### **Toward Verifying Leptonic Unitarity**



Hisakazu Minakata IFT UAM/CSIC, Madrid

Chee Sheng Fong, HM, Hiroshi Nunokawa, arXiv:1609.08623, 1712.02798

# We see things converge: $\delta \sim 3\pi/2$ is the best case

- T2K see more and more preference of  $\delta \sim 3\pi/2$  (or  $-\pi/2$ ), and NOvA agrees See slide
- T2K (everybody) NOvA discrepancy about  $\theta_{23}$  seems resolved (best fit near maximal) See slide
- T2K II (proposed, run until 2026) they could see CPV at ~3  $\sigma$  (expected for ~15x10^{21} POT)

**14.7x10<sup>20</sup>** POT (nu) **7.6x10<sup>20</sup>** POT (antinu) → **20x10<sup>21</sup>** POT (2026)

- δ ~ 3π/2 is the best case for NOvA for mass ordering: (see bi-P plot)
- NOvA could see mass hierarchy at ~3  $\sigma$  ?
- Implication to the next generation projects ?

See slide





### $\delta = 3\pi/2$ (or $-\pi/2$ ) implies that we are at the tip of the ellipse the best case for NOvA

P-\bar{P} bi-probability diagram, proposed by HM-H.Nunokawa, JHEP 2001





Sign of  $\Delta m^2_{31}$  distinguishes normal vs inverted mass ordering

δ and sign  $\Delta m_{31}^2$  couple because ( $\Delta m_{31}^2 → - \Delta m_{31}^2$ , δ → π-δ) symmetry in vacuum (JHEP 2001)

### NOvA starts to see preference of NH

#### Alexander Radovic Wine&Cheese@ Fermilab Jan 2018

### IH at $\delta_{cp} = \pi/2$ disfavored at greater than $3\sigma$ .

Joint Best Fits

73 🧟

Approaching IH rejection at 20.



### Assuming all these go through well, the key question is "What is left?" and

"what is most important among them?"



Paradigm Test !

## Unitarity test: 2 ways



### #1: Unitarity triangle

$$U_{e1}U_{\mu 1}^{*} + U_{e2}U_{\mu 2}^{*} + U_{e3}U_{\mu 3}^{*} = 0,$$

Model-independent !

- Determine |U<sub>e1</sub>|, |U<sub>e2</sub>|, |U<sub>e3</sub>|, separately
   JUNO (+Daya Bay etc)
- Determine  $|U_{\mu 1}|$ ,  $|U_{\mu 2}|$ ,  $|U_{\mu 3}|$ , separately " $v_{\mu}$ -JUNO"
- For JPARC beam, L=300x30=9000 km, pretty hard....
- $6x10^{20} v_e$ -bar/s (1GW<sub>e</sub>) **kaon decay / s (stopped**  $\pi/K$ ) Seminar@IFT Madrid 6x10<sup>20</sup> pion/

#### **JUNO Detector**

Canozzi et al



| D2014                        |                 | % error after fit (NH true) |           |                                               | % after fit (IH true) |           |           |
|------------------------------|-----------------|-----------------------------|-----------|-----------------------------------------------|-----------------------|-----------|-----------|
| Parameter                    | % error (prior) | All data                    | All – far | All – geo                                     | All data              | All – far | All – geo |
| α                            | 00              | 59.2                        | 59.0      | 57.0                                          | 56.2                  | 55.3      | 54.0      |
| $\Delta m_{ee}^2$            | 2.0             | 0.26                        | 0.25      | 0.26                                          | 0.26                  | 0.25      | 0.25      |
| $\delta m^2$                 | 3.2             | 0.22                        | 0.21      | 0.16                                          | 0.21                  | 0.21      | 0.16      |
| $s_{12}^2$                   | 5.5             | 0.49                        | 0.47      | 0.39                                          | 0.49                  | 0.46      | 0.42      |
| s <sup>2</sup> <sub>13</sub> | 10.3            | 6.95                        | 6.88      | 6.95                                          | 6.84                  | 6.77      | 6.84      |
| $f_R$                        | 3.0             | 0.66                        | 0.66      | 0.64                                          | 0.65                  | 0.65      | 0.64      |
| $r_{ob}$ 12 $f_{Tb}$         | 20.0            | 15.3                        | 14.6      | 1. No. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 15.5                  | 15.4      |           |
| $f_{\rm U}$                  | 20.0            | 13.3                        | 13.3      |                                               | 13.3                  | 13.3      |           |



Chee Sheng Fong, HM di Hiroshi Nunokawa, JHEP 2017

# How can $|U_{e1}|$ and $|U_{e2}|$ be determined separately?

 $P(\bar{\nu}_e \to \bar{\nu}_e)$  is given by the non-unitary version of the one derived in ref. [34] ( $\alpha = e$  below):

$$P(\bar{\nu}_{\alpha} \to \bar{\nu}_{\alpha}) = \mathcal{C}_{\alpha\alpha} + \left\{ |U_{\alpha1}|^{2} + |U_{\alpha2}|^{2} + |U_{\alpha3}|^{2} \right\}^{2} - 4|U_{\alpha1}|^{2}|U_{\alpha2}|^{2}\sin^{2}\frac{\Delta m_{21}^{2}x}{4E} \quad (5.7)$$
$$-2|U_{\alpha3}|^{2} \left( |U_{\alpha1}|^{2} + |U_{\alpha2}|^{2} \right) \left[ 1 - \sqrt{1 - 4XY \sin^{2}\frac{\Delta m_{21}^{2}x}{4E}} \cos\left(\frac{\Delta m_{\alpha\alpha}^{2}x}{2E} \pm \phi_{\odot}^{\alpha}\right) \right],$$

where

$$X \equiv \frac{|U_{\alpha 1}|^2}{|U_{\alpha 1}|^2 + |U_{\alpha 2}|^2}, \qquad Y \equiv \frac{|U_{\alpha 2}|^2}{|U_{\alpha 1}|^2 + |U_{\alpha 2}|^2}, \tag{5.8}$$

and

$$\Delta m_{\alpha\alpha}^2 \equiv X |\Delta m_{31}^2| + Y |\Delta m_{32}^2|,$$
  
$$\phi_{\odot}^{\alpha} = \arctan\left[ (X - Y) \tan\left(\frac{\Delta m_{21}^2 x}{4E}\right) \right] - (X - Y) \left(\frac{\Delta m_{21}^2 x}{4E}\right). \tag{5.9}$$

 $\phi_{\odot}^{\alpha}$  is a slowly varying function of x/E which depends only on the solar parameters, see [34].

### #2: Models with unitarity violation

- Prepare model of unitarity violation
- Constrain these models by confronting them with experiments



- Unitarity test is a passive way
- Question: how one can execute a complete
   job? → I don't know the answer

Feb 12, 2018

### Natural starting point

- Consider seesaw model of neutrino mass
- M= | 0 m |
- | m M |



- θ ~ m/M ~ 10<sup>-14</sup> if m=100 GeV and M=10<sup>16</sup>
   GeV
- unitarity violation effect in the light sector at the order of ~(m/M)<sup>2</sup>
- Too small to observe (high-scale seesaw)
- But suppose M~TeV etc...

Unitarity violation as a natural concept



## High vs low scale unitarity

# High- vs low-energy scale unitarity violation

- Let us define "high scale" and "low scale" unitarity violation as
- "low scale": heavy leptons/neutrinos do communicate with light v system, i.e., participate to nu oscillation
   My concern today
- "high scale": heavy leptons/neutrinos do not communicate with light v system
- Note: high scale UV→pioneering work by Antusch, Biggio, Fernandez-Martinez, Gavela, and Lopez-Pavon, JHEP2006
   Since then, Enrique has

Seminar@IFT Madrid

been in the deep mine..

### New Physics at low energies: relatively new option

- Various scenarios are proposed which involve "new physics" at low energies
- Motivated by LSND-MiniBoone, DAMA, etc.
  - [21] A. E. Nelson and J. Walsh, "Short Baseline Neutrino Oscillations and a New Light Gauge Boson," Phys. Rev. D 77 (2008) 033001 doi:10.1103/PhysRevD.77.033001 [arXiv:0711.1363 [hep-ph]].
  - [22] M. Pospelov and J. Pradler, "Elastic scattering signals of solar neutrinos with enhanced baryonic currents," Phys. Rev. D 85 (2012) 113016 Erratum: [Phys. Rev. D 88 (2013) no.3, 039904] doi:10.1103/PhysRevD.85.113016, 10.1103/PhysRevD.88.039904 [arXiv:1203.0545 [hep-ph]].
  - [23] R. Harnik, J. Kopp and P. A. N. Machado, "Exploring nu Signals in Dark Matter Detectors," JCAP 1207 (2012) 026 doi:10.1088/1475-7516/2012/07/026 [arXiv:1202.6073 [hep-ph]].
  - [24] K. S. Babu, A. Friedland, P. A. N. Machado and I. Mocioiu, "Flavor Gauge Models Below the Fermi Scale," JHEP 1712 (2017) 096 doi:10.1007/JHEP12(2017)096 [arXiv:1705.01822 [hep-ph]].

Plus many more !!

• Orthodoxy seems challenged, e.g., WIMP dark matter, low-E SUSY, day one NP, ..

Feb 12, 2018

### High- vs low-energy unitarity violation

Low-energy UV

#### lepton flavor universality: YES

- zero distance neutrino flavor transition: NO
- Kinematical effect of sterile nu emission: YES

#### High-energy UV

- lepton flavor universality:
   NO
- zero distance neutrino flavor transition: YES
- Kinematical effect of sterile nu emission: YES (if kinematically allowed)

### High-energy unitarity violation

Antusch et al JHEP 2006

 When high mass sector integrated out we have effective Lagrangian of light neutrinos and leptons but with unitarity violation

Aiming at model-independent formulation !!

$$\mathcal{L}^{eff} = \frac{1}{2} \left( \bar{\nu}_{i} i \not \partial \nu_{i} - \overline{\nu^{c}}_{i} m_{i} \nu_{i} + h.c. \right) - \frac{g}{2\sqrt{2}} \left( W_{\mu}^{+} \bar{l}_{\alpha} \gamma_{\mu} \left( 1 - \gamma_{5} \right) N_{\alpha i} \nu_{i} + h.c. \right) - \frac{g}{2\cos\theta_{W}} \left( Z_{\mu} \bar{\nu}_{i} \gamma^{\mu} \left( 1 - \gamma_{5} \right) \left( N^{\dagger} N \right)_{ij} \nu_{j} + h.c. \right) + \dots$$

$$\nu_{\alpha} = N_{\alpha i} \nu_{i} . \qquad \left\langle \nu_{i} \middle| \nu_{j} \right\rangle = \delta_{ij} , \qquad G_{F} = \frac{G_{F}^{M}}{\sqrt{(NN^{\dagger})_{ee}(NN^{\dagger})_{\mu\mu}}} .$$

$$\left| \nu_{\alpha} \right\rangle = \frac{1}{\sqrt{(NN^{\dagger})_{\alpha\alpha}}} \sum_{i} N_{\alpha i}^{*} \middle| \nu_{i} \right\rangle \equiv \sum_{i} \tilde{N}_{\alpha i}^{*} \middle| \nu_{i} \rangle , \qquad Flavor nu states NOT orthogonal with each other$$

Feb 12, 2018

### Flavor non-universality







Escrihuela etal PRD2015

0.010

 $1 - |\alpha_{11}|^2$ 

1.5

0.0

0.000

0.005

 $(1-|\alpha_{21}|^2-|\alpha_{22}|^2)\times 10^{-3}$ 

68% 90% C

0.015

99% C

- $< v_i | v_{\mu} > = N_{\mu i} / V (NN^+)_{\mu \mu}$
- =  $\Sigma_i N_{\mu i} N_{\mu i}^* / V (NN^+)_{\mu\mu} = V (NN^+)_{\mu\mu}$ • Then,  $G_{\mu} = G_F \vee (NN^+)_{\mu\mu} \vee (NN^+)_{ee}$

Feb 12, 2018

# Most probably in high scale unitarity violation, ...

- In high scale UV, we assume NP at high scale,
   M<sub>NP</sub> > EW scale
- Then, most probably, SU(2) x U(1) holds at the scale
- Unitarity violation is constrained primarily by charged lepton sector
   Better probel\_easier to

Better probe!, easier to explore experimentally !

• Nothing wrong with this!, but less room for the next nu project playing a crucial role, ....



## (3+N) model for Low-E unitarity violation

Other models of Low-E UV?

Feb 12, 2018



3 active +N sterile unitary model in

Feb 12, 2018

# 3+N model for low-E UV and modest requests on it

 By 3+N model I mean (3+N) space is unitary, but not in 3 active nu space

Unique? Probably not. General Low-E UV model hard to construct. My strategy is ...

- Requirement: The prediction of the 3+N model must be independent of details of N sterile sector
- After fulfilling this criterion we will show what is the *difference* between High-E vs Low-E UV

### Probability in vacuum



- Active-active, active-sterile, sterile-sterile oscillations
- If  $\Delta m_{as}^2 (\Delta m_{ss}^2) > 0.1 \text{ eV}^2$ , "fast oscillation" due to active-sterile and sterile-sterile  $\Delta m^2$  are averaged out

$$\left\langle \sin\left(\frac{\Delta m_{Ji}^2 x}{2E}\right) \right
angle pprox \left\langle \sin\left(\frac{\Delta m_{JK}^2 x}{2E}\right) \right
angle pprox 0,$$

#### Fast oscillation averaged out by decoherence

$$\left|\delta\left(\frac{\Delta m_{ab}^2 x}{2E}\right)\right| = \left|\frac{\Delta m_{ab}^2}{2E}\delta x - \frac{\Delta m_{ab}^2 x}{2E^2}\delta E\right| \gtrsim 2\pi.$$

i. Spatial resolution. In this case, decoherence happens if

$$\delta x \gtrsim rac{4\pi E}{|\Delta m^2_{ab}|}.$$

ii. Energy resolution. In this case, decoherence happens if



## P looks almost standard one, but there is a new term



### P-leaking term: It must be obvious to exist, right?

- There is a N sterile sector which can communicate with active nu sector
- So the probability leaks to sterile sector
- Yet, not emphasized before...

• ~ W<sup>4,</sup> Too small?  

$$\delta_{\alpha\beta} = \sum_{j=1}^{3} U_{\alpha j} U_{\beta j}^{*} + \sum_{J=4}^{N+3} W_{\alpha J} W_{\beta J}^{*}.$$
Then,  $\left|\sum_{j=1}^{3} U_{\alpha j} U_{\beta j}^{*}\right|^{2} = \left|\sum_{J=4}^{N+3} W_{\alpha J} W_{\beta J}^{*}\right|^{2}$  in the appearance channel  $(\alpha \neq \beta),$   
 $\left(\sum_{j=1}^{3} |U_{\alpha j}|^{2}\right)^{2} = \left(1 - \sum_{J=4}^{N+3} |W_{\alpha J}|^{2}\right)^{2} = 1 - \mathcal{O}(W^{2})$  in the disappearance channel

Term kept by S. Parke and M. Ross Lonergan, PRD 2017 is also 4<sup>th</sup> order in W Summary: There exists sterile-sector model independent P formula if  $\Delta m_{as}^2 > 0.1 \text{ eV}^2$ 

Disappearance

$$P(
u_lpha o 
u_lpha) = \mathcal{C}_{lpha lpha} + \left(\sum_j^3 |U_{lpha j}|^2
ight)^2 - 4\sum_{k>j}^3 |U_{lpha j}|^2 |U_{lpha k}|^2 \sin^2rac{(\Delta_k - \Delta_j)x}{2},$$

$$\mathcal{C}_{lphaeta} \equiv \sum_{J=1}^{N} |W_{lpha J}|^2 |W_{eta J}|^2, \qquad \mathcal{C}_{lpha lpha} \equiv \sum_{J=1}^{N} |W_{lpha J}|^4$$

- A constant leaking term  $C_{\alpha\beta}$  (= distinguishes between low-E vs high-E unitarity violation !!)
- Unitary MNS → non-unitarty "U"

UV effect is in: (1) explicit W correction term, (2) non-unitary U matrix Feb 12, 2018 Seminar@IFT Madrid

### Can one detect $C_{ee}$ ? (=P leaking term): JUNO!



#### **JUNO Detector**



| RD2014                           |                 | % error after fit (NH true) |           |                                               | % after fit (IH true) |           |           |
|----------------------------------|-----------------|-----------------------------|-----------|-----------------------------------------------|-----------------------|-----------|-----------|
| Parameter                        | % error (prior) | All data                    | All – far | All – geo                                     | All data              | All – far | All – geo |
| α                                | 00              | 59.2                        | 59.0      | 57.0                                          | 56.2                  | 55.3      | 54.0      |
| $\Delta m_{ee}^2$                | 2.0             | 0.26                        | 0.25      | 0.26                                          | 0.26                  | 0.25      | 0.25      |
| $\delta m^2$                     | 3.2             | 0.22                        | 0.21      | 0.16                                          | 0.21                  | 0.21      | 0.16      |
| $s_{12}^2$                       | 5.5             | 0.49                        | 0.47      | 0.39                                          | 0.49                  | 0.46      | 0.42      |
| s <sup>2</sup> <sub>13</sub>     | 10.3            | 6.95                        | 6.88      | 6.95                                          | 6.84                  | 6.77      | 6.84      |
| $f_R$                            | 3.0             | 0.66                        | 0.66      | 0.64                                          | 0.65                  | 0.65      | 0.64      |
| $f_{\text{Tob}} = f_{\text{Tb}}$ | 20.0            | 15.3                        | 14.6      | 1. No. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 15.5                  | 15.4      |           |
| $f_{\rm U}$                      | 20.0            | 13.3                        | 13.3      |                                               | 13.3                  | 13.3      |           |





### Invitation to nonunitary world..

#### Parke-Ross-Lonergan PRD2016



FIG. 1. Marginalized 1-D  $\Delta \chi^2$  for each of the magnitudes of the 3 × 3 neutrino mixing matrix elements, without (red solid) and with (black dashed) the assumption of unitarity. The x-axis is the magnitude of each individual matrix element, and the y-axis is the associated  $\Delta \chi^2$  after marginalization over all parameters other than the one in question. This analysis was performed for the normal hierarchy, the inverse hierarchy providing the same qualitative result.

### Constraints on unitarity violation (Parke-Ross-Lonergan)





FIG. 3. 1-D  $\Delta \chi^2$  for deviation of both  $U_{\text{PMNS}}$  row (solid) and column (dashed) normalizations, when considering new physics that enters above  $|\Delta m^2| \ge 10^{-2} \text{ eV}^2$ .

@IFT Madrid



## Sterile modelindependent P: Prevail to "in matter"?



### Small-UV perturbation theory

Chee Sheng Fong, HM, Hiroshi

$$H = \mathbf{U} \begin{bmatrix} \mathbf{\Delta}_{\mathbf{a}} & 0 \\ 0 & \mathbf{\Delta}_{\mathbf{s}} \end{bmatrix} \mathbf{U}^{\dagger} + \begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix} \equiv H_{\text{vac}} + H_{\text{matt}}$$
Nunokawa, arXiv:1712.02798

where  $\boldsymbol{\Delta}_{\mathbf{a}} = \operatorname{diag}(\Delta_1, \Delta_2, \Delta_3)$  and  $\boldsymbol{\Delta}_{\mathbf{s}} = \operatorname{diag}(\Delta_4, \Delta_5, \cdots, \Delta_{N+3})$ .

$$A = egin{bmatrix} \Delta_A - \Delta_B & 0 & 0 \ 0 & -\Delta_B & 0 \ 0 & 0 & -\Delta_B \end{bmatrix} \ \Delta_A \equiv rac{a}{2E}, \qquad \Delta_B \equiv rac{b}{2E},$$

$$\begin{split} a &= 2\sqrt{2}G_F N_e E \approx 1.52 \times 10^{-4} \left(\frac{Y_e \rho}{\mathrm{g\,cm^{-3}}}\right) \left(\frac{E}{\mathrm{GeV}}\right) \mathrm{eV^2}, \\ \\ \mathbf{b} &= \sqrt{2}G_F N_n E = \frac{1}{2} \left(\frac{N_n}{N_e}\right) a. \end{split}$$



### Do W perturbation to 4<sup>th</sup> order to keep P leaking term

- Did we find ~W<sup>4</sup> P leaking term?
- Yes!
- How about what is the role of the rest?

$$\begin{split} \left| S_{\alpha\beta}^{(2)} \right|_{1st}^{2} &= \sum_{k,K} \sum_{l,L} \frac{1}{(\Delta_{K} - h_{k})(\Delta_{L} - h_{l})} \\ \times \left[ x^{2} e^{-i(h_{k} - h_{l})x} - (ix) \frac{e^{-i(\Delta_{K} - h_{l})x} - e^{-i(h_{k} - h_{l})x}}{(\Delta_{K} - h_{k})} + (ix) \frac{e^{-i(h_{k} - \Delta_{L})x} - e^{-i(h_{k} - h_{l})x}}{(\Delta_{L} - h_{l})} \right] \\ &+ \frac{1}{(\Delta_{K} - h_{k})(\Delta_{L} - h_{l})} \left\{ e^{-i(\Delta_{K} - \Delta_{L})x} + e^{-i(h_{k} - h_{l})x} - e^{-i(\Delta_{K} - h_{l})x} - e^{-i(h_{k} - \Delta_{L})x} \right\} \right] \\ \times (UX)_{\alpha k}(UX)_{\beta k}^{*} \left\{ (UX)^{\dagger}AW \right\}_{kK} \left\{ W^{\dagger}A(UX) \right\}_{Kk} \\ \times (UX)_{\alpha l}^{*}(UX)_{\beta l} \left\{ (UX)^{\dagger}AW \right\}_{lL} \left\{ W^{\dagger}A(UX) \right\}_{Ll} \\ &+ \sum_{k \neq m} \sum_{K} \sum_{l \neq n} \sum_{L} \frac{1}{(h_{m} - h_{k})(\Delta_{K} - h_{k})(\Delta_{K} - h_{m})} \frac{1}{(h_{n} - h_{l})(\Delta_{L} - h_{l})(\Delta_{L} - h_{l})(\Delta_{L} - h_{n})} \\ \times \left[ (\Delta_{K} - h_{k}) e^{-ih_{m}x} - (\Delta_{K} - h_{m}) e^{-ih_{k}x} - (h_{m} - h_{k}) e^{-i\Delta_{K}x} \right] \\ \times \left[ (\Delta_{L} - h_{l}) e^{+ih_{n}x} - (\Delta_{L} - h_{n}) e^{-ih_{k}x} - (h_{n} - h_{l}) e^{+i\Delta_{L}x} \right] \\ \times \left[ (UX)_{\alpha k}(UX)_{\beta m}^{*} \left\{ (UX)^{\dagger}AW \right\}_{kK} \left\{ W^{\dagger}A(UX) \right\}_{Km} \\ \times (UX)_{\alpha l}^{*}(UX)_{\beta m} \left\{ (UX)^{\dagger}AW \right\}_{nL} \left\{ W^{\dagger}A(UX) \right\}_{Ll} \\ + \sum_{k_{k}K} \sum_{l,L} \frac{1}{(\Delta_{K} - h_{k})(\Delta_{L} - h_{l})} \left( e^{-i\Delta_{K}x} - e^{-ih_{k}x} \right) \left( e^{+i\Delta_{L}x} - e^{+ih_{l}x} \right) \\ P \text{ leaking term } \left[ (UX)_{\alpha k}W_{\beta K}^{*} \left\{ (UX)^{\dagger}AW \right\}_{kK} + W_{\alpha K}(UX)_{\beta k}^{*} \left\{ W^{\dagger}A(UX) \right\}_{Kk} \right] \\ \sum_{k_{k}} \left[ (UX)_{\alpha l}W_{\beta L} \left\{ W^{\dagger}A(UX) \right\}_{Ll} + W_{\alpha L}^{*}(UX)_{\beta l} \left\{ (UX)^{\dagger}AW \right\}_{lL} \right] \\ Feb 12, 2 + \sum_{K} |W_{\alpha K}|^{2}|W_{\beta K}|^{2} + \sum_{K \neq L} e^{-i(\Delta_{K} - \Delta_{L})x}W_{\alpha K}W_{\beta K}^{*}W_{\alpha L}^{*}W_{\alpha L} . \end{aligned}$$

$$\begin{split} & \mathcal{P}(\nu_{\beta} \to \nu_{\alpha})_{2nd}^{2nd} \equiv 2\text{Re}\left[\left\{S_{\alpha\alpha}^{(0)}\right\}^{*} S_{\alpha\beta}^{(0)}(4)_{diag}\right] \\ &= 2\text{Re}\left\{\sum_{n}\sum_{k}\sum_{K}\left[-\frac{x^{2}}{2}\frac{1}{(\Delta_{K}-h_{k})^{2}}e^{-i(h_{k}-h_{n})x} - \frac{2(ix)}{(\Delta_{K}-h_{k})^{3}}e^{-i(h_{k}-h_{n})x} - \frac{(ix)}{(\Delta_{K}-h_{k})^{4}}e^{-i(\Delta_{K}-h_{n})x} - \frac{2(ix)}{(\Delta_{K}-h_{n})x} - e^{-i(h_{k}-h_{n})x} - \frac{2(ix)}{(\Delta_{K}-h_{n})x} - \frac{2(ix)}{(\Delta$$

Feb 12, 2018

### Do W perturbation to 4<sup>th</sup> order to keep P leaking term

- Did we find ~W<sup>4</sup> P leaking term?
- Yes!
- How about what is the role of the rest?
- To answer the question let us first examine W<sup>2</sup> terms

### After averaging out fast oscillations..

$$\begin{split} & P(\nu_{\beta} \to \nu_{\alpha})^{(0+2)} \\ & = \left| \sum_{j=1}^{3} U_{\alpha j} U_{\beta j}^{*} \right|^{2} - 2 \sum_{j \neq k} \operatorname{Re} \left[ (UX)_{\alpha j} (UX)_{\beta j}^{*} (UX)_{\alpha k}^{*} (UX)_{\beta k} \right] \sin^{2} \frac{(h_{k} - h_{j})x}{2} \\ & - \sum_{j \neq k} \operatorname{Im} \left[ (UX)_{\alpha j} (UX)_{\beta j}^{*} (UX)_{\alpha k}^{*} (UX)_{\beta k} \right] \sin(h_{k} - h_{j})x \\ & + 2\operatorname{Re} \left\{ \sum_{m} \sum_{k,K} \frac{1}{\Delta_{K} - h_{k}} \left[ (ix)e^{-i(h_{k} - h_{m})x} - \frac{e^{-i(h_{k} - h_{m})x}}{(\Delta_{K} - h_{k})} \right] \\ & \times (UX)_{\alpha k} (UX)_{\beta k}^{*} (UX)_{\alpha m}^{*} (UX)_{\beta m} \left\{ (UX)^{\dagger} AW \right\}_{kK} \left\{ W^{\dagger} A (UX) \right\}_{Kk} \\ & - \sum_{m} \sum_{k \neq l} \sum_{K} \frac{1}{(h_{l} - h_{k})(\Delta_{K} - h_{l})} \left[ (\Delta_{K} - h_{l})e^{-i(h_{k} - h_{m})x} \right] \\ & \times (UX)_{\alpha k} (UX)_{\beta l}^{*} (UX)_{\alpha m}^{*} (UX)_{\beta m} \left\{ (UX)^{\dagger} AW \right\}_{kK} \left\{ W^{\dagger} A (UX) \right\}_{Kl} \\ & - \sum_{m} \sum_{k,K} \frac{e^{-i(h_{k} - h_{m})x}}{(\Delta_{K} - h_{k})} \left[ (UX)_{\alpha k} W_{\beta K}^{*} (UX)_{\alpha m}^{*} (UX)_{\beta m} \left\{ (UX)^{\dagger} AW \right\}_{kK} \\ & Feb 12, 2! + W_{\alpha K} (UX)_{\beta k}^{*} (UX)_{\alpha m}^{*} (UX)_{\beta m} \left\{ W^{\dagger} A (UX) \right\}_{Kk} \right] \Big\}, \end{split}$$

### Do it: W perturbation to 4<sup>th</sup> order to keep P leaking term

Yes!

- Did we find ~W<sup>4</sup> P leaking term?
- How about what is the role of the rest?
- To answer the question let us first examine W<sup>2</sup> terms Always comes with matter potential
- If we impose  $\Delta m_{jK}^2 > 0.1 \text{ eV}^2$ , then all the  $\sim W^2$  correction terms are small negligible
- Then, all the ~W<sup>4</sup> terms can be ignored except for P leaking term

$$\frac{|A|}{\Delta m_{Jk}^2} = 2.13 \times 10^{-3} \left(\frac{\Delta m_{Jk}^2}{0.1 \text{eV}^2}\right)^{-1} \left(\frac{\rho}{2.8 \text{ g/cm}^3}\right) \left(\frac{E}{1 \text{ GeV}}\right),$$

# A simple formula for oscillation probability in matter w/o unitarity

$$P(\nu_{\beta} \rightarrow \nu_{\alpha}) = \mathcal{C}_{\alpha\beta} + \left| \sum_{j=1}^{3} U_{\alpha j} U_{\beta j}^{*} \right|^{2}$$
$$- 2 \sum_{j \neq k} \operatorname{Re} \left[ (UX)_{\alpha j} (UX)_{\beta j}^{*} (UX)_{\alpha k}^{*} (UX)_{\beta k} \right] \sin^{2} \frac{(h_{k} - h_{j})x}{2}$$
$$- \sum_{j \neq k} \operatorname{Im} \left[ (UX)_{\alpha j} (UX)_{\beta j}^{*} (UX)_{\alpha k}^{*} (UX)_{\beta k} \right] \sin(h_{k} - h_{j})x,$$

- Apart from P leaking term, leading (zeroth) order terms only !
- For constant matter density, one can write down an exact expression for  $\mathsf{P}_{\beta\alpha}$
- UV effect is in: (1) explicit W correction term, (2) non-unitary
   U matrix
   Feb 12, 2018
   Seminar@IFT Madrid

### Where is the region of large UV?



Seminar@l. 1 mauru





### Large ~W<sup>2</sup> corrections?

- Order W2 correction terms
  - small in most of the regions of L-E, but sizeable in limited places
- High energy, long baseline → IceCube, PINGU, Hyper-K



## How to proceed?



### How to proceed?

 Find hint for non-unitarity can be done with leading order P, e.g., (implicit) order W<sup>2</sup> correction in disappearance channels

 $\left(\sum_{j=1}^{3} |U_{\alpha j}|^2\right)^2 = \left(1 - \sum_{J=4}^{N+3} |W_{\alpha J}|^2\right)^2 = 1 - \mathcal{O}(W^2)$ 

- This step is being done by many people: common to high-E and low-E UV
  - [24] S. Parke and M. Ross-Lonergan, "Unitarity and the three flavor neutrino mixing matrix," Phys. Rev. D 93 (2016) no.11, 113009 doi:10.1103/PhysRevD.93.113009 [arXiv:1508.05095 [hep-ph]].
  - [25] M. Blennow, P. Coloma, E. Fernandez-Martinez, J. Hernandez-Garcia and J. Lopez-Pavon, "Non-Unitarity, sterile neutrinos, and Non-Standard neutrino Interactions," JHEP 1704 (2017) 153 doi:10.1007/JHEP04(2017)153 [arXiv:1609.08637 [hep-ph]].
  - [38] S. Antusch and O. Fischer, "Non-unitarity of the leptonic mixing matrix: Present bounds and future sensitivities," JHEP 1410 (2014) 094 doi:10.1007/JHEP10(2014)094 [arXiv:1407.6607 [hep-ph]].
  - [39] F. J. Escrihuela, D. V. Forero, O. G. Miranda, M. Tórtola and J. W. F. Valle, "On the description of non-unitary neutrino mixing," Phys. Rev. D 92 (2015) no.5, 053009 doi:10.1103/PhysRevD.92.053009 [arXiv:1503.08879 [hep-ph]].
  - [40] E. Fernandez-Martinez, J. Hernandez-Garcia and J. Lopez-Pavon, "Global constraints on heavy neutrino mixing," JHEP 1608 (2016) 033 doi:10.1007/JHEP08(2016)033 [arXiv:1605.08774 [hep-ph]].
  - [41] F. J. Escrihuela, D. V. Forero, O. G. Miranda, M. Tórtola and J. W. F. Valle, "Probing CP violation with non-unitary mixing in long-baseline neutrino oscillation experiments: DUNE as a case study," New J. Phys. 19 (2017) no.9, 093005 doi:10.1088/1367-2630/aa79ec [arXiv:1612.07377 [hep-ph]].

Feb 12, 2018

Plus many more !!

### How to proceed? 2

- Then, if we see UV, the next step would be:
- Detect P leaking term  $C_{\alpha\beta}$
- Detect explicit W<sup>2</sup> corrections
  - To distinguish low-E UV from high-E UV
- So far, we only did "JUNO" with known flux
- Detecting  $C_{\alpha\beta}$  (in accelerator) requires near detector measurement
- T2K/T2HK → ND at 300m → OM for Δm<sup>2</sup>=3 eV<sup>2</sup>
   → ND before averaged out, if we limit to Δm<sup>2</sup>
   <~0.3 eV<sup>2</sup>
- W<sup>2</sup> terms → IceCube, Hyper-K atmospheric nu?

### Conclusion (1<sup>st</sup> part)

- Mixing parameter measurement in progress → looks converging
- Accumulating hints for lepton CP violation  $\delta \sim 3\pi/2$   $\delta$  could me measured much earlier than we thought?
- $\delta$  ~ 3\pi/2 implies NOvA could determine Nu mass ordering
- ~3 σ evidence for both CP and mass ordering before Hyper-K and DUNE?

### Conclusion (non-unitarity)

- General structure of nu oscillation in active nu sector of (3+N) unitary system is analyzed in vacuum and in matter in the context of low-E unitarity violation
- A new term, the "probability leaking term" found (leaking to sterile sector)

Distinguishes between Low-E vs High-E unitarity violation

- Conditions for sterile sector model-independent P in vacuum and in matter are elucidated  $m_J^2 > 0.1 \text{ eV}^2$
- Likely to be insensitive to sterile interactions

Feb 12, 2018

### Conclusion (non-unitarity2)

- JUNO analysis shows one can constrain UV in  $\nu_{\rm e}$  row at a high level
  - $C_{ee} \simeq 10^{-4}$ ,  $1-\Sigma |U_{ei}|^2 \simeq 0.01$  (both 1  $\sigma$ )
- Non-unitarity effect in the leading order (W<sup>0</sup>) seems sizeable in solar- and atm MSW regions (Probability level)
- generally requires L ~ 3000-10<sup>4</sup> km
- W<sup>2</sup> correction sizeable in limited L-E regions



distinguishes between low-E from high-E UV L ~ 3000-10<sup>4</sup> km



