggH 44
+7.4% 

-7.9%

VBF 3.7
+0.7% 

-0.7%

WH 1.4
+0.7% 

-1.5%

ZH 0.87
+3.8% 

-3.8%

δσtheo/σ
√

s=13 TeV σ [pb]

LHC Higgs cross section  

WG recommendations, 2014



➡ the error on the gluon-fusion cross section 

dominates the theory uncertainty 

➡ but achieving this level of precision was 

already extremely hard!  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➡ the error on the gluon-fusion cross section 

dominates the theory uncertainty 

➡ but achieving this level of precision was 

already extremely hard!  

 

 

 

The theory error

LO1978 σ̂8TeV
= 9.6pb

±25%

NLO1991 NLO1991 σ̂8TeV
= 16.7pb

±20%

NNLONNLO2002 σ̂8TeV
= 19.6pb

±9%

Georgi et al, Higgs bosons 

from two gluon annihilation 

in proton proton collisions, 

Dawson; Djouadi, Spira, Zerwas; 
Graudenz, Spira, Zerwas; Spira, 

Djouadi, Graudenz, Zerwas

Harlander, Kilgore; 

Anastasiou, Melnikov



➡ the error on the gluon-fusion cross section 

dominates the theory uncertainty 

➡ but achieving this level of precision was 

already extremely hard!  

 

 

 

The theory error

leading (lowest) order, “LO”  
➜ already one loop  
➜ largest contribution from 
top quark → massive particle   
➜ two external momenta



➡ for Run II, it is necessary to know the  

gluon-fusion Higgs cross section at N3LO in 

QCD.. 

➡ .. and to include all other contributions 

beyond pure QCD that change the result by 

an     (5%)O

The theory error



     Tools 

• heavy-quark effective field theory (EFT) 

• threshold expansion 

• inverse unitarity 

• integration by part identities (IBPs) 

• expansion by regions 

• differential equation methods 

• …

Higgs Production at N3LO



     “Additional ingredients” 

• full quark-mass effects (from top, bottom, charm) 
through NLO ➜ go beyond the EFT! 

• electroweak (EW) two-loop corrections  

three-loop QCD/EW corrections 

• convolution with parton distribution functions 

• assessment of remaining uncertainties (scale, pdf, 

as, missing contributions, approximations)

Higgs Production at N3LO



Tools 

(just a few of them..) 



• at LO, gluon-fusion Higgs production is 

mediated by one loop of heavy quarks 

➡  N3LO ➜ four loops! (~15000 diagrams)

Heavy quark effective theory



• at LO, gluon-fusion Higgs production is 

mediated by one loop of heavy quarks 

➡  N3LO ➜ four loops! (~15000 diagrams)

Heavy quark effective theory



• for a light Higgs boson, the top quark can be 
integrated out  
 

 

➡ construct an effective theory than only 
contains the light (massless) Standard Model 
particles  

L → Llight −
αS

4v
C1 HG

a
µνG

aµν

Heavy quark effective theory

C1 ·

where the top-quark loop is replaced by 
an effective gluon-Higgs vertex and 
only the light dof of the SM are present



• huge number of contributions from “real” 

radiation

Real radiation

Dawson, Nucl. Phys. B 359 (1991) 283; 

Djouadi et al., Phys. Lett. B 264 (1991) 

 

➡  ~ 10 diagrams

(

O(α3

s
)
)

• at NLO               , there are two kind of 
contribution (in addition to the two loop  
gluon-Higgs vertex)

Virtual corrections  Real radiation  

O(αs)

O(αs)
O(αs)

O(αs)



Harlander and Kilgore, PRL 88, 201801 (2002); 

Anastasiou and  Melnikov, NP B 646 (2002) 220; 

Ravindran et al., NP B 665, 325 (2003)

Double-virtual  
corrections 

Real-virtual  
corrections 

Double-real  
corrections 

➡  ~ 1000 diagrams

Real radiation

• at NNLO …



triple-virtual  
corrections 

triple-real  
corrections 

➡  ~ 100000 

diagrams

double-virtual  
real corrections  

double-real  
virtual corrections 

real-virtual squared 
corrections 

• at N3LO …

Real radiation



➡ the number of interference diagrams increases 
by a factor of 100 from NNLO to N3LO 

➡ the number of integrals increases by 10.000!  

 

                   NNLO                          N3LO     

               ~ 50.000             ~ 500.000.000 

Real radiation



➡ the number of interference diagrams increases 
by a factor of 100 from NNLO to N3LO 

➡ the number of integrals increases by 10.000!  

 

                   NNLO                          N3LO     

               ~ 50.000             ~ 500.000.000 

How can we tackle  
this problem?

Real radiation



• As a first approximation, we can consider the 

production of the Higgs boson at threshold…
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• As a first approximation, we can consider the 

production of the Higgs boson at threshold…

Threshold expansion

σ̂
N

3
LO(z) = σ̂SV +

NtruncX

n=0

σ
(n)(1− z)n

• ... and then add subleading terms in the 

threshold expansion
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σ̂
N

3
LO(z) = σ̂SV +

NtruncX

n=0

σ
(n)(1− z)n

• ... and then add subleading terms in the 

threshold expansion

Anastasiou, Duhr, Dulat, EF, Gehrmann, Herzog, 
Mistlberger, PLB 737, 325 (2014); Li, von Manteuffel, 

Schabinger, Zhu, PRD 90, 053006 (2014)

(still, some 20-30.000 
integrals to compute)



• As a first approximation, we can consider the 

production of the Higgs boson at threshold…

Threshold expansion

σ̂
N

3
LO(z) = σ̂SV +

NtruncX

n=0

σ
(n)(1− z)n

• ... and then add subleading terms in the 

threshold expansion

Anastasiou, Duhr, Dulat, EF, Gehrmann, Herzog, 

Mistlberger, JHEP 1503, 091 (2015) (next-to-soft); 

PRL 114 (2015) 212001 (up to Ntrunc = 37)

Anastasiou, Duhr, Dulat, EF, Gehrmann, Herzog, 
Mistlberger, PLB 737, 325 (2014); Li, von Manteuffel, 

Schabinger, Zhu, PRD 90, 053006 (2014)

(still, some 20-30.000 
integrals to compute)



• They allow to handle the huge number of 
integrals to compute 

• They are relations among the integrals that we 
need to compute 

• Solving these equations, we can rewrite all the 
integrals as linear combinations of a small set of 
“master integrals”

Integration by part identities

Tkachov, PLB100, 65 (1981); Chetyrkin, Tkachov,  

NPB192, 159 (1981); Gehrmann, Remiddi, NPB 580 (2000) 485 



• The system of equation generated is huge itself, 
but it can be solved in an automated way 
implementing the Laporta algorithm 

➡ in house software 

➡ benefit: reduce to the calculation of ~50 soft 
master integrals!

Laporta, Int. J. Mod. Phys. A 15, 5087 (2000)  

Integration by part identities



Reverse unitarity

Anastasiou, Melnikov, NPB 646 (2002) 220;  

Anastasiou, Dixon, Melnikov, Petriello, PRL 91 (2003) 182002 

unitarity methods

reverse unitarity

Bern, Dixon, Kosower, NPB 513, 3 (1998)  

Britto, Cachazo, Feng, NPB 725, 275 (2005) 

Ossola, Papadopoulos, Pittau, NPB 763, 147 (2007) 
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(Intermediate) 
Results







To the juice…



• How good is the heavy-top approximation? 

‣ at LO

Finite mass effects  
(top quark)

σ(mq)− σinf

σinf

(%)

mq150 200 250 300 350 400 450

2

4

6

8

10



• the exact top-mass dependance is known 
through NLO 

• finite top-mass corrections have been computed 
at NNLO, confirming the accuracy of the 

effective theory at the per-mille level 

➡ include the N3LO cross section in the 

“rescaled” heavy-quark effective theory  

Graudenz et al., PRL 70, 1372 (1993);  

Spira et al., NP B 453, 17 (1995) 

Harlander and Ozeren, JHEP 0911,  

088 (2009); Pak et al., JHEP 1002,  

025 (2010)

Finite mass effects  
(top quark)



More in detail.. 

• at NLO, “improve” the EFT result by rescaling 

it with the exact LO cross section:

RLO =
σ
LO
exact

σLO

EFT

' 1.06

σ
NLO
EFT = 34.66 pb

σ
NLO
ex = 36.60 pb

σ
NLO
EFT,r = RLO × σ

NLO
EFT = 36.84 pb

0.65%

√

S 13TeV

mh 125GeV

PDF PDF4LHC15 nnlo 100

as(mZ) 0.118

mt(mt) 162.7 (MS)

mb(4.18GeV ) 4.18 (MS)

mc(3GeV ) 0.986 (MS)

µ = µR = µF 62.5 (= mh/2)

Finite mass effects  
(top quark)



‣ tiny effect ➜ confirms the validity of the 

rescaled EFT

• rescale NNLO and N3LO cross sections, 

computed  in the EFT, by  

• at NNLO, include known mH/mt corrections 

RLO

δ(1/mt) ∼ ±1%

gg ∼ +0.8%

qg ∼ −0.1%

Harlander, Ozeren; Pak, Rogal, Steinhauser; 
Mantler, Marzani

Harlander, Ozeren; Pak, Rogal, Steinhauser; 
Mantler, Marzani

which have also been computed 
factorizing the exact LO XS

‣ the error due to unknown top-mass effects at 

NNLO is estimated as 

Finite mass effects  
(top quark)



σ
NLO
EFT,r

σ
NLO

ex;t
σ
NLO

ex;t+b σ
NLO

ex;t+b+c

• The full dependance of the Higgs production 

cross section on the quark mass is known exactly 

through NLO 

‣ include it for top, bottom and charm quarks

Spira, Djouadi, Graudenz, Zerwas ; Harlander, Kant; 
Aglietti, Bonciani, Degrassi, Vicini.  

 0.65%  5.1%  5.6% on 

‣ estimate an error from unknown light-quark 

effects at NNLO of

Full NLO mass effects 
(top, bottom, charm quark)

±0.6%



• Known exactly at LO in as  

 

 

• At NLO, effects from light quarks are known in an 

effective theory (heavy t, W, Z) 

• Estimate the error from missing QCD/EW 

contributions by varying the Wilson coefficient of 

the QCD/EW effective theory

(O(ααs))

+5.2%

+5.1%

δ(EW ) ∼ ±1%

Electroweak corrections

g

g

W, Z

Aglietti, Bonciani, Degrassi, Vicini; 
Actis, Passarino, Sturm, Uccirati

on the LO cross section



• Various PDF fits are available at NNLO (ABM12, 

CT14, MMHT2014, NNPDF3.0, PDF4LHC15, 

HERAPDF2.0) 

• (How) does our cross section prediction change 

when using these different sets?

Convolution with PDFs



Convolution with PDFs

PDF4LHC15_nnlo_100

CT14nnlo

MMHT2014nnlo68cl

NNPDF30_nnlo_as_0118
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 all provided at the same value of     ,

 error bands: PDF + as uncertainty, 68% C.L.

αs αs(m
2

Z
) = 0.118



• The central values lie within 1% of each other 

(with MMHT2014 and NNPDF3.0 agreeing at the 

permille level) 

• The combined PDF + as uncertainty is      3-4%  

at LHC energies and captures well the small 

difference among the sets 

 

 

Convolution with PDFs



Convolution with PDFs

 also HERAPDF2.0 provided at 
 good agreement at LHC energies
 ~ 6% difference at 2 TeV

αs(m
2

Z
) = 0.118

HERA

PDF4LHC
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HERAPDF2.0
PDF4LHC



abm12lhc5nnlo

PDF4LHC

CT14nnloas0113

2 4 6 8 10 12 14

0.75

0.80

0.85

0.90

0.95

1.00

1.05

E(TeV)

σ/σ L
H
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P
D
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0    ±1.2%

 ABM uses a lower central value for     ,

 large discrepancies with PDF4LHC, not accounted for by

 the PDF + as uncertainty

   ➡ how much of this difference is due to as?

α
ABM

s (m2

Z) = 0.113

Convolution with PDFs

αs

abm12lhc5nnlo

PDF4LHC

CT14nnloas0113
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abm12lhc5nnlo
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CT14nnloas0113

 at as = 0.118, CT14 is in excellent agreement with PDF4LHC

 for as = 0.113, the cross section is 12-10% lower

 could be compatible with ABM12 within the PDF + as 

 uncertainty, which we cannot assess with the data provided



• Given the good agreement among the various 

sets that use as = 0.118 (consistent with the PDG 

world average), we will use the combined 

PDF4LHC fit for our final results 

• Caveat: we are computing the N3LO Higgs cross 

section using NNLO PDFs.  

Is it legitimate to do so? 

‣ look at what happens to the NNLO cross section 

using NNLO or NLO PDFs

Convolution with PDFs



• For the uncertainty from missing N3LO PDFs,  

we adopt a conservative estimate

δ(PDF−TH)=
1

2

∣

∣

∣

∣

∣

σ
(2),NNLO

EFT − σ
(2),NLO

EFT

σ
(2),NNLO

EFT

∣

∣

∣

∣

∣

= 1.16%

from comparison 
with other processes 
computed at N3LO

N3LO PDF uncertainty



• We already discussed the uncertainties due to 

missing finite-mass effects at NNLO ( d(1/mt), 

d(tbc) ), unknown electroweak corrections 

(d(EW)) and the lack of N3LO PDFs 

• What are the errors associated to missing 

higher order terms in the as  expansion and  

soft approximation? 

Uncertainties



Effects beyond N3LO

LO

NLO

NNLO

N3LO
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• At N3LO, one starts to observe a convergence of 

the as expansion 

‣ the cross section in the EFT increases by about 

3%, i.e., within the NNLO scale variation error 

‣ the scale variation error decreases 

‣ seems to indicate the validity of scale variation 

studies as estimates of missing higher order 

corrections

Effects beyond N3LO



• What is the error associated to the truncation of 

the expansion in            ?(1− z)

Soft approximation
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‣ the cross section increases by 3.7 per mille over 

the last ten terms in the expansion 

‣ assume (conservatively) that it will take 

another 100 terms to converge, and it will 

converge at the same speed 

δ(trunc) = 10×
σ
(3)
EFT

(37)− σ
(3)
EFT

(27)

σN3LO
EFT

= 0.37%

Soft approximation

(consistent with other estimates 

of the truncation error)
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Conclusions

• We computed the N3LO gluon-fusion production 

cross section in an EFT 

• Added all known effects beyond the EFT (finite 

top mass, light quarks, EW corrections) 

• Studied the dependance on the choice of PDFs 

• Provided an accurate estimate of the 

uncertainties, including errors from missing 

information and from approximations



Conclusions

• Room for improvement  

‣ going beyond the threshold expansion (full 

kinematics) 

‣ exact NNLO cross section/approximate NNLO 

results for light quarks/exact three-loop mixed 

QCD/EW corrections 




