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The winners

David J. Thouless F. Duncan M. Haldane J. Michael Kosterlitz
1934 - Scotland (1951 — London) 1943 — Aberdeen (UK)
Whashington Univ. Princeton Univ. Brown Univ.

1/2 Prize 1/4 Prize 1/4 Prize



"for theoretical discoveries
of
topological phase transitions
and
topological phases of matter"

First time the term “topological” appears in a Nobel prize in Physics
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Cartoon of a Topological Phase Diagram

Nathan Goldman



A historical note

On Vortex Atoms

By Lord Kelvin (Sir William Thomson)
Proceedings of the Royal Society of Edinburgh, Vol. VI, 1867, pp. 94-105.

/

1824- 1907

After noticing Helmholtz’s admirable discovery of the law of vortex motion in a
perfect liquid- that is, in a fluids perfectly destitute of viscosity (or fluid friction)-

-the author said that this discovery inevitable suggests the idea that Helmholtz’s
rings are the only true atoms.
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Order Parameter = average of a Local Observable <0(;,)>
Ordered phase <O(;")> =0  Low Temperature T<T

Disordered phase <O(;f)> =0 High Temperature T>T

Example: magnetization/spin ]{4(;5) = 2<:S‘l>
J — ~ | N\ _ Ferromagnetic order ~
NS SN SIS S S
\ — [/ = \“Fhasetransition Y S S S
~t - 77 SIS S
N\N) s~ SS S S S

Magnetization = 0 Magnetization = M



Phase transitions

M or! V|
OP .  Dhoace
2nd Order Phase L6t Order Phase
.. Transition
Transition
.
I
: Lev Landau
T, T Te T Nobel 1962

Spontaneous Symmetry Breaking

T>T ¢




V+ V| Prize

“O day and night, but this is wondrous strange"
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Phase transitions in 2 dimensions

Peierls argued in 1935 that thermal motions
of long wave phonons distroy long range order in 2D:

, [ Rudolf Peierls
2 -
<(’”i ~T) > o« log L 1907-1995

Mermin-Wagner theorem (1966):

A continuous symmetry cannot be
broken spontaneously at finite T
in dimensions

d<?2

David Mermin Herbert Wagner

Reason: Goldstone bosons produced infrared divergences in correlations

A discrete symmetry can be broken spontaneously. Example: the Ising model §, <> — §;



Ordering, metastability and phase transitions in
two-dimensional systems

J M Kosterlitz and D J Thouless
Department of Mathematical Physics, University of Birmingham, Birmingham BI152TT. UK

Received 13 November 1972

Abstract, A new definition of order called topological order is proposed for two-dimensional
svstems in which no fong-range order of the conventional type exists, The possibility of a
phase transition characterized by a change 1n the response of the system to an external
perturbation is discussed in the context of a mean ficld type of approximation. The critical
behaviovr found in this model displays very weak singularities. The application of these
ideas t0 the xy model of magnetism, the sohid-liquid transition. and the ncutral superfluid
arc discusscd. This tvpe of phase transition cannot occur in a superconductor nor in a
Heisenberg ferromagnet. for reasons that are given,

J. Phys. C: Solid State Phys., Vol. 6, 1973, Printed in Great Britain. © 1973
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An elegant thermodynamic argument

Classical spin in 2D S. =(cosf.,sinfb.)
i 17 l

e r-r Jp rr
Hamiltonian of XY model H. = _JES,- S = _]2005(9, -0 ) ~ —fd r(Vo)
XY I J I J 2
(i.j) (i.j)
Wt NN Energy / Entropy
17772 ZTIRNNY E, =mJlog(R/a)
A vortex configuration R Y @ a
A\l S, = kylog(R*/a’)
Free Energy F=E -TS =(J-2k,T) log(R/a)
Low temperatures -> energy dominates-> F >0 no free vortex
Hight temperatures -> entropy dominates -> F' < () free vortex
Criti J
ritical temperature F=0—-T7T=—"

2k,



At T<TC

Tightly bound pairs @ %

of vortex/antivortex

@(@%

At T=T the pairs break and the vortices and antivortices become free

Tight pair of vortices A J

LOWER TEMPERATURE <——— TOPOLOGICAL PHASE TRANSITION ——— HIGHER TEMPERATURE



Experimental confirmations

4
Nelson and Kosterlitz (1977) : universal relation for films of superfluid He

p(T) 2m’k,
s

Bishop and Reppy (1978) : experimental confirmation
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4 THIS WORK, T=CONST.
7F  * THIS WORK, Tc*CONST. (USING AHNS)

el THIRD SOUND:
— o HALLOCK
o & MOCHEL '
55 = o RUDNICK A & o “
g . O

44+ o —
o s
o o ]
x 3} i
o SN
702 i é KOSTERLITZ-THOULESS -
Q\ 9 o STATIC THEORY

—

0 2 4 6 8 10 12 14 16 18 20 22
Te (K)




Vadim L'vovich Berezinskii, 1935 (Kiev), 1980 (Moscow)

SOVIET PHYSICS JETP VOLUME 32, NUMBER 3 MARCH, 1971

DESTRUCTION OF LONG-RANGE ORDER IN ONE-DIMENSIONAL AND TWO-DIMENSIONAL
SYSTEMS HAVING A CONTINUOUS SYMMETRY GROUP I. CLASSICAL SYSTEMS

V. L. BEREZINSKII
Submitted March 31, 1970
Zh. Eksp. Teor. Fiz. 59, 907-920 (September, 1570)

The low-temperature state of two-dimensional classical systems, which in the three-dimensional
case have an ordered phase with a spontaneous violation of a continuous symmetry (magnetic sub-
stances, crystals), is considered. It 1s shown that for arbitrary dimension the long-range correla-
tions are determined by an expression for the energy of the long wavelength fluctuations, which is
quadratic with respect to the gradients. The distinctive feature of the one- and two-dimensional
cases is that the fluctuation deflections grow with distance and at sufficiently large distances may
reach a finite value, which leads to the necessity to take account of the effects assoclated with these.
Thus, for a lattice of plane classical spins (Sec, 1) the contribution from configurations, where the
spin vector on a path between sufficiently distant points Is turned through an angle containing several
complete revolutions, becomes essential,

KT transition -> BKT transition



40 YEARS OF
BEREZINSKII-KOSTERLITZ-

THOULESS THEORY

Published in 2013
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Electron gas in a plane subject to a perpendicular magnetic field

Appears of a voltage Vy perpendicular to the applied current Ix
)i Edwin H. Hall
Hall conductance  O,, =~ 1855-1938

Hall element

Hall effect



At low temperatures (< 2 K) and high magnetic fields ( ~ 10T)

2
e
o.=n—, n=12K
Xy h
Klaus von Klintzing
Nobel Physics 1985
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Precision (5RH /RH = 0(10_9)

Independent of the sample, material, geometry, impurities

Universal property but also Topological ?

h
— =25812.807557(18)Q

e

Von Klitzing constant R, =

Standard of resistance (SI)

2
e
Related to the fine structure constant o = h—c ~1/137
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O OO0 00O

cyclotron orbits

G OO0 O0O0

X Y Y Y Y Y Y Y Y VY Y Y V¥

Quantization of cyclotron orbits ——3 Landau Levels

E =ho (n+1/2), n=01K o =—

2
e

Filling the n lowest Landau levels gives O,=n—, n= 1,2K



Z

CA A A XA LA A AL LA A A A T AA No transport of charge

O O O O O O in the bulk:

cyclotron orbits

OO O0OO0O0O0

X Y Y Y Y Y Y Y Y VY Y VY V¥

Bulk Insulator

Transport of charge at the
edge:

Edge metal

Recognize the existence of edge modes
Based on gauge invariance to explain the exactness of
the quantized Hall conductance

Pumping electrons
with flux

R. Laughlin 1981



Vorums 49, Numser 6 PHYSICAL REVIEW LETTERS 9 Augusr 1982

Quantized Hall Conductanc_e in a Two-Dimensional Periodic Potential

D. J. Thouless, M. Kohmoto,'*’ M, P, Nightingale, and M. den Nijs

De paritmeni of Physics, Universély of Washington, Seattle, Washington 98195
(Received 30 April 1982)

The Hall conductance of a two-dimensional electron gas has been studied in a uniform
magnetic field and a periodic substrate potential 7. The Kubo formula is written in a
form that makes apparent the quantization when the Fermi energy lies in a gap. Explicit
expressions have been obtained for the Hall conductance for both large and small U/ /hw,.

2
e

Oy = TZZ, n=12K n is topological number



Topological meaning of Hall conductance

Wave functions of the Landau levels [yr (}")
k.n

k : crystal momentum Nn: Landau level
82 ) r
Kubo formula O, = > h E rfd k B(k,n)
n kEBZ
I
Berry potential Aj(k,i’l) =<Ml:n ‘07kj M]£n>

Berry curvature B(llc,n) = é’kx Ay(llC,n) — ﬁky Ax(llc,n)

Lo ol
- J &k Blkm) =C(n) €2

keBZ

Chern number

2
e

Filled Landaulevels  C(n) =1 — 0, =—n




Gauss- Bonet formula Chern formula

1 ! i
S R=x=201-9) — [ d* B(k.n) = C,(n)
T Ty

: /4 T 27 (S T

Curvature of surface Number of holes Berry curvature




Meaning of Chern number

In the bulk  The Block wave function in k-space has vortices

C1 is the total vorticity

At the edge C1 is the number of chiral edges modes (or antichiral)

A
Quantum Hall state
>4 o4 - Conduction band
() HED) IS aeml B
& & e (4
e > i B g I p Atates
iy, &1 68
‘-l it -t Valence band
N N NN N NN, .

Momentum



Prize




r1r
S,=-0,—
2
J ~rF r H. Bethe
= — 0,0, 1906 - 2005
n=1
Bethe exact solution H|1/J> =L |1/}>




Vorums 50, NUMBER 15 PHYSICAL REVIEW LETTERS 11 ApriL 1983

Nonlinear Field Theory of Large-Spin Heisenberg Antiferromagnets: Semiclassically
Quantized Solitons of the One-Dimensional Easy-Axis Néel State

F. D. M. Haldane
Deparviment of Physics, Universily of Southeyn California, Los Angeles, Califovnia 90089
(Received 31 January 1083)

The continuum field theory describing the low-energy dynamics of the large-spin one-
dimensional Heisenberg antiferromagnet is found tc be the O(3) nonlinear sigma model.
When weak easy-axis anisotropy is present, soliton solutions of the equations of motion

arc obtained and semiclassically quantized. Integer and half-integer spin systems are
distinguished.

Haldane Conjecture: there is a gap in the spectrum if the spin is integer

S spin S=1,2,... H = JE Sn Sn+1, J >0

n

A=min(E, )-E . >0

o
Finite correlation length S <SO Sn> oC (_1)11 e—n/g’ n>>1



Map : Low energy of the spin chain to the Non Linear Sigma Model (NLSM)

qlo(x,t) -

"

In the classical limit  §' >~ ] Haldane obtained the effective action

1 1 r\2 r\2 2
= — dd —\(0 - 0 = >
gffXL(tfP) V(xfp)] g=5—0

NLSM : toy model of QCD : asymptotic freedom (Polyakov 1975)

uv IR
RG flow: O - g(l ) > 00

dynamical generation of mass

=2/ - ‘
mass x Ae™?"'¢ — gap xe™™° Polyakov



Topology in the NLSM :

Contribute to the S =iﬁfﬁ§0(0’)ﬂ0x 0';2@) X =it =x

Euclidean action

‘xr, r r
Winding number Q= fﬂm(ﬁl px o, QD) rinteger (Q =1)
4
Haldane map 0=2xS

Vo o Sysu =S vV _ _ :
Partition function / = ngp e ~NSEM o Fiop =fD‘;0 e Snstm —2m S Qi

el =1 (§=12K), 7% =(=1D? (§=1/2,3/2K)



PHYSICAL REVIEW B VOLUME 48, NUMBER 6 1 AUGUST 1993-11

Numerical renormalization-group study of low-lying eigenstates of the
antiferromagnetic § = 1 Heisenberg chain

Steven R. White
Department of Physics, University of California, Irvine, California 92717

David A. Huse
ATET Bell Labs, Murray Hill, New Jersey 07974

Using the Density Matrix Renormalization Group (DMRG)

mBees
contnralum

A =0.41050(2),
s =6.03() e

uf’l inuum
|
w

Single Magnon —

Ground State

Momentum



c-axis

PHYSICAL REVIEW B 66, 024407 (2002)

Properties of Haldane excitations and multiparticle states in the antiferromagnetic spin-1 chain
compound CsNiCl,

M. Kenzelmann,! R. A. Cowley,! W. J. L. Buyers.”® Z. Tun” R. Coldea,*? and M. Enderle®’

Energy (meV)

CsNiCl,

T=6.2K
E~30meV

5

0.75

1.00
Q, (r.l.u)

125

1.50

1.7



Spin ladders : n coupled spin % chains

O=man

n:even —>gapped

n:odd — gapless



VOLUME 59, NUMBER 7 PHYSICAL REVIEW LETTERS 17 AUGUST 1987

Rigorous Results on Valence-Bond Ground States in Antiferromagnets

lan Affleck,”’ Tom Kennedy, Elliott H. Lieb, and Hal Tasaki
rr 1
H E S Sl+1 + g( i l+1)

Exact ground state

— O O O © O ©

A A
L |

L |

11
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1
1

u

— o - %(‘ 1\\|/> _H ,|\>) virtual spins 1/2



/ There is a Haldane gap
V(558,)=4-1 3", Vn

Ground state degeneracy = 4



Tonological matter

Prototype in 2D : Quantum Hall and in 1D : Haldane chain

/ Unbroken symmetries (failure of Landau paradigm)

/ Gap of the bulk excitations

/ Edge modes: gapless in 2D and localized in 1D

/ Degenerate ground states that are indistinguishable locally

God created the bulk, surfaces where invented by the devil

W. Pauli



New Topological Matter



Majorana wires (Kitaev 2000)

N-1
1D superconductor H = . l‘CjCj+1+ACjCj+1+h.C.
Jj=
Kinetic energy Pairing interaction
Choosing [ = ‘A‘ C.= L +1
= ST R Voj1¥Y2;

H =it()/2 Vs +V4Vs + K + Yon-2 VzN—l)

e O @

Y172 Y3 V4 Yon-3 Yon-2 Yon-1 Vown

)’1 ’ )/2 N Majorana edge modes 1D Topological superconductor



Topological Superconductors

Kitaev wire (2000)

(a) 1D T-SC

Trivial SC Non trivial SC

Majorana modes
at the edges

p, t ipy symmetry

(d 2DT-SC Read, Green

, \ (2000)
>
(e)
-
0 E
/, r_E= E
|
0 k

Majorana modes
around the vortices



Tonological Insulators

Insulating state
Co (o,

» (o

——
<

— . —

- (\_.‘) e
— — ——
R

(@ (@ (0.,

Quantum Hall state

Q Q Qe
B

GGG
(0000”0 £ 00 R 4. A

Energy

Conduction band

I Gap

Valence band

v

Energy

Momentum

Conduction band

I Gap Atates

Valence band

A4

Quantum spin Hall state
vSo n “down”
/ TSpm “up”

-«

v

Energy

Momentum

Conduction band

I Gap T

Valence band

v

Momentum

Trivial insulator

Haldane (1988):

B=0 but T broken

Kane and Mele (2005)
topological insulator
T is preserved



Periodic Table Topological Insulators and Superconductors

® =time reversal = = particle-hole I[1 = Z® =chiral symmetry

d = dimension of space

AZ (0] = I 1 2 3 4 5 6 7 8
A 0 0 0 0 o [zl o 7 0 z
Alll 0 0 I A 0 2 0 2 0 2 0
Al I 0 0 0 0 0 2 0 Z Z A
BDI 1 1 1 Z 0 0 0 2 0 2 %
D 0 l 0[] 0 0 0 z 0 2,
DIII -1 l 1 Z, Z 2 0 0 0 Z 0
All -1 0 0 0 2 0 0

CIl -1 -1 I 2 0 7 7 Z 0 0 0
C 0 -1 0 0 A 0 Z) Z 2 0 0
Cl 1 -1 1 0 0 Z 0 Z 2y 0

= Quantum Hall D = Topological insulators D = Topological superconductors

= Superfluid g, B



Topological phases/ Topological matter

Thouless et al (1982), Wen (1995), Kitaev (2000),...

- No symmetry breaking (kandauparadigm)

- Stability under changes of materials, perturbations, etc

- Fractionalization of quantum numbers and/or exotic excitations
- Dependence on the topology in real space or momentum space
- Degeneracy of ground states that are locally indistinguishable

- Bulk/edge correspondence

- Symmetry protected phases

- Physical properties quantified by topological invariants in Maths

- Applications: Spintronics and Quantum Computation
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