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Cross Sections at the LHC

excellent agreement between theory and experiment over a wide range of observables
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Discrepancies with data?

No BSM discovered yet. . . but plenty of

BNLO
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Motivation for more accurate theoretical calculations

✓ Theory uncertainty has big impact on

quality of measurement

✘ NLO QCD is clearly insufficiently

precise for SM, top (and even Higgs)
measurements,
D. Froidevaux, HiggsTools School,

2015

➠ Revised wishlist of theoretical
predictions for

✚ Higgs processes

✚ Processes with vector bosons

✚ Processes with top or jets

Les Houches 2015,

arXiv:1605.04692
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Theoretical Uncertainties

- Missing Higher Order corrections (MHO)

- truncation of the perturbative series

- often estimated by scale variation - renormalisation/factorisation

✓ systematically improvable by inclusion of higher orders

✓ systematically improvable by resummation of large logs

- Uncertainties in input parameters

- parton distributions

- masses, e.g., mW , mh, [mt]

- couplings, e.g., αs(MZ)

✓ systematically improvable by better description of benchmark processes

- Uncertainties in parton/hadron transition

- fragmentation (parton shower)

✓ systematically improvable by matching/merging with higher orders

(✓ ) improvable by estimation of non-perturbative effects

- hadronisation (model)

- underlying event (tunes)

Goal: Reduce theory uncertainties by a factor of two compared to where we are now
in next decade

– p. 5



The strong coupling

World Average

Year αs(MZ)

2008 0.1176 ± 0.0009

2012 0.1184 ± 0.0007

2014 0.1185 ± 0.0006

2016 0.1181 ± 0.0011

✓ Average of wide variety of

measurements

✓ τ -decays

✓ e+e− annihilation

✓ Z resonance fits

✓ DIS

✓ Lattice

✓ Generally stable to choice of mea-
surements

✓ Impressive demonstration of running

of αs past O(1 TeV)

✓ . . . but some outlier values from
global PDF fits, e.g.,

αs(MZ) ∼ 0.1136± 0.0004 (G)JR

αs(MZ) ∼ 0.1147± 0.0008 ABM16

➠ Still need to understand uncertainty
and make more precise determination

1% on αs ➠ n% on process of O(αn
s )
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Parton Distribution Functions

All fits NNLO

Set DIS DY jets LHC errors

MMHT14 ✓ ✓ ✓ ✓ hessian

CT14 ✓ ✓ ✓ ✓ hessian

NNPDF3.0 ✓ ✓ ✓ ✓ Monte Carlo

HeraPDF2.0 ✓ ✘ ✘ ✘ hessian

ABM14 ✓ ✓ ✓ ✘ hessian

G(JR) ✓ ✓ ✓ ✘ hessian

✓ Clear reduction in gluon-gluon luminosity for MX ∼ 125 GeV

✓ . . . with commensurate reduction in uncertainty on Higgs cross section
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Parton Distribution Functions

but still differences of opinion
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Parton Distribution Functions
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and disagreements even for the best measured cross sections

sensitivity to inputs into the PDF fits

✓ strange content of proton

✓ mass of charm quark
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Partonic cross sections

σ̂ ∼ αn
s



σ̂LO +
(αs

2π

)

σ̂NLO
QCD +

(αs

2π

)2

σ̂NNLO
QCD +

(αs

2π

)3

σ̂N3LO
QCD + . . .

+
(αW

2π

)

σ̂NLO
EW +

(αW

2π

)(αs

2π

)

σ̂NNLO
QCDxEW . . .

NLO QCD

✓ NLO QCD is the current state of the art

NNLO QCD

✓ provides the first serious estimate of the theoretical uncertainty

✓ rapid development with many new results in past couple of years

NLO EW

✓ naively similar size to NNLO QCD

✓ particularly important at high energies/pT and near resonances

N3LO QCD

✓ recent landmark results for Higgs production
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Anatomy of a Higher Order calculation

e.g. pp to JJ at NNLO

✓ double real radiation matrix elements dσ̂RR
NNLO

✚ implicit poles from double unresolved emission

✓ single radiation one-loop matrix elements dσ̂RV
NNLO

✚ explicit infrared poles from loop integral

✚ implicit poles from soft/collinear emission

✓ two-loop matrix elements dσ̂V V
NNLO

✚ explicit infrared poles from loop integral

dσ̂NNLO ∼
∫

dΦm+2

dσ̂RR
NNLO +

∫

dΦm+1

dσ̂RV
NNLO +

∫

dΦm

dσ̂V V
NNLO
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Anatomy of a Higher Order calculation

e.g. pp to JJ at NNLO

✓ Double real and real-virtual contributions used in NLO calculation of X+1 jet

Can exploit NLO automation

. . . but needs to be evaluated in regions of phase space where extra jet is not

resolved

✚ Two loop amplitudes - very limited set known

. . . currently far from automation

✚ Method for cancelling explicit and implicit IR poles - overlapping divergences

. . . currently not automated
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IR cancellation at NNLO

✓ The aim is to recast the NNLO cross section in the form

dσ̂NNLO =

∫

dΦm+2

[

dσ̂RR
NNLO − dσ̂S

NNLO

]

+

∫

dΦm+1

[

dσ̂RV
NNLO − dσ̂T

NNLO

]

+

∫

dΦm

[

dσ̂V V
NNLO − dσ̂U

NNLO

]

where the terms in each of the square brackets is finite, well behaved in the

infrared singular regions and can be evaluated numerically.

✚ Much more complicated cancellations between the double-real, real-virtual and
double virtual contributions

✚ intricate overlapping divergences

– p. 13



NNLO - IR cancellation schemes

Unlike at NLO, we do not have a fully general NNLO IR cancellation scheme

✚ Antenna subtraction Gehrmann, Gehrmann-De Ridder, NG (05)

✚ Colourful subtraction Del Duca, Somogyi, Trocsanyi (05)

✚ qT subtraction Catani, Grazzini (07)

✚ STRIPPER (sector subtraction) Czakon (10); Boughezal et al (11)

Czakon, Heymes (14)

✚ N-jettiness subtraction Boughezal, Focke, Liu, Petriello (15)

Gaunt, Stahlhofen, Tackmann, Walsh (15)

✚ Projection to Born Cacciari, Dreyer, Karlberg, Salam, Zanderighi (15)

Each method has its advantages and disadvantages

Analytic FS colour IS colour Azimuthal Approach

Antenna ✓ ✓ ✓ ✘ Subtraction

Colourful ✓ ✓ ✘ ✓ Subtraction

qT ✓ ✘ (✓ ) ✓ — Slicing

STRIPPER ✘ ✓ ✓ ✓ Subtraction

N-jettiness ✓ ✓ ✓ — Slicing

P2B ✓ ✓ ✓ — Subtraction – p. 14



Slicing v Subtraction example

V =
F (0)

ǫ
, R =

∫ 1

0

dx
F (x)

x1+ǫ

Slicing

σ = V +R

=
F (0)

ǫ

+

∫ X

0

dx
F (0)

x1+ǫ
+

∫ 1

X

dx
F (x)

x

= F (0) ln(X) +

∫ 1

X

dx
F (x)

x

✓ Approximation made for x < X

✓ X should be small, but not so small
that numerical errors dominate

✓ qT and N-jettiness schemes related to

soft-collinear resummation

Subtraction

σ = V +R

=
F (0)

ǫ
+

∫ 1

0

dx
S(x)

x1+ǫ

+

∫ 1

0

dx

[

F (x)

x1+ǫ
− S(x))

x1+ǫ

]

= finite +

∫ 1

0

dx

[

F (x)− S(x)

x

]

✓ S(x) → F (0) as x → 0

✓ integral of S(x) must be computed

✓ antenna, STRIPPER, ColorFul, P2B
all subtraction schemes
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Two Loop Master Integrals - analytic

✓ Smirnov (99); Smirnov, Tausk (99)

➠ enables pp → γγ, γJ , JJ

✓ Gehrmann and Remiddi (00,01,02)

➠ enables pp → WJ , ZJ , HJ , Wγ, Zγ,

e+e− → JJJ , ep → JJ(+J)

✓ Gehrmann, Tancredi, Weihs (13);

Gehrmann, von Manteuffel, Tancredi, Weihs (14);

Caola, Henn, Melnikov, Smirnov (14);

Papadopoulos, Tommasini, Wever (14)

➠ enables pp → WW , ZZ, WZ, HH

✓ now intensive work towards two-loop five point integrals
– p. 16



Two Loop Master Integrals - analytic

✓ Basis functions for two-loop pentagon graphs with massless internal propagators

known - Goncharov Polylogs

G(an, an−1, . . . , a1, t) =

∫ t

0

dt

tn − an

G(an−1, . . . , a1, tn)

✓ Canonical (Henn) basis for evaluating integral as series in ǫ

∂x
~f = ǫÂx(x, y, z, . . .)~f

✓ Gehrmann, Henn, Lo Presti (15); Papadopoulos, Tomassini, Wever (15)

➠ enables pp → JJJ , γγJ , γγγ

✓ Papadopoulos, Tomassini, Wever (15)

➠ enables pp → V JJ , HJJ
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Two Loop Master Integrals - numeric

✓ Czakon (07); Bonciani, Ferroglia, Gehrmann, Studerus (09)

➠ enables pp → tt̄

✓

Borowka, Greiner, Heinrich, Jones, Kerner, Schlenk, Schubert, Zirke (16)

➠ enables pp → HH at NLO with massive top loop

✓ now intensive work including additional scales
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Two Loop Master Integrals - numeric

✓ Integrals with massive propagators much more complicate, new functions
Tancredi, Remiddi (16); Adams, Bogner, Weinzierl (15,16)

✓ e.g. Higgs plus Jet production via massive quark loop

✓ First results as one-fold (elliptic) integrals Bonciani et al (16)

✓ Light quark effects Melnikov et al (16)
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Inclusive N3LO

The current best perturbative calculations

✓ Inclusive Higgs cross section via gluon fusion

Anastasiou, Duhr, Dulat, Herzog, Mistlberger (15);

Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Lazopoulos, Mistlberger (16)

✓ Inclusive Higgs cross section via vector boson fusion

Dreyer, Karlberg (16)
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Inclusive N3LO Higgs via ggF

Anastasiou, Duhr, Dulat, Herzog, Mistlberger (15)

✓ Stabilisation of scale dependence around µ = mH/2 ∼ ±2.2%

✓ Convergence

– p. 21



Inclusive N3LO Higgs via ggF

Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Lazopoulos, Mistlberger (16)

✓ including all known contributions

✓ overall theory uncertainty estimated to be +5/− 7%

– p. 22



Inclusive N3LO Higgs via VBF

✓

✓ DIS approximation - uncertainty
permille level

✓ NNLO PDFs - uncertainty permille
level

✓ scale uncertainty ∼ 1.4o/oo

✓

Dreyer, Karlberg (16)
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Fully Differential NNLO

✓ pp → X

✚ MATRIX library using qT subtraction

✚ MCFM library using N-jettiness subtraction

✓ pp → X+J

✚ individual codes based on STRIPPER

Boughezal, Caola, Melnikov, Petriello (15); Caola, Melnikov, Schulze (15)

✚ NNLOJET library based on Antenna subtraction

✚ MCFM-based with N-jettiness subtraction

where X is a colourless final state

✓ pp → tt̄, JJ, HJJ

✚ individual codes based on STRIPPER

Czakon, Heymes, Mitov (15,16); Czakon, Fielder, Heymes, Mitov (16)

✚ NNLOJET library based on Antenna subtraction

✚ individual codes based on Projection to Born

Cacciari, Dreyer, Karlberg, Salam, Zanderighi (15)
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What to expect from NNLO (1)

✓ Reduced renormalisation scale dependence

✓ Better able to judge convergence of perturbation series

✓ Fiducial (parton level) cross sections. Fully differential, so that experimental cuts
can be applied directly

✓ Event has more partons in the final state so perturbation theory can start to
reconstruct the shower
➠ better matching of jet algorithm between theory and experiment

LO NLO NNLO
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What to expect from NNLO (2)

✓ All channels present at NNLO

LO NLO NNLO

gg gg, qg gg, qg, qq

qq̄ qq̄, qg qq̄, qg, gg

✓ Better description of transverse momentum of final state due to double radiation

off initial state

LO NLO NNLO

✓ At LO, final state has no transverse momentum

✓ Single hard radiation gives final state transverse momentum, even if no

additional jet

✓ Double radiation on one side, or single radiation of each incoming particle

gives more complicated transverse momentum to final state
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MATRIX - qT subtraction

M. Grazzini, S. Kallweit, D. Rathlev, M. Wiesemann, . . .
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MATRIX - qT subtraction

dσX
NNLO = HX

NNLO ⊗ dσX
LO +

[

dσX+J
NLO − dσCT

NLO

]

✓ the process dependent hard function HX
NNLO is known for arbitrary colourless

final state

✓ the counterterm dσCT
NLO is universal

✓ dσX+J
NLO is known

Implementing fully exclusive NNLO corrections including decays for (2 → 2)

✓ pp → H,W,Z

✓ pp → γγ

✓ pp → Wγ,Zγ 1505.01330,1601.06751

✓ pp → ZZ 1507.06257

✓ pp → WW 1601.06751

✓ pp → WZ 1604.08576

✓ pp → HH 1606.09519

✓ . . .
– p. 28



MATRIX - qT subtraction

✚ Fiducial WW cross section

✓ Impact of radiative corrections
strongly reduced by the jet veto

✓ Consequently NLO+gg provides good

approximation of the fiducial cross

sections (but not of the acceptance)

Grazzini, Kallweit, Pozzorini, Rathlev,

Wieseman (16)

✚ Inclusive WZ cross section

✓ NNLO corrections nicely improve the

agreement with the data (with the ex-

ception of CMS at 13 TeV where, how-

ever, the uncertainties are still large)

Grazzini, Kallweit, Rathlev, Wieseman (16)
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MCFM @NNLO

R. Boughezal, J.Campbell, K. Ellis, C. Focke, W. Giele, X. Liu, F. Petriello, C. Williams

1605.08011

Implementing NNLO corrections using N-jettiness technique including decays for

✓ pp → H,W,Z

✓ pp → HW,HZ 1601.00658

✓ pp → γγ 1603.02663

✓ pp → W + J 1504.02131,1602.05612,1602.06965

✓ pp → H + J 1505.03893

✓ pp → Z + J 1512.01291,1602.08140

✓ ep → J + (J) 1607.04921

✓ pp → γ + J 1612.04333

✓ . . .
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γ+ J production

Campbell, Ellis, Williams (16)

✓ Frixione isolation

✓ Significantly reduced scale

dependence

✓ Inclusion of EW effects improves
agreement with data
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NNLOJET

X. Chen, J. Cruz-Martinez, J. Currie, A. Gehrmann-De Ridder, T. Gehrmann,
NG, A. Huss, M. Jaquier, T. Morgan, J. Niehues, J. Pires

Implementing NNLO corrections using Antenna subtraction including decays for

✓ pp → H,W,Z

✓ pp → H + J 1408.5325, 1607.08817

✓ pp → Z + J 1507.02850, 1605.04295, 1610.01843

✓ pp → JJ 1301.7310, 1310.3993, 1611.01460

✓ ep → JJ + (J) 1606.03991

✓ . . .
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H + J production, large mass limit

Boughezal, Caola, Melnikov, Petriello, Schulze (13,15)

Chen, Gehrmann, NG, Jaquier (14,16)

Boughezal, Focke, Giele, Liu, Petriello (15)

Caola, Melnikov, Schulze (15)

✓ phenomenologically interesting

✓ large scale uncertainty

✓ large K-factor

σNLO/σLO ∼ 1.6

σNNLO/σNLO ∼ 1.3

✓ significantly reduced scale depen-

dence O(4%)

✓ Three independent computations:

✚ STRIPPER

✚ Antenna

✚ N-jettiness

✓ allows for benchmarking of methods

(for gg, qg and q̄g processes)

✚ σNNLO = 9.45+0.58
−0.82 fb

Caola, Melnikov, Schulze (15)

✚ σNNLO = 9.44+0.59
−0.85 fb

Chen, Gehrmann, NG, Jaquier (16)
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ATLAS H pT distribution

ATLAS setup arXiv:1407.4222
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ATLAS H pT distribution

Normalised by σNNLO
H
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ATLAS H pT distribution

Normalised by σLO
H at corresponding order - convergence
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Z + J production

Gehrmann-De Ridder, Gehrmann, NG, Huss, Morgan (15,16)

Boughezal, Campbell, Ellis, Focke, Giele, Liu, Petriello (15)

Boughezal, Liu, Petriello (16)

✓ clean leptonic signature

✓ good handle on jet energy scale

✓ significant NLO K-factor and scale

uncertainty

σNLO/σLO ∼ 1.4

✓ Two independent computations:

✓ allows for benchmarking of methods

✚ σNNLO = 135.6+0.0
−0.4 fb

Gehrmann-De Ridder,

Gehrmann, NG, Huss, Morgan (15)

✚ σNNLO = 135.6+0.0
−0.4 fb

Boughezal, Campbell, Ellis, Focke,

Giele, Liu, Petriello (15)
– p. 37



Jet pT and rapidity

Leading jet pT and rapidity distributions

√
s = 8 TeV, NNPDF2.3, pjetT > 30 GeV, |yjet| < 3, anti-kT , R = 0.5, 80 GeV < mℓℓ <

100 GeV, µF = µR = (0.5, 1, 2)mZ
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Inclusive pT spectrum of Z

pp → Z/γ∗ → ℓ+ℓ− +X

✚ large cross section

✚ clean leptonic signature

✚ fully inclusive wrt QCD radiation

✚ only reconstruct ℓ+, ℓ− so clean and
precise measurement
✚ potential to constrain gluon PDFs

– p. 39



Inclusive pT spectrum of Z

✚ low pZT ≤ 10 GeV, resummation required

✚ pZT ≥ 20 GeV, fixed order prediction
about 10% below data
✘ Very precise measurement of Z pT
poses problems to theory,

D. Froidevaux, HiggsTools School

FEWZ/DYNNLO are Z + 0 jet @ NNLO

✘ Only NLO accurate in this distribution

✓ Requiring recoil means Z + 1 jet @

NNLO required
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Inclusive pT spectrum of Z

dσ̂

dpZT

∣

∣

∣

∣

pZ
T
>20 GeV

≡ dσ̂ZJ
LO

dpZT
+

dσ̂ZJ
NLO

dpZT
+

dσ̂ZJ
NNLO

dpZT
(1)

✓ NLO corrections ∼ 40− 60%

✓ significant reduction of scale

uncertainties NLO → NNLO

✓ NNLO corrections relatively flat

∼ 4− 8%

✓ improved agreement, but not enough

✓ Note that for 66 GeV < mℓℓ <
116 GeV

σexp = 537.1± 0.45%± 2.8% pb

σNNLO = 507.9+2.4
−0.7 pb
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Normalised Z pT spectrum

1

σ
· dσ̂

dpZT

∣

∣

∣

∣

pZ
T
>20 GeV

with

σ =

∫

∞

0

dσ̂

dpZT
dpZT ≡ σZ

LO+σZ
NLO+σZ

NNLO.

✓ Much improved agreement

✓ luminosity uncertainty cancels

✓ dependence on EW parameters
reduced

✓ dependence on PDFs reduced
➠ study
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Normalised φ∗

η spectrum

φ∗

η ≡ tan

(

φacop

2

)

· sin(θ∗η)

φacop = 2arctan

(
√

1 + cos∆φ

1− cos∆φ

)

cos(θ∗η) = tanh

(

ηℓ− − ηℓ+

2

)

✓ In the small φ∗
η region,

φ∗

η ∼ 2pℓT
mℓℓ

✓ NNLO is significant improvement over

NLO
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Single Jet Inclusive Distribution

Currie, NG, Pires (16)

✓ Classic jet observable

✓ Every jet in the event enters in the
distribution

✓ Expect sensitivity to PDFs

– p. 44



Scale Choice

✓ no fixed hard scale for jet production

✓ two widely used scale choices

➠ leading jet pT (pT1)

➠ individual jet pT (pT )

✓ different scale changes PDF and αs

✓ no difference for back-to-back jet con-

figurations (only arises at higher or-

ders)
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Scale Choice

At NLO, pT 6= pT1 for

✓ 3-jet rate (small effect)

✓ 2-jet rate (3rd parton falls outside jet)

Changing R has an effect on the cross sec-

tion, but also on the scale choice:

✓ introduces spurious R-dependence in
scale choice

✓ pT1 scale has no R-dependence at

NLO, unlike pT

✓ at NNLO even pT1 scale choice has

R- dependence in some four-parton

configurations
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Single Jet Inclusive Distribution

µR = µF = pT1 µR = µF = pT

✘ Quite different behaviour!
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Single Jet Inclusive Distribution

µR = µF = pT1 µR = µF = pT

✘ Quite different behaviour!
➠ scale uncertainty much smaller than difference between scale choices ➠ explore
alternative scale choices
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Maximising the impact of NNLO calculations

Triple differential form for a 2 → 2 cross section

d3σ

dETdη1dη2
=

1

8π

∑

ij

x1fi(x1, µF ) x2fj(x2, µF )
α2
s(µR)

E3
T

|Mij(η
∗)|2

cosh4 η∗

✓ Direct link between observables ET ,

η1, η2 and momentum

fractions/parton luminosities

x1 =
ET
√
s
(exp(η1) + exp(η2)) ,

x2 =
ET
√
s
(exp(−η1) + exp(−η2))

✓ and matrix elements that only

depend on

η∗ =
1

2
(η1 − η2)

x1

ET2
η 2

η1ΕΤ1

x2
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Triple differential distribution

✓ Range of x1 and x2 fixed allowed LO

phase space for jets

ET ∼ 200 GeV at
√
s = 7 TeV

-5 -4 -3 -2 -1 0 1 2 3 4 5

η1

-5

-4

-3

-2

-1

0

1

2

3

4

5

η 2

 

 
 

 

 

 ✓ Shape of distribution can be

understood by looking at parton

luminosities and matrix elements (in

for example the single effective

subprocess approximation)

Giele, NG, Kosower, hep-ph/9412338
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Phase space considerations

✓ Phase space boundary fixed when

one or more parton fractions → 1.

I η1 > 0 and η2 > 0 OR η1 < 0 and
η2 < 0
➠ one x1 or x2 is less than xT

- small x

II η1 > 0 and η2 < 0 OR η1 < 0 and
η2 > 0
➠ both x1 and x2 are bigger than xT

- large x

III growth of phase space at NLO

(if ET1 > ET2)

[

x2
T < x1x2 < 1 and xT = 2ET /

√
s

]

-5 -4 -3 -2 -1 0 1 2 3 4 5

η1

-5

-4

-3

-2

-1

0

1

2
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4

5

η 2

I

I
II

II

III

III
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Measuring PDF’s at the LHC?

Should be goal of LHC to be as self sufficient as possible!

Study triple differential distribution for as many 2 → 2 processes as possible!

✓ Medium and large x gluon and quarks

✓ pp → di-jets dominated by gg scattering

✓ pp → γ + jet dominated by qg scattering

✓ pp → γγ dominated by qq̄ scattering

✓ Light flavours and flavour separation at medium and small x

✓ Low mass Drell-Yan

✓ W lepton asymmetry

✓ pp → Z+jet

✓ Strangeness and heavy flavours

✓ pp → W± + c probes s, s̄ distributions

✓ pp → Z + c probes c distribution

✓ pp → Z + b probes b distribution

– p. 52



Measurements of strong coupling

✓ With incredible jet energy resolution, the LHC can do better!!

✓ by simultaneously fitting the parton density functions and strong coupling

✓ If the systematic errors can be understood, the way to do this is via the triple

differential cross section

Giele, NG, Yu, hep-ph/9506442

✓ and add NNLO W±+jet, Z+jet, γ+jet calculations (with flavour tagging) as they

become available

D0 preliminary, 1994
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Accuracy and Precision (A. David)
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Accuracy and Precision (A. David)
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Accuracy and Precision (A. David)
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Accuracy and Precision (A. David)
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Accuracy and Precision (A. David)
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Estimating uncertainties of MHO

✓ Consider a generic observable O (e.g. σH )

O(Q) ∼ Ok(Q,µ) + ∆k(Q,µ)

where

Ok(Q,µ) ≡
k
∑

n=0

cn(Q,µ)αs(µ)
n, ∆k(Q,µ) ≡

···
∑

n=k+1

cn(Q,µ)αs(µ)
n

✓ Usual procedure is to use scale variations to estimate ∆k,

∆k(Q,µ) ∼ max
[

Ok

(

Q,
µ

r

)

,Ok(Q, rµ)
]

∼ αs(µ)
k+1

where µ is chosen to be a typical scale of the problem and typically r = 2.

Choice of µ and r = 2 is convention
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Convergence

Anastasiou, Duhr, Dulat, Furlan, Gehrmann, Herzog, Lazopoulos, Mistlberger (16)

✓ Convergence (or not) depends on choice of µ and r

✓ and whether inputs (PDF, αs) are matched to order

✓ reduced scale dependence

➠ more precise . . . but is it more accurate?

✚ need better way of estimating effect of MHO – p. 60



Summary - Where are we now?

✓ First high precision N3LO calculations available

could help reduce Missing Higher Order uncertainty by a factor of two

✓ Substantial and rapid progress in NNLO

✚ many new calculations available

➠ improved descriptions of experimental data

— codes typically require significant CPU resource

✓ NNLO is emerging as standard for benchmark processes such as V+jet

production and could lead to improved pdfs etc.

could help reduce theory uncertainty due to inputs by a factor of two

✓ NNLO automation?

- as we gain analytical and numerical experience with NNLO calculations, can

we further exploit the developments at NLO

- automation of two-loop contributions?

- automation of infrared subtraction terms?

✓ Is there a better way of estimating the theoretical uncertainties?

– p. 61
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