

Nalce Dark Matter Experiments

Karoline Schäffner Gran Sasso Science Institute / Italy

IFT - Madrid - 16. October 2017

S GRAN SASSO SCIENCE INSTITUTE SCHOOL OF ADVANCED STUDIES Scuola Universitaria Superiore

G

S

COSINUS

Istituto Nazionale di Fisica Nucleare

WHAT WE **KNOW** about

NON-BARYONIC

- height of acoustic peaks in the CMB
- power spectrum of density fluctuations
- primordial Nucleosynthesis

COLD (non-relativistic)

• structure formation of the Universe

STABLE

• still observable today

INTERACTION via GRAVITY and probably on the weak scale

DIRECT DARK MATTER INTERACTION

Assumption

Particle-like dark matter which interacts with Standard Model particles

Most common

Dark matter particles scatters off the nucleus and induce nuclear recoils

DARK MATTER RATE

 $R = \frac{M_{target}}{m_N} \cdot \frac{\rho_{\chi}}{m_{\chi}} \cdot \frac{\upsilon \cdot \sigma(\upsilon)}{\upsilon \cdot \sigma(\upsilon)}$

Total rate

DARK MATTER RATE

Total rate:

$$R = \frac{M_{target}}{m_N} \cdot \frac{\rho_{\chi}}{m_{\chi}} \cdot \upsilon \cdot \sigma(\upsilon)$$

16.10.17

SPECIFIC SIGNATURE

rate and shape of recoil spectrum depend on target material

MODULATION

rate and shape of recoil spectrum depend on target material

AND

motion of the Earth causes relative modulation of velocity

ightarrow annual variation in the rate

Period: 1 year Phase: cosine peaking June 2nd

MODULATION

rate and shape of recoil spectrum depend on target material

AND

motion of the Earth causes relative modulation of velocity

ightarrow annual variation in the rate

modulation signal detection a smoking gun evidence ?!?

EXPERIMENTAL CHALLENGE

DARK MATTER SIGNAL

- energy deposits few keV tens of keV
- few events per ton per year
- modulation detection

EXPERIMENTAL CHALLENGE

DARK MATTER SIGNAL

- energy deposits few keV tens of keV
- few events per ton per year
- modulation detection

BACKGROUND

- depends on experimental setup
- is typically millions of times higher than signal
- is constant in time (or at least not modulating as DM)

WORLDWIDE EFFORT

DIRECT DETECTION CHANNELS

SINGLE CHANNEL DETECTION

Single-phase liquid nobles: DEAP, MiniCLEAN, XMASS

•

•

KIMS, DM-Ice

DUAL CHANNEL DETECTION

SAME SAME, BUT DIFFERENT

SAME SAME, BUT DIFFERENT

COUNTING EXPERIMENT

16.10.17

comparison of result requires model assumption

IFT seminar - K. Schäffner

SAME SAME, BUT DIFFERENT

DAMA/LIBRA experiment

MATERIAL	250 kg Nal(TI)
SIGNAL(s)	Light (PMTs)
LOCATION	LNGS/Italy
β/γ-DISCRIMINATION	no
ENERGY THRESHOLD	2keVee
DATA TAKING	since 1996
EVIDENCE	yes

IFT seminar - K. SchäffneghristianImages123.com

DAMA/LIBRA: TIME DISTRIBUTION

Time (day)

Total exposure: Statistical significance: Annual cycles

1.33 ton years >9.3 σ > 13

DAMA/LIBRA: ENERGY SPECTRUM

R. Bernabei et al., EPJ C 56 (2008) 333–355. Plot from: Bernabei et al. EPJ (2013) 73:2648

DAMA/LIBRA: ENERGY CROSS-CHECK

Plot from: Bernabei et al. EPJ (2013) 73:2648

DAMA/LIBRA: SINGLE vs. MULTI HIT EVENT

Plot from: Bernabei et al. EPJ (2013) 73:2648

Single hit = incl. DM

THE SMOKING GUN EVIDENCE?

Statistics: $> 9\sigma$ \checkmark

Period: 0.998 ± 0.002 years

Phase: 24th May +/- 7 days (cosine peaking June 2nd)

Convincing non-DM explanation X

DARK MATTER LANDSCAPE

WHAT ARE THE UNKNOWNS?

Astro physics

dark matter halo velocity distribution

Particle physics

interaction mechanism

We have a dependence on the target material

 \rightarrow cross-check DAMA/LIBRA signal with a Nal-based detector

Nal EXPERIMENTS

DAMA/LIBRA

DM-Ice KIMS-Nal COSINE ANAIS-112 SABRE PICO-LON

- large mass
- low background
- **no** β/γ -discrimination

Nal EXPERIMENTS

DAMA/LIBRA DM-Ice KIMS-Nal COSINE ANAIS-112 SABRE PICO-LON

- large mass
- low background
- **no** β/γ -discrimination

COSINUS

- β/γ -discrimination
- lower threshold, in particular for nuclear recoils

ANAIS-112 experiment

16.10.17

IFT seminar - K Schäffneghristiantmages123

ANAIS-112: LIGHT COLLECTION

M.A. Oliván et al, Astropart. Phys. 93 (2017) 86

M. Martinez, IBS-MultiDark-IPPP Workshop, 11/2016

high light collection in all modules ~ 15 p.e./keV

 \rightarrow good energy resolution

 \rightarrow low threshold: <1keVee

ANAIS-112: ENERGY THRESHOLD

C. Cuesta et al., EPJ C 74 (2014) 3150

Triggering below 1 keVee:

bulk ²²Na and ⁴⁰K events identified by coincidences with high energy gammas

S. Cebrián, TAUP2017, Sudbury, 25th July 2017

ANAIS-112: BACKGROUND

J. Amaré et al, Eur. Phys. J. C 76 (2016) 429; JCAP 02 (2015) 046

⁴⁰K and ²²Na peaks and ²¹⁰Pb (bulk+surface) are the most significant contributions in the very low energy region

S. Cebrián, TAUP2017, Sudbury, 25th July 2017

Summary of crystal activity (from ~30.1 days in ANAIS-112)

Detector	⁴⁰ K (mBq/kg)	²¹⁰ Pb (mBq/kg)
DO	1.1	3.15
D1	1.4	3.15
D2	0.9	0.70
D3	0.7	1.8
D4	1.0	1.8
D5	1.0	0.75
D6	1.1	0.76
D7	1.0	0.75
D8	0.6	0.72
average	1.0	1.5

DAMA/LIBRA: ~20 ppb K = 0.6 mBq/kg 40 K

ANAIS-112: PROJECTED SENSITIVITY

I. Coarasa et al, arXiv:1704.06861v1

DM-Ice experiment

MATERIAL	17 kg Nal(TI)	
SIGNAL(s)	Light (PMTs)	
LOCATION	south pole	
β/γ-DISCRIMINATION	no	
ENERGY THRESHOLD	4 keVee	Contro boards
DATA TAKING	since 2011	Photomulti, tube (PMT) Nal crysta
EVIDENCE	no	Pressu vessel

IFT seminar - K. Schäffnerhristianimages123.com

DM-Ice experiment

17 kg Nal(Tl) Light (PMTs) south pole

 β/γ -DISCRIMINATION

ENERGY THRESHOLD

DATA TAKING

EVIDENCE

16.10.17

MATERIAL

SIGNAL(s)

LOCATION

4 keVee

no

no

since 2011

Nal crystal

keep DM modulation, but reverse seasonal effects

BACKGROUND

DM-Ice is first search in the southern hemisphere

> мв lum ide crystal h TI iurities

DM-Ice: BACKGROUND

E. Barbosa de Souza *et al.* (DM-Ice Collaboration) Phys. Rev. D 95, 032006

- 3.6 years of data taking
- total exposure of 60.8 kg yr
- energy range of 4–20 keVee
E. Barbosa de Souza *et al.* (DM-Ice Collaboration) Phys. Rev. D 95, 032006

- horizontal error bars represent the halfmonth bin width
- vertical error bars represent ±1σ error due to statistical and uptime uncertainties

E. Barbosa de Souza *et al.* (DM-Ice Collaboration) Phys. Rev. D 95, 032006

DM-Ice: **SENSITIVITY**

E. Barbosa de Souza *et al.* (DM-Ice Collaboration) Phys. Rev. D 95, 032006

dashed black line:

future Nal(TI)-based search

- 2 counts/ (day keV kg)
- 500 kg year
- 2 keVee analysis threshold

COSINE-100: Coll. of DM-Ice+KIMS Nal BACKGROUND MATERIAL 106 kg Nal(TI) SIGNAL(s) Light (PMTs) LOCATION Yang Yang Lab. β/γ -DISCRIMINATION no **ENERGY THRESHOLD** ~2 keVee **DATA TAKING** since Sept. 2016 **EVIDENCE** no

COSINE-100: NEW features

COSINE-100: BACKGROUND

2 to 4 counts/ (keV kg day) in the ROI ²¹⁰Pb: internal and external is an issue

work on radiopurity of Nal to match DAMA/LIBRA level

PROJECTED SENSITIVITY

- > 2 4 dru flat background is assumed
- 2 years of data with 1 keV analysis threshold provide sensitivity comparable to DAMA's 90% C.L allowed region

Reminder: Two years would be end of 2018

SABRE experiment

16.10.17

MATERIAL	> 50 kg Nal(Tl)	
SIGNAL(s)	Light (PMTs)	Cn
LOCATION	LNGS Italy + SUPL Australia	
β/γ-DISCRIMINATION	no	
ENERGY THRESHOLD	<2 keVee	
DATA TAKING	PoP in 2017	
EVIDENCE	no	

IFT seminar - K. Schäffne Ghristian Images 123.com

SABRE: ULTRA-PURE NAI PRODUCTION

^{nat}K contamination 9 ppb (DAMA crystal 13 ppb)

Ultra-pure Nal(TI) crystals:

- collaboration between Princeton and Sigma-Aldrich
- Iow contamination Astrograde powder

→ FIRST 2 kg CRYSTAL has ⁴⁰K below DAMA/LIBRA level

46

SABRE: Proof-of-Principle

First Phase : PoP @ LNGS 5 kg crystal inside liquid scintillator (~ 2 tons PC + PPO 3 g/l)

SABRE: PROJECTED SENSITIVITY

2-6 keVee

•

- 50 kg of Nal(TI)
- 3 years exposure
- bkg from simulation:
 - ~0.2 c /(keV kg d)

Giulia D'Imperio*, TAUP 17, Sudbury, Canada

PICO-LON project

MATERIAL Nal(TI) SIGNAL(s) Light (PMTs) LOCATION Kamioka, Japan β/γ -DISCRIMINATION no **ENERGY THRESHOLD** 2 keVee **CRYSTAL GROWTH** R&D phase **EVIDENCE** no

COSINUS project

16.10.17

WWW.COSINUS.it Eur. Phys. J. C (2016) 76:441

LOCATION

IFT seminar - K. Schäffner

taken from MPI Munich 51

COSINUS: CRYOGENIC CALORIMETER

Temperature pulse

Irreducible thermal fluctuations

 $\left< \Delta E^2 \right> = k_b T^2 C$

Ultimate energy resolution is determined by how well you can measure **T** against thermodynamic fluctuations

low temperatures \rightarrow better energy sensitivity

low heat capacity \rightarrow careful selection of materials

HOW TO MEASURE TEMPERATURE ?

TRANSITION EDGE SENSOR (TES)

TRANSITION EDGE SENSOR (TES)

W-film evaporated onto the carrier crystal

- temperature stabilized between normal and superconducting phase
- particle interaction creates phonons
 - \rightarrow rise of film temperature
- resistance change of the film measured with SQUID-based readout

Nal at low-temperatures

Nal-based SCINTILLATING CALORIMETER

Phonon signal (~ 90 %)

- (almost) independent of particle type
- precise measurement of the deposited energy

Nal-based SCINTILLATING CALORIMETER

Phonon signal (~ 90 %)

- (almost) independent of particle type
- precise measurement of the deposited energy

Scintillation light (few %)

- amount of emitted light depends on particle type
 → LIGHT QUENCHING
- discrimination of interacting particle via the ratio light to phonon signal
 → LIGHT YIELD

... but Nal is not that Nalce!

• hygroscopic nature

handle in controlled atmosphere:

- glove box
- special container for cooldown in dilution refrigerator

... but Nal is not that Nalce!

• Iow Debye temperature

	-	
	1	
V	IJ	

Properties	Nal(pure)	Csl(pure)	CdWO ₄	CaWO ₄
Density [g/cm ³]	3.67	4.51	7.9	6.12
Melting point [°C]	661	894	1598	1650
Structure	CsCl	CsCl	Wolframite	Scheelite
λ_{max} at 300 K [nm]	~300	~315	~475	420-425
Hygroscopic	yes	slightly	no	no
Θ _D [K]	169	125	int.	335
Photons per keV at 3.4 K	19.5 ±1.0	58.9±5.6	8 .	
Mean energy of emitted photon [eV]	3.3	3.9	1.	3.14

PREPARE FOR:

small signal amplitudes

- develop highly sensitive W-TES
- surface of Nal optically polished

COSINUS DETECTOR CONSTRUCTION

Nal Target Crystal

- scintillator
- multi-element target
- mass: ~ 50 300 g

¹¹Na

CdWO₄ carrier crystal

- carries the W-TES
- glue/oil as interface
- mass: ~ 5-15 g

Light absorber

- beaker shape
- 40 mm diameter & height

Light absorber

- ~ 40 mm diameter & height
- fully active veto
 - \rightarrow reject surface backgrounds

2 independent channels

- W-TESs as thermometers
- simultaneous readout of
 - \rightarrow phonon signal in Nal
 - \rightarrow scintillation light

Particle discrimination

- simultaneous detection of: energy in the crystal E scintillation light L
- discrimination of interacting particle via the ratio L/E

Performance goal

• Nal detector:

nuclear recoil energy threshold ~ 1 keV

• light detector:

4% of deposited energy detected in light

bring performance in-line with existing bolometers e.g. produced within **CRESST-II**

LIGHT YIELD

Eur. Phys. J. C (2016) 76:441 DOI 10.1140/epjc/s10052-016-4278-3

- Nal energy resolution σ =200 eV
- Nal energy threshold 1 keV
- 4% of deposited energy detected in form of light
- light detector baseline noise $\sigma=10 \text{ eV}$
- black events: flat background: 1 /(keV kg day)
 + ⁴⁰K background: 600uBq/kg = DAMA
- exposure before cuts: 100 kg-days
- solid lines: 80% bands

Eur. Phys. J. C (2016) 76:441 DOI 10.1140/epjc/s10052-016-4278-3

- Nal energy resolution σ =200 eV
- Nal energy threshold 1 keV
- 4% of deposited energy detected in form of light
- Light detector baseline noise $\sigma=10 \text{ eV}$
- black events: flat background: 1 /(keV kg d)
 + ⁴⁰K background: 600uBq/kg
- exposure before cuts: 100 kg-days
- recoils off Na

QF from Tretyak, Astropart. Phys. 33, 40 (2010)

Eur. Phys. J. C (2016) 76:441 DOI 10.1140/epjc/s10052-016-4278-3

- Nal energy resolution σ =200 eV
- Nal energy threshold 1 keV
- 4% of deposited energy detected in form of light
- Light detector baseline noise $\sigma=10 \text{ eV}$
- black events: flat background: 1 /(keV kg d)
 + ⁴⁰K background: 600uBq/kg
- exposure before cuts: 100 kg-days
- recoils off Na
- recoils off I
 QF from Tretyak, Astropart. Phys. 33, 40 (2010)

- black events:
 flat background: 1 /(keV kg d)
 + ⁴⁰K background: 600uBq/kg
 - red events: 10 GeV/c² WIMP with 2E-04 pb as from Savage et al.

•

Eur. Phys. J. C (2016) 76:441 DOI 10.1140/epjc/s10052-016-4278-3
SIMULATED DATA FOR 100 kg days

 red events: 10 GeV/c² WIMP with 2E-04 pb Savage et al.

Energy	# Events	Fraction		
1-2 keV	1078	45 %		
2-6 keV	1262	53 %		
> 6 keV	46	2 %		
TOTAL	2386	100 %		

Eur. Phys. J. C (2016) 76:441 DOI 10.1140/epjc/s10052-016-4278-3

SIMULATED DATA FOR 100 kg days

 pink colored boxes correspond to DAMA/LIBRA signal regions in the standard elastic scattering scenario

Energy	# Events	Fraction	
1-2 keV	1078	45 %	
2-6 keV	1262	53 %	
> 6 keV	46	2 %	
TOTAL	2386	100 %	

Eur. Phys. J. C (2016) 76:441 DOI 10.1140/epjc/s10052-016-4278-3

COMPARISON

MILESTONES

1^{s†} PROTOTYPE

1^{s†} PROTOTYPE RESULTS

• energy threshold: 10 keV

• for β/γ -events:

3.7% of the energy deposited in the Nal crystal is measured by the light detector (design goal 4%)

11.2 detected photons per keV of energy deposition

- first successful measurement of a Nal crystal as cryogenic detector
 - publication accepted at JINST arXiv:: 1705.11028
- 71
- improve detector performance
- no beaker-shaped light detector

2nd PROTOTYPE DETECTOR

- interface: epoxy resin
- beaker-shaped Si light absorber
- Nal crystal: 66 g

ACHIEVED PERFORMANCE:

- phonon detector resolution (at zero energy): 1.0 keV
- absolute light yield for a β/γ -event: **13%** (~39 photons/keV)
- intrinsic energy resolution of light detector @ smallest injected testpulse energy: 15 eV

- Nal energy threshold is (8.26 ± 0.02 (stat.))keV
- width of the ²⁴¹Am peak is (4.508±0.064 (stat.)) keV
- carrier events identified by pulse shape

2nd PROTOTYPE DETECTOR

successful test of final detector concept

beaker-shaped light detector exceeds performance goal

Nal is an excellent scintillator at low temperatures

improve detector performance of Nal calorimeter to reach 1keV energy threshold

205 ppm of ⁴⁰K in the HILGER crystal

3rd PROTOTYPE DETECTOR

Hall C dilution unit

COSINUS detector module

- first measurement in a low background cryostat (hall C at LNGS)
- installed SQUIDs and dedicated heater / bias lines in the cryostat
- COSINUS DAQ commissioned
- Nal is of 30 g

GOAL:

- test setup in new facility
- **neutron calibration** campaign to proof particle discrimination

3rd PROTOTYPE DETECTOR

• successful commissioing of experimental setup in hall C

successful test of new COSINUS DAQ

QUENCHING FACTOR MEASUREMENT

- Tandem accelerator of Maier-Leibnitz
 Laboratorium (MLL) of LMU in Garching, Germany
- 11 MeV neutrons
- dilution refrigerator available
- small Nal detector module

GOAL:

precise determination of light quenching factor for Na and I at mK-temperatures

QUENCHING FACTOR MEASUREMENT STATUS

MARCH/APRIL 2016:

commissioning of the cryostat and the setup

MAY 2016:

small detector module mounted in cryostat

JUNE-AUGUST 2016:

- couple of cryostat cooldowns
- base temperature **not** reached but hints for problems identified:

 \rightarrow ³He/⁴He mixture added first week of August

 \rightarrow improved thermal heat sinking of all wiring

beam-time postponed to mid of November 2017

OUTLOOK: PROJECTION FOR 1000 kg days

- e/gamma background-only simulation
- projected limit for spinindependent elastic scattering off nuclei
- anticipated sensitivity is about two orders of magnitude better than the interpretation of the DAMA/LIBRA claim under standard assumptions

CONCLUSION COSINUS

- COSINUS aims to develop the first Nal detector with particle discrimination
- first Nal prototype module successfully operated at LNGS in 2016 \rightarrow publication at JINST

in 2017:

- further investigations and R&D to improve threshold and energy resolution of the Nal detector (new TES-design and interface solution)
- precise **measurement of quenching factors** at the neutron beam at TUM

COSINUS is on a good way to achieve CRESST-II like performance. If we succeed:

- Only few 100 kg-days needed to answer whether DAMA sees a nuclear recoil signal, or not
- upgrading to ~ 10 kg, the COSINUS is also sensitive for modulation detection

CONCLUSION Nai experiments

- Radiopure Nal is the key-issue for all DAMA-like experiments
- no experiment arrived yet in producing massive NaI(TI) crystals at purity level of DAMA/LIBRA → we have to work harder!
- DAMA/LIBRA: 1keVee threshold (publish this year ?)
- COSINE-100: data taking since Sept 2016 (first results 2018 ?)
- ANAIS-112: started physics run (data taking planned for 2 years)
- SABRE: start PoP within 2017 (promising ultrapure NaI(TI))
- COSINUS: performance test run planned for 2018

HAPPY BIRTHDAY MODULATION SIGNAL

TAUP conference 1997

DAMA presents first evidence for modulation signal

HAPPY BIRTHDAY MODULATION SIGNAL

TAUP conference 1997

DAMA presents first evidence for modulation signal

E. Barberio (SABRE, Australia): "The more one looks into their experiment, the more one realizes that it is very well done."

HAPPY BIRTHDAY MODULATION SIGNAL

TAUP conference 1997

DAMA presents first evidence for modulation signal

My colleague F. Reindl says: "This will not take another two decades!"

Thank you for your attention!

EXTRA MATERIAL

General enemies

COSINE-100

	Mass (kg)	Powder Type	⁴⁰ K (ppb)	²³⁸ U (ppt)	²³² Th (ppt)	²¹⁰ Po (mBq/kg)	Light Yield (npe/keV)
Crystal 1	8.26	Powder B	34.74 ± 4.74	< 0.02	1.31 ± 0.35	3.20 ± 0.04	14.67 ± 0.62
Crystal 2	9.15	Powder C	60.64 ± 4.64	< 0.12	< 0.63	2.06 ± 0.03	14.56 ± 0.54
Crystal 3	9.16	WIMPScint-II	34.34 ± 3.10	< 0.04	0.44 ± 0.19	0.76 ± 0.02	15.75 ± 0.76
Crystal 4	18.01	WIMPScint-II	33.32 ± 3.50		< 0.3	0.74 ± 0.02	14.69 ± 0.46
Crystal 5	18.28	Powder C	82.33 ± 5.49		2.35 ± 0.31	2.06 ± 0.03	6.26 ± 0.34
Crystal 6	12.5	WIMPScint-III	16.79 ± 2.46	< 0.018	0.56 ± 0.19	1.52 ± 0.02	14.52 ± 0.51
Crystal 7	12.5	WIMPScint-III	18.69 ± 2.79		<0.6	1.54 ± 0.02	14.41 ± 0.50
Crystal 8	18.28	Powder C	54.25 ± 3.82		< 0.9	2.05 ± 0.02	3.27 ± 0.20
DAMA			<20	0.7 - 10	0.5 - 7.5	< 0.5	5.5 - 7.5

DARK MATTER IN THE MILKY WAY

Standard assumptions

- Maxwellian velocity distribution
- asymptotic velocity of 220 km/s
- galactic escape velocity of 544 km/s
- local dark matter density
 0.3 GeV/cm³
- \rightarrow 3000 (100 GeV/m_x) WIMPs per m³
- \rightarrow FLUX OF WIMPS ON EARTH:
 - ~10⁵ (100 GeV/m_x) cm⁻² sec⁻¹

Motivation for low-mass Dark Matter

WIMP "Miracle"

Asymmetric dark matter

- Thermally produced in early Universe
- Weak scale yields correct relic density
- 10GeV/c² ~ 1TeV/c²

- Ω_{DM}/Ω_{B} ~5: Why?
- Link asymmetries for baryons and DM in early Universe
- 0.1GeV/c² ~10GeV/c²

5

NEUTRINOS as background

Electronic recoils from pp solar neutrinos: $\sim 10^{-48}$ cm²

Nuclear recoils from ⁸B solar neutrinos: below 10⁻⁴⁴ cm² for low-mass WIMPs

Nuclear recoils from atmospheric + DSNB: below 10⁻⁴⁸ cm²

BESIDES, measurement of CNNS is also an interesting physics case itself

DIFFERENTIAL SCATTERING RATE

interaction cross action at zero momentum transfer

mass of dark matter particle

nuclear form factor

reduced mass

Integral over local dark matter velocity distribution

minimal velocity to produce a recoil of Er

Prepare detector for: very small energy deposits (few keV - tens of keV) extremely rare detection rate (few events per ton per year) signal embedded in a background that is millions of times higher

DIRECT DARK MATTER INTERACTION

N is the total excitations which have a mean energy $k_{B}T$

$$\nabla \propto CT / k_B T$$
 and $\delta N = \sqrt{N}$

 $\delta E = \delta N k_B T = \sqrt{k_B T^2 C}$

Noise comes from irreducible random thermodynamic fluctuations in energy due to transport across the thermal link

Ultimate energy resolution is determined by how well you can measure **T** against thermodynamic fluctuations

low temperatures \rightarrow better energy sensitivity

low heat capacity \rightarrow careful selection of materials

Quenching Factor Measurement of CRESST

Model Independent Annual Modulation Result

IFT seminar - K. Schäffner

Taken from: P. Belli UCLA Dark Matter 2016, Los Angeles, USA

16.10.17

The annual modulation: a model independent signature for the investigation of DM particles component in the galactic halo

With the present technology, the annual modulation is the main model independent signature for the DM signal. Although the modulation effect is expected to be relatively small a suitable large-mass, low-radioactive set-up with an efficient control of the running conditions can point out its presence.

Requirements:

Modulated rate according cosine
 In low energy range

- 3) With a proper period (1 year)
- 4) With proper phase (about 2 June)
- 5) Just for single hit events in a multidetector set-up
- 6) With modulation amplitude in the region of maximal sensitivity must be <7% for usually adopted halo distributions, but it can be larger in case of some possible scenarios

the DM annual modulation signature has a different origin and peculiarities (e.g. the phase) than those effects correlated with the seasons

To mimic this signature, spurious effects and side reactions must not only - obviously - be able to account for the whole observed modulation amplitude, but also to satisfy contemporaneously all the requirements

Taken from: P. Belli UCLA Dark Matter 2016, Los Angeles, USA