
 Instituto de

 Física

Teór ica
UAM-CSIC

UNIVERSIDAD AUTÓNOMA DE MADRID

TESIS DOCTORAL

Anomalous Transport in
Hydrodynamics and Gauge/Gravity

Duality Out of Equilibrium

Autor:
Jorge FERNÁNDEZ PENDÁS

Director:
Dr. Karl LANDSTEINER

9 de octubre de 2019





iii

Many things can happen in four years, but none of them has as much of an impact
on you as the people you meet along the way.

I would like to start thanking Miguel Ángel Ramos Osorio, who acted as a guide
in the first days of my scientific career. Miguel Ángel, I learned from you the impor-
tance of professional honesty and excellence. You left us too early, but will always
be remembered.

Much of this thesis would not be the same without my supervisor, Karl
Landsteiner. My way of understanding physics has been forever altered by our dis-
cussions. Karl, I know how lucky I am by having you as my advisor. Your patience,
respect and trust are a happy anomaly.

My scientific brother, Christian Copetti, has been the best possible teammate.
As in a doubles game, one stayed in the net as the other served. I hope I have
contributed to your growth as much as you have contributed to mine.

I would also like to thank all the rest of my collaborators. Yan Liu and Matthias
Kaminski deserve a special mention because they have also been international ref-
erees for this thesis. Along with Matthias, I should also thank all the people from
Tuscaloosa that made my stay one of the most interesting periods of the PhD. An-
gela, Casey, Jana, Markus, Roshan... thank you for your hospitality and considera-
tion.

All the people that have been members of the IFT in the last years are responsible
for creating the right atmosphere for this thesis to be completed. However, I would
like to especially thank Thomas Biekötter, Iñaki Lara, Javier Martín, Diego Medrano,
Sebastián Montes, Javier Rodríguez-Laguna, Sara Saa and Nadir Samos for your
friendship and the long conversations... about everything. Good luck to everyone!

I am eternally grateful to Francisco Fernández and Diego Gutiérrez for their
friendship during our shared year in Madrid and their capability to make those
stressful times fun. I must confess that during the last four years I have missed
those lunches at Plaza Mayor.

Another close friend that shared some months with me in Madrid, although our
friendship started long before, is Fafa. Our mutual support during times of uncer-
tainty stays with us forever. With him, I would also like to mention the rest of my
non-Physics-related friends. You are too many to be included here, but achieve-
ments like this can only be made with a solid network of support.

My family has taught me so many things it is impossible to sum them all up here.
Your generosity and commitment have always shined a light on my path, and they
are an endless source of confidence and happiness. I love you so much!

I have saved the last words of gratitude for my partner. Paula, you have been
understanding and supporting me for almost nine years now, and I can safely say
that your contribution to this thesis is almost as important as mine. Your strength
and enthusiasm are my inspiration every day. Russian physicist Lev Landau once
said, “It is important to do everything with passion, it embellishes life enormously”.
My life is certainly more beautiful with you.

Thank you! Danke schön! Grazie mille! 谢谢! ¡Muchas gracias!





v

Summary

Anomalous transport has been a topic of great interest in the last decade. New dissi-
pationless contributions to the charge and energy currents arise due to the existence
of a chiral anomaly, which is the breaking at the quantum level of the chiral symme-
try.

Those transport phenomena are studied using holography because they are ex-
pected to be important in experimental setups at strong coupling. Moreover, we
know that the anomaly has the same value independently of the energy scale, so we
can expect to extract the universal behavior of anomalous transport by performing
our computations in the nonperturbative regime. Therefore, in this thesis we use the
AdS/CFT correspondence to study different features of anomaly induced transport.
Let us now summarize the content of each chapter.

In Chapter 1, anomalous transport is presented in relation to the experimental
setups in which it appears and the content of the other chapters is summarized. In
Chapter 2, all the theoretical background required for this thesis is introduced. In
particular, the chapter includes sections for anomalies, relativistic hydrodynamics,
linear response theory and holography. Both Chapters 1 and 2 serve as an introduc-
tion.

In Chapter 3, we explore how symmetries in gravity can be exploited to simplify
the computation of anomalous transport coefficients. In holography, the radial coor-
dinate of AdS is dual to an energy scale for the field theory. Therefore, holographic
renormalization group flows can be better understood through radially conserved
charges. It has been shown in previous works that the bulk gauge and diffeomor-
phism symmetries can be used to find conserved quantities associated to the charge
and heat currents. However, the application to anomalous transport is cumbersome,
because Chern-Simons terms in the action break gauge invariance and, moreover,
the gravitational Chern-Simons involves a higher number of derivatives. Neverthe-
less, we show that conservation laws can still be derived and they allow to obtain
the field theory observables in terms of quantities evaluated at the horizon.

In Chapter 4, we study a case in which it becomes evident that the construction of
membrane currents from Chapter 3 is necessary to compute the charge and energy
currents. Translation symmetry breaking is introduced through the use of spatially
linear scalar field backgrounds and a further coupling between the scalars and an
electromagnetic field is included to produce disorder on the charged sector. The
result we find is that the electric conductivity can vanish for certain values of the
translation symmetry breaking couplings, and the chiral magnetic and chiral vor-
tical conductivities are not affected by the inclusion of momentum relaxation and
charged disorder. This is to be expected from the dissipationless nature of anoma-
lous transport.

In Chapter 5, we study the holographic model of Weyl semimetals that was pro-
posed by our research group some months before the beginning of this PhD. Its
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main feature is the appearance of a topological quantum phase transition between
a topological phase with nonvanishing anomalous Hall effect and a trivial phase
without such effect. Our work has focused on studying the universality of this phase
transition as a function of the free parameters of the model and then extending the
computation of the anomalous Hall effect in the vector current to the analogous con-
tribution in the axial current. As a result, we find that the phase transition appears
for a large region of parameter space, and the axial Hall effect can be found to give
the expected value once a renormalization of the external axial fields due to their
coupling to the scalars is considered.

In Chapter 6, we extend the study of anomalous transport to out of equilibrium
setups. In order to do that, we use generalized Vaidya metrics with momentum
relaxation to induce sudden changes in the energy and charge of the system. As a
result, we find that the chiral magnetic effect presents a significantly large equilibra-
tion time that depends on the length of the Vaidya quench and the momentum re-
laxation parameter. We expect this to give some hints on the phenomenology of the
quark-gluon plasma produced in heavy ion collisions. In particular, we propose an
explanation of why the experimental results from the RHIC collider in Brookhaven
seem to be more compatible with anomalous transport than the ones from the LHC
in Geneva.

In Chapter 7, a discussion in English and Spanish of the work done and the
results obtained in this thesis is included. Finally, a list of all the references cited in
the chapters closes the thesis.
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Resumen

El transporte anómalo ha despertado gran interés en la última década. Nuevas con-
tribuciones no disipativas aparecen en las corrientes de carga y energía como conse-
cuencia de la existencia de una anomalía quiral, que es la rotura a nivel cuántico de
la simetría quiral.

La holografía permite estudiar estos fenómenos de transporte porque se espera
que sean importantes en sistemas experimentales en acoplo fuerte. Además, se sabe
que la anomalía tiene el mismo valor independientemente de la escala de energías,
así que podemos extraer el comportamiento universal del transporte anómalo a
través de cálculos en el régimen no perturbativo. Por tanto, en esta tesis usamos
la correspondencia AdS/CFT para estudiar diferentes aspectos del transporte in-
ducido por anomalías. A continuación resumiremos el contenido de cada capítulo.

En el Capítulo 1, presentamos el transporte anómalo en relación a los sistemas
experimentales en los que aparece y resumimos el contenido del resto de capítu-
los. En el Capítulo 2, se introduce todo el aparataje teórico necesario para esta tesis.
El capítulo posee secciones sobre anomalías, sobre hidrodinámica anómala, sobre
teoría de respuesta lineal y sobre holografía. Ambos Capítulos 1 y 2 sirven de intro-
ducción.

En el Capítulo 3, exploramos cómo las simetrías en gravedad pueden ser usadas
para simplificar el cálculo de los coeficientes de transporte anómalo. En holografía,
la coordenada radial de AdS es dual a una escala de energía de la teoría de cam-
pos. Por tanto, los flujos del grupo de renormalización holográfico se pueden en-
tender mejor utilizando cargas conservadas radialmente. En trabajos previos se ha
mostrado que las simetrías gauge y de difeomorfismos del bulk permiten encontrar
cantidades conservadas asociadas a las corrientes de carga y calor. Sin embargo, la
aplicación de estos resultados a transporte anómalo es completa porque los térmi-
nos de Chern-Simons de la acción rompen la invariancia gauge y, además, el tér-
mino Chern-Simons gravitacional incluye un número más alto de derivadas. Pese
a estas dificultades, mostramos que se pueden derivar leyes de conservación y es-
tas permiten la obtención de los observables de la teoría de campos en términos de
cantidades evaluadas en el horizonte.

En el Capítulo 4, estudiamos un caso en el que se hace evidente la necesidad de
utilizar las corrientes de membrana del Capítulo 3 para calcular las corrientes de
carga y energía. La simetría translacional está rota a causa de que los campos es-
calares presenten un perfil lineal en las coordenadas espaciales, y otro acoplo entre
los escalares y el campo electromágnetico es responsable de producir desorden en
el sector cargado. Como resultado de la no conservación del momento y de la in-
clusión de desorden, la conductividad eléctrica se anula para ciertos valores de los
parámetros de rotura de simetría translaccional, mientras que las conductividades
quiral magnética y quiral vorticial no cambian. Esto último es esperable a partir de
la naturaleza no disipativa del transporte anómalo.
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En el Capítulo 5, estudiamos el modelo holográfico de semimetales de Weyl que
fue propuesto por nuestro grupo de investigación algunos meses antes del inicio del
doctorado. Su principal ingrediente es la aparición de una transición de fase cuán-
tica entre una fase topológica con efecto Hall anómalo no nulo y otra fase trivial que
no presenta tal efecto. Nuestro trabajo se centra en el estudio de la universalidad
de la transición de fase, teniendo en cuenta su dependencia de los parámetros libres
del modelo, y en la extensión del cálculo del efecto Hall anómalo en la corriente vec-
torial a la contribución análoga en la corriente axial. Como resultado, encontramos
que la transición de fase aparece para una gran región del espacio de parámetros y
que el efecto Hall axial tiene el valor esperado una vez consideramos la renormali-
zación de los campos axiales externos por su acoplo a los escalares.

En el Capítulo 6, extendemos el estudio de transporte anómalo a sistemas fuera
del equilibrio. Con este objetivo, utilizamos métricas de Vaidya generalizadas con
la conservación del momento rota para producir cambios repentinos en la energía y
carga del sistema. Como resultado, encontramos que el efecto quiral magnético pre-
senta tiempos de equilibración largos que dependen de la duración de los quenches
y del parámetro de relajación del momento. Creemos que esto puede aportar pistas
sobre la fenomenología del plasma de quarks y gluones producido en las colisiones
de iones pesados. En particular, proponemos una explicación de por qué los resulta-
dos experimentales del colisionador RHIC de Brookhaven parecen más compatibles
con la existencia de transporte anómalo que los resultados del LHC de Ginebra.

En el Capítulo 7, se incluye una discusión en inglés y castellano del trabajo he-
cho y de los resultados obtenidos en esta tesis. Por último, una lista de todas las
referencias citadas en los capítulos cierra la tesis.
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Chapter 1

Introduction

Anomalies represent the breaking at the quantum level of a classical symmetry. Ex-
actly half a century has passed since they were first found. Anomalies are known
to be an essential feature of the quantum field theory formalism and it is thus nec-
essary to study them properly in order to grasp the physics of a model. However,
only recently they have been understood as the source of quantum transport (see
[94, 102] for reviews).

According to this, anomalies produce macroscopic effects in systems with an im-
balance of chiral fermions. Anomalous transport phenomena represent new contri-
butions to charge and energy currents proportional to magnetic field and vorticity,
and one of their most interesting properties is that they are dissipationless.

The fact that they are nondissipative means that they do not contribute to the
entropy production and they do not alter the capability of the system to produce
work. Since work can be computed as the dot product of force times displacement,
this can be seen in simple terms from the fact that both magnetic field and vortic-
ity are orthogonal to the force they produce. More rigorously, their dissipationless
nature can be seen from the fact that the transport coefficients are even under time
reversal and, therefore, they only appear on the hermitian part of the response func-
tion from linear response theory. We will come back at this when we review linear
response in Section 2.3.

The precise form of the transport coefficients is given by the following expres-
sions

~J =
e2µ5

2π2
~B +

eµµ5

π2 ~ω ,

~Jε =
eµµ5

2π2
~B +

(
µ2µ5

π2 +
µ3

5
3π2 +

µ5T2

3

)
~ω , (1.1)

where e represents the charge of the fermion, µ is the vector chemical potential, µ5

is the axial chemical potential, ~B is the magnetic field and ~ω is the vorticity. These
results are only a part of all the anomalous transport coefficients. In particular, we
have restricted ourselves to transport associated to the global axial anomaly. How-
ever, they are sufficient to gain some intuition about anomalous transport.

The expressions given by (1.1) can be better understood using a qualitative pic-
ture in which we analyze whether the fermions of different charges and helicities
align or anti-align with the sources. A graphical representation can be found in Fig-
ure 1.1, where we treat separately the terms proportional to the magnetic field and
the terms proportional to the vorticity. All this discussion fits perfectly the results
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~B

L- L+ R- R+
Magnetic
moment

Spin

Momentum

Charge
current

~ω

L- L+ R- R+

Spin

Momentum

Charge
current

FIGURE 1.1: Qualitative picture of the chiral magnetic and chiral vorti-
cal effects through a representation of the alignment or anti-alignment
of the fermion vectorial properties with the magnetic field and vorticity

for the different charges and helicities.

seen by substituting the charge e by ±1 and expressing the chemical potentials in
terms of the left-handed and right-handed chemical potentials, as µ = (µL + µR)/2
and µ5 = (µL − µR)/2. The argument and the graphical representation of Figure
1.1 are inspired by Figures 1 and 2 of [139], but we also extend it here to the energy
current, noticing that this should be equal to the momentum density.

This qualitative argument works as follows. An external magnetic field tends
to align the magnetic moments of all the particles in the fluid. However, the
fermions feel this alignment differently depending on their charge and helicity.
Those with positive charge have their spin parallel to the magnetic moment and,
therefore, parallel to the magnetic field. Those with negative charge, on the con-
trary, have their spin anti-parallel to the magnetic field. However, helicity makes
reference to the alignment of spin and momentum. This means that left-handed
fermions possess a motion parallel to their spin while the momenta of right-handed
fermions anti-aligns with their spin. The energy current can be simply taken to be
the momentum density, because of the symmetry of the energy-momentum tensor
i.e. T0i = Ti0. Thus, positively-charged left-handed and negatively-charged right-
handed fermions give a contribution aligned with the magnetic field, while the other
two combinations of charge and helicity anti-align. On the other hand, the contri-
bution to the charge current can be found to be proportional to the multiplication
of momentum times charge, so in the end the charge current separates the fermions
according to their chirality.

If we look at the transport coefficients associated to the vorticity, there is an anal-
ogous argument. The spins tend to align with the vorticity. Therefore, the momenta
are parallel to the vorticity for left-handed fermions and they are anti-parallel for
right-handed fermions. As a result, the energy current, which reduces to the mo-
mentum density, behaves like momenta for the different species and separates the
fermion according to their chirality. The charge current, however, can be obtained
as the charge times the momenta. As a consequence, the current aligns with the
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vorticity for negatively-charged left-handed fermions and positively-charged right-
handed fermions, while it anti-aligns for the other two combinations of charge and
helicity.

For a long time, these contributions to the currents were not considered in relativis-
tic hydrodynamics because they required parity breaking. They were first proposed
in the late 1970s by Vilenkin [147], who connected them to the parity violation as-
sociated to neutrinos in the context of the Standard Model. Fermions in a rotating
system were considered in these works and they were found to produce a current
along the axis as a result of the coupling of their spin to the angular momentum.
Thus, for a chiral imbalance like the one associated to neutrinos this would give rise
to a net current. Vilenkin also extended this result to magnetic fields [146] and, after
this, there were some sporadic works that studied anomalous transport.

However, not much attention was paid to them until they were rediscovered
more than twenty years later in different contexts almost simultaneously. From
holography to hydrodynamics, passing by kinetic theory, several works started a
new era of interest on the topic. One of the most well-known works is that of Son
and Surowka, where a systematic study of the consistency of the hydrodynamic ex-
pansion allows them to find that terms proportional to magnetic field and vorticity
are not only possible but required in order to satisfy the local version of the second
law of thermodynamics [130].

Although it could fix most of the transport coefficients, the entropy current
method used in [130] kept some of the coefficients undetermined. In particular,
they were the ones proportional to the temperature squared. However, some years
later, it was found that the unfixed coefficients were actually related to the mixed
gauge-gravitational anomaly [107]. This seemed particularly striking because that
part of the anomaly is of higher order in derivatives, so a contribution from it in the
low momentum expansion of hydrodynamics was expected to be subleading. With
holography, however, the connection to the gravitational contribution of the chiral
anomaly was confirmed [108] and it is now a well-established result. A particularly
notable aspect of this link to the mixed gauge-gravitational anomaly is that it has
been measured in a condensed-matter system recently [57].

In fact, anomaly induced transport appears in many condensed matter systems.
For example, a family of systems whose transport phenomena can be explained by
the axial anomaly are Weyl semimetals. This exotic state of matter, whose quasipar-
ticles are chiral fermions, presents anomalous Hall effect. Although this transport
phenomenon was known before its connection to the anomaly and it is called like
that because it does not require the application of an external magnetic field, the
naming seems to be premonitory.

The Weyl spinors that describe the quasiparticles of Weyl semimetals always
appear in pairs. The band structure of Weyl semimetals, then, is characterized by
pairs of cones in which each cone is associated to one of the fermions in a pair. The
axial anomaly gives rise to a contribution in the charge current orthogonal to the
electric field, and the transport coefficient associated is proportional to the difference
between the chemical potentials of the cones in a pair and the separation of the
nodes in momentum space. In Chapter 5, we further comment on a holographic
model of Weyl semimetals.
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However, these are not the only experimental system where anomalous trans-
port is expected to be of crucial importance. The most famous one is actually heavy
ion collisions. The interest of heavy ion collisions is that they allow the study of
strongly interacting matter in a system that is expected to behave qualitatively dif-
ferent from smaller setups like collisions of protons. The system that results after
the collision is typically anisotropic due to the almond shape of the overlapping
region of the two colliding objects. However, some experimental results are quite
surprising.

First of all, the average shape of the resulting system is indeed that of an al-
mond but, when analyzed per-event, the anisotropy can be extreme. Furthermore,
the strongly interacting matter that appears due to the collision of the ions behaves
like a fluid and, moreover, it begins to do it a tiny amount of time after the collision
happens. Quite surprisingly, it can be very well approximated by ideal hydrody-
namics. Thus, it must possess a very small viscosity to entropy ratio, which can be
related to a strong coupling among the constituents of the fluid. This ideal fluid of
strongly-interacting matter is known as the quark-gluon plasma. It is the part of the
QCD phase diagram that appears at high temperature and quark chemical potential
[131].

However, it is not clear whether ideal hydrodynamics represents the whole story.
The spectators, the parts of the colliding ions that keep their trajectory, produce a
strong magnetic field that decreases rapidly in time. In principle, due to the highly
out of equilibrium nature of heavy ion collisions, there might be chiral imbalances
in the quark-gluon plasma produced by the QCD contribution to the axial anomaly
and in that case the chiral magnetic effect would give an important contribution to
the transport inside the plasma. So far, no clear experimental evidence seems to
confirm the appearance of anomaly induced transport in heavy ion collisions but
the results from Relativistic Heavy Ion Collider (RHIC) at Brookhaven seem to be
more compatible with it than those from the Large Hadron Collider (LHC) at CERN,
in Geneva.

Heavy ion collisions are highly out of equilibrium processes and in Weyl
semimetals the out of equilibrium behavior features a very interesting phenomenon
called negative magneto-resistivity [129]. Therefore, it might seem reasonable to
study nonequilibrium anomalous transport from these applications to experimental
setups. However, there is a theoretical motivation too. A result known as Bloch the-
orem states that any gauge current must vanish in equilibrium [154]. As a result, it
seems quite clear that anomalous transport is deeply related to non equilibrium.

Moreover, anomalous transport is also expected to play a significant role in astro-
physical systems. Already from the early works about parity violating transport in
the 1980s, these currents were connected to the existence of cosmic magnetic fields
[139]. Furthermore, anomalous transport has been proposed as an explanation for
neutron star kicks [92]. Neutron stars possess much higher velocities than the star
from which they form and there are many available explanations for this behavior
in the literature. The main issue making it difficult to choose among the different
possibilities is that it is still not clear whether there is a correlation between the in-
crease in velocity and any of the other vectorial magnitudes involved, like the spin
or magnetic fields. However, the results in [92] could in principle explain the obser-
vations even at the quantitative level, giving rise to velocities of the correct order of
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magnitude.
Let us conclude these enumeration of the applications of anomalous transport

to experimentally accessible systems with a very recent one related to quantum in-
formation. Since this is very far from the scope of the thesis, we will not comment
much on it. However, the basic motivation for proposing anomalous transport as a
new tool for quantum computation is exploiting the topological protection and non
dissipative nature of the chiral magnetic effect in order to obtain qubits with longer
coherence times than the currently available ones [95].

The gauge/gravity duality has proved itself to be a very valuable technique for
studying anomalous theories at strong coupling. Anomalies are introduced in
holography simply adding Chern-Simons terms to the action [49, 17], and then the
usual holographic dictionary can be used to systematically compute n-point func-
tions. As we will see in Section 2.3, retarded Green’s functions can be related to
linear responses, so in holography weak coupling gravitational computations allow
us to compute transport coefficients at strong coupling. Since anomalies do not get
renormalized, we do not expect the anomaly induced transport to depend on the
energy scale. Furthermore, in this language nonequilibrium is introduced very nat-
urally. It just corresponds to time dependence on the gravity side.

In this thesis we include our work done using the gauge/gravity duality during
the four years of PhD. Along the different chapters of the thesis, we make connection
between the anomalous transport and the holographic RG flow, we establish the
independence of the transport coefficients on momentum relaxation and disorder
parameters, we study the holographic model of Weyl semimetals and we analyze
the out of equilibrium dynamics of the chiral magnetic effect.

These chapters are simultaneously varied and internally connected, although we
could separate them in two parts. The first one is mainly of theoretical interest. It
involves Chapters 3 and 4, which are based on [36, 38], respectively. The connec-
tion to the holographic RG flow from Chapter 3, which is quite technical due to the
construction of conserved currents in gravity through Wald’s procedure, allows us
to link different arguments from the literature and find a simple way of computing
anomalous transport coefficients from quantities evaluated at the horizon. Then,
this discussion is supplemented in Chapter 4 with a first nontrivial example where
the new contributions to the stress tensor, which were proposed in the previous
chapter just from considerations about the niceness of their RG transformations, are
shown to give an important contribution. As a result, it can be seen that momentum
relaxation and disorder do not have any effect on anomalous transport, which was
somehow expected from the nondissipative nature of these phenomena.

The other part has a more applied spirit and it involves Chapters 5 and 6, which
are based on [37, 51], respectively. In fact, the former is mainly related to a con-
densed matter system, Weyl semimetals, while the results of the latter might be use-
ful for the phenomenology of the quark-gluon plasma. As already discussed above,
Weyl semimetals present anomalous Hall effect. We can thus propose a holographic
model that describes the physics of Weyl semimetals at strong coupling. This was
done by our research group some months before this PhD started and in Chapter 5
we include some further work on the model. In particular, the universality of the
bottom-up model is checked and the results about the anomalous Hall effect are ex-
tended to its axial counterpart. In Chapter 6, on the other hand, we introduce out
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of equilibrium dynamics in holography through Vaidya metrics with momentum
relaxation and compute the one-point functions of the charge currents. The main re-
sult is that the currents take some time before they build up. Since at higher energies
the magnetic fields in the quark-gluon plasma decay earlier, we propose that such a
lapse of time before there is an anomaly induced contribution to the current might
give an explanation of why the experimental results from RHIC at Brookhaven seem
to be more compatible with the appearance of anomalous transport than those from
the LHC at CERN, in Geneva.

The projects were not developed in the order they are presented here, but we
have decided to place them in such a way that the logic of the thesis is the best
possible. The publication on which Chapter 3 is based appeared later than the one
associated to Chapter 4, but the developments of membrane currents from Chapter
3 were crucial to conclude the fact that anomalous transport coefficients are inde-
pendent of the introduction of momentum relaxation. Chapter 5 is based on my
first publication, which appeared at a time when the model of holographic Weyl
semimetals had just been proposed. However, it has a more applied nature so it
connected better with the last project. This last project, finally, gives rise to Chapter
6, where we include the extension to out of equilibrium contexts.

Let us close this introduction with some comments about the general structure of
the thesis. Besides the chapters about the projects, the thesis has an introduction to
the theoretical background necessary to understand anomalous transport in holog-
raphy in Chapter 2 and some concluding remarks in Chapter 7. The chapters about
our original work are based on one publication each, as discussed above, and they
all possess the same structure. First, they include a section called Motivation, where
we explain the reasons to begin the project and we relate it to other approaches in
the literature. After that, we introduce the holographic model, the techniques used
and all the details about the computations. Then, we report the results. Finally,
all those chapters end with a section called Discussion, where we comment on the
results and make some per-project concluding remarks.
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Chapter 2

Theoretical foundations

All the projects covered in this thesis revolve around the same physical phenomena:
anomalous transport [102]. In order to understand the context of this work, then,
one needs to understand anomalies, relativistic hydrodynamics and linear response
theory. In the current chapter we will cover those topics and also include a brief
introduction to the formal aspects of the gauge/gravity duality.

2.1 Anomalies in quantum field theory

In modern day theoretical physics there is a big emphasis on the understanding of
symmetries. They are related through Noether’s theorem to conserved quantities,
but they also allow to classify different models and establish dualities between them.
In some cases quantum mechanical corrections can break those symmetries and in
those situations we refer to this breaking as an anomaly. Characterizing anomalies
properly is fundamental to understand the physics of the theory. Let us imagine,
for example, a theory that is scale invariant. If there is a breaking of the symmetry
at the quantum level, then the coupling constants will be allowed to run along the
renormalization group flow, giving rise to different dynamics at different energy
scales. This is for example what produces in QCD such different phenomena as
asymptotic freedom and confinement.

Although they are usually thought to be, anomalies are not necessarily patholog-
ical. The former example exemplifies this perfectly, where the physics of different
scales only arise due to an anomaly. We could say, in general, that they are not prob-
lematic for global symmetries. In those cases, the anomaly just means that the sym-
metry is no longer present at the quantum level. No particularly profound property
of the theory is broken.

On the contrary, anomalies associated to gauge symmetries are disastrous and
they have to be canceled at all costs. We will meet this type of anomalies at several
points in this section and we will consistently insist on the necessity to cancel them.
The reason why they are a big problem is that gauge symmetry is not a regular
symmetry. It is a redundancy included in order to keep our theories manifestly local
and Lorentz invariant. However, the price to pay is the introduction of negative or
zero norm states. The contribution of these degrees of freedom has to be canceled in
order to keep unitarity, but if the anomaly breaks gauge symmetry this is no longer
possible, making the theory inconsistent. The solution then reduces to canceling the
anomaly, which imposes nontrivial constraints on the theory.
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We will only be concerned here about the axial and chiral anomalies, since they
are the ones that have associated transport phenomena. The axial anomaly, which
was the one first encountered by Adler, Bell and Jackiw, is a global anomaly, while
the chiral anomaly is a gauge anomaly. We will treat them separately in order to
make this distinction clear. After that we will briefly comment on how they change
for nonabelian theories and how one can use global symmetries to constraint the
spectrum of the theory. Then we briefly discuss the gravitational anomalies and, fi-
nally, we introduce the consistency conditions and the descent equations, that allow
to obtain the anomalies in a systematic way from a differential geometry reasoning.
At the end of this section, we discuss the different definitions of the currents .

There are more topics that could be covered, like Fujikawa’s method or the re-
lation to index theorems. However, we have restricted ourselves to the more basic
topics necessary to understand the interest of our work. For more complete reviews,
the reader might resort to the books and reviews available in the literature [25, 26,
53, 72]

2.1.1 The global axial anomaly

The axial anomaly was the one that debuted the study of anomalies in quantum
field theory. It first appeared in the literature as a contradiction between the per-
turbative computation of the decay rate of a neutral pion into two photons and the
expected vanishing of the effective coupling constant of that decay from combining
gauge symmetry and the partially conserved axial current hypothesis [24, 1]. We re-
view here their result, as a prologue to discussing the more interesting chiral gauge
anomalies in the Section 2.1.2.

Let us consider quantum electrodynamics (QED) in 4 dimensions

SQED =
∫

d4x
[

ψ̄
(
iγµ∂µ −m

)
ψ− 1

4
FµνFµν − eψ̄γµ Aµψ

]
. (2.1)

It presents the well-known U(1) gauge symmetry

ψ→ eiαψ , Aµ → Aµ + ∂µα ,

and it thus has an associated conserved current

Jµ = ψ̄γµψ ,

the electromagnetic current. This current satisfies the continuity equation

∂µ Jµ = 0 , (2.2)

which assures charge conservation. Massless QED also has a global axial symmetry

ψ→ eiαγ5ψ ,

whose associated current is
Jµ
5 = ψ̄γµγ5ψ .
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This current satisfies in general the following continuity equation

∂µ Jµ
5 = 2imψ̄γ5ψ . (2.3)

This identity, known as the pseudovector-pseudoscalar equivalence, shows explic-
itly that it is only a classically conserved current in the massless limit. Both currents
are quantities that at the quantum level are to be conceived as composite opera-
tors. Anomalies in this context will appear if either (2.2) or (2.3) get a quantum
correction. The conservation of the axial current is not crucial for the survival of the
theory. However, the vector current must remain conserved after renormalization
because it is, as discussed above, associated to a true gauge symmetry.

Let us concentrate on the axial current. We take the electromagnetic field in (2.1)
to be a external field. As a result, the kinetic Maxwell term vanishes and the inter-
action term in the action will be the only surviving one involving Aµ. Performing
a perturbative expansion in small coupling constant e in the path integral formal-
ism, we can find an expression for the quantum corrections to the axial current’s
conservation

〈∂µ Jµ
5 〉 =

1
Z

∫
DψDψ̄ ∂µ Jµ

5 ei
∫

d4x[ψ̄(iγµ∂µ−m)ψ−eJµ Aµ]

=
1
Z

∫
DψDψ̄ ∂µ Jµ

5 eiS f

[
1− ieJν Aν −

e2

2
Jν Aν Jρ Aρ +O(e3)

]
,

where Z stands for the full QED partition function, S f stands for the massive
fermion action and we have rewritten the last term in (2.1) as −eJµ Aµ. We are delib-
erately abusing notation in this expression in order to avoid cluttering. Please note,
however, that every Jµ Aµ depends on a different spacetime coordinate and there is
an associated integral over such coordinate with each of these terms, as will be clear
below in (2.4).

It can be seen by use of properties of the gamma matrices that only traces involv-
ing an odd number of gamma matrices will contribute in the presence of the γ5 from
Jµ
5 , so the first correction is given by the term with e2 in the previous expansion

〈∂µ Jµ
5 (x1)〉 = −

e2

2

∫
d4x2

∫
d4x3〈T

[
∂µ Jµ

5 (x1)Jν(x2)Jρ(x3)
]
〉Aν(x2)Aρ(x3) +O(e3) ,

(2.4)
where T stands for time ordering. Using Feynman diagrams, it can be seen that this
contribution is given by the well-known triangle diagrams in Fig. 2.1. Since A is
now an external field, the interpretation of the path integral as the triangle diagrams
amounts to using the Wick theorem to contract the spinors from the definitions of
the currents and keeping two external field insertions. The computation of the tri-
angles is already covered in many reviews and books, so we will only comment on
the interesting aspects of it.

The integrals that have to be performed are ambiguous because they are linearly
divergent. They depend on the labeling of the fermion loop momenta and there is in
principle total freedom to choose the labeling. However, there is a simple procedure
exploiting symmetries that allows to fix the loop momenta labeling from conditions
on the external legs and get the final result.



10 Chapter 2. Theoretical foundations

Jµ
5

Jν

Jρ

Jµ
5

Jρ

Jν

FIGURE 2.1: Triangle diagrams contributing to the axial anomaly for
an abelian gauge field in four dimensions. The diagrams were created

using TikZ-Feynman [48].

The first step is using Lorentz invariance to write down all the possible tensor
structures that contain the two independent external momenta and one Levi-Civita
tensor. The final result of the computation in momentum space will necessarily
have this structure and we know there will be a Levi-Civita symbol present because
of having a γ5 in the amplitudes. Therefore, we have turned the computation of
the triangles into the computation of the coefficients accompanying the different
tensor structures. Naively, the number of undetermined coefficients is eight, but
applying the fact that the amplitudes should be invariant under the exchange of
the two vector currents reduce them to four. Finally, from dimensional analysis it
becomes obvious that only one of the four coefficients involves a divergent integral.

At this point we need to impose some further symmetry in order to obtain a
well-defined result. Certainly, it seems reasonable to impose gauge invariance with
respect to the electromagnetic U(1) symmetry, because we have discussed we want
to preserve this symmetry. The Ward identities tell us that the two external momenta
associated to the electromagnetic currents must be transverse to the amplitude, and
this fixes the labeling of the internal momenta. In fact, this condition constrains
the value of the divergent coefficient in terms of the other coefficients and all the
independent integrals become convergent in the end. One gets to the final result,
which in real space reads

〈∂µ Jµ
5 〉 = 2im〈ψ̄γ5ψ〉+ e2

16π2 εµνρσFµνFρσ . (2.5)

This is precisely the famous result known as Adler-Bell-Jackiw anomaly [24, 1].
Let us go back to the freedom of choice for the loop momenta. If one performs

the computation in general, with arbitrary shifts of the internal momenta propor-
tional to the external ones, it is straight-forward to check that one cannot preserve
at the same time the electromagnetic gauge symmetry and the global axial symme-
try. This will be much better understood in the next section when we discuss gauge
anomalies.

The anomaly (2.5) appears at first order in h̄ because it is a one-loop computation.
However, one could wonder if there are also nonvanishing contributions to the axial
current’s one-point function from diagrams with higher number of loops. It was
shown by Adler and Bardeen that those diagrams do not have any contribution in
their celebrated Adler-Bardeen nonrenormalization theorem [2].
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2.1.2 The chiral anomaly

In this work we are interested on transport induced by the chiral anomaly, so we will
now move on to the study of this anomaly. It will also help us better understand the
anomaly associated to the global axial current. Hopefully, all the obscure aspects of
the previous section will become clear now.

The notion of chirality applies in general to phenomena that are not equivalent
to their mirror image. In the context of quantum field theory, it appears as a well-
defined notion for fermions in even dimensions, since the Lorentz group possesses
two unitarily inequivalent spinor representations in those situations. This produces
two different types of spinors. They receive the name of left- and right-handed
because in the massless limit they present definite helicity, which is the projection of
spin onto momentum. Parity transformations exchange one representation by the
other, reversing helicity. Therefore, if the theory is parity-invariant, there will be the
same number of left- and right-handed fermions, so chiral anomalies will only arise
in theories that break parity.

In the massless limit the theory is symmetric under transformations in which the
two sectors transform with different phases. The chiral anomaly shows up precisely
because at the quantum level only a linear combination of those two rotations can
be a symmetry. Then, we will begin our discussion considering massless fermions
in the chiral representation of the gamma matrices in 4 dimensions

γ0 =

(
0 12
12 0

)
, γi =

(
0 σi
−σi 0

)
, γ5 ≡ iγ0γ1γ2γ3 =

(
−12 0

0 12

)
,

where i = 1, 2, 3 and σi stands for the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

The definition of the γ5 allows us to define the projectors

ψL = PLψ =
1
2

(
14 − γ5

)
ψ =

(
12 0
0 0

)
ψ ,

ψR = PRψ =
1
2

(
14 + γ5

)
ψ =

(
0 0
0 12

)
ψ .

We now take a theory of massless fermions which are coupled chirally to two
external gauge fields. One of the gauge fields, Lµ, couples only to the left-handed
fermion with charge qL and the other gauge field, Rµ, couples only to the right-
handed fermion with charge qR. The choice of this action stems from an educated
guess that will allow us to study the two chiral symmetries in play. The action reads

S =
∫

d4x
[
iψ̄γµ∂µψ− qLψ̄γµLµPLψ− qRψ̄γµRµPRψ

]
.
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As already advanced in the text above, this action possesses two classical gauge
symmetries. The first one is given by transformations

ψ→ PRψ + eiqLαL PLψ , Lµ → Lµ + ∂µαL ,

and its associated conserved current is

Jµ
L = qLψ̄γµPLψ .

The other symmetry is defined as

ψ→ PLψ + eiqRαR PRψ , Rµ → Rµ + ∂µαR ,

and its associated conserved current is

Jµ
R = qRψ̄γµPRψ .

Both of them satisfy the following classical conservation equations

∂µ Jµ
L = ∂µ Jµ

R = 0 .

Now, in order to analyze the anomaly, we need to check how these last equations
change at the quantum level. For simplicity, let us treat both currents separately.

We first consider the case in which qR vanishes. There will only be one gauge
symmetry present and, thus, only one current. From the perturbative expansion at
small qL of the path integral expression of 〈∂µ Jµ

L〉, we arrive at an equation analo-
gous to (2.4) where, instead of an axial current and two vector currents in the time-
ordered correlator, we have three left-handed currents. The chiral anomaly for the
left-handed current is thus given also by a triangle. Now, the three vertices are asso-
ciated to the left-handed coupling and the amplitude then comes with a prefactor q3

L.
If we had considered vanishing qL and nonvanishing qR, everything would look the
same, except for the gauge couplings and projectors involved in the definition of the
right-handed currents. Those changes only amount to a slightly different prefactor
−q3

R.
The computation of the rest of the amplitude is essentially the same for both

cases, and analogous to the one for the axial anomaly in previous section. Projec-
tion operators have the property that applying them twice yields the same result as
applying them once, P2

L,R = PL,R, so only one out of the three projectors survives
in each of the amplitudes. Besides that, we already commented on the fact that the
presence of one γ5 is necessary for the amplitude not to vanish, so we can drop the
unity matrices in the surviving projection operators. The origin of the different sign
in the prefactors of the amplitudes is thus the sign of the γ5 in the projectors.

The ambiguities present in the computation of the global anomaly persist. How-
ever, the criterion to fix the labeling of the loop momenta is not obvious here, be-
cause we do not have the same symmetries. In the previous case, it was rather
obvious that the electromagnetic symmetry was the one that had to remain present,
while the axial symmetry could be broken at the quantum level. Here, we are treat-
ing the two different symmetries one at a time and both are true gauge symmetries.

Therefore, there are two possibilities that could seem physically plausible. We
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can impose Bose symmetry among the three legs because the inserted currents are
the same for the three vertices. This gives the result

〈∂µJ µ
L,R〉 = ±

q3
L,R

96π2 εµνρσFµνFρσ ,

which is known as the consistent anomaly. Please note that we include a generic
Fµν to avoid cluttering, but this field-strength is the curvature associated to Lµ or Rµ

depending on each case.
We could also impose this current to couple covariantly to the external gauge

fields. In that case we need to enforce the Ward identity (the amplitude is transverse
to the external momenta) in two of the three vertices. This gives the result

〈∂µ JL,R〉 = ±
q3

L,R

32π2 εµνρσFµνFρσ , (2.6)

and it is known as the covariant anomaly. More on the distinction between the con-
sistent and the covariant form of the anomaly will be said in Section 2.1.7. However,
at this point we can already notice that anomalies allow for different definitions of
the quantum currents.

Let us now revisit the axial anomaly. If we consider the case in which the chiral
gauge couplings are equal for left- and right-handed fermions (qL = qR ≡ q), the
action can be rearranged as

S =
∫

d4x
[

iψ̄γµ∂µψ− qψ̄γµ

(
Rµ + Lµ

2

)
ψ− qψ̄γµ

(
Rµ − Lµ

2

)
γ5ψ

]
.

We interpret the interaction terms as couplings to vector and axial gauge fields

Vµ =
Rµ + Lµ

2
, Aµ =

Rµ − Lµ

2
. (2.7)

Furthermore, we can define vector and axial currents as the quantities that couple
in this action to the external vector and axial fields, thus giving a definition of them
formally equal to the one obtained from QED in the previous section. Please note
that the gauge field that is equivalent to previous section’s Aµ is Vµ. The same
notation with a vector and an axial field we are using here will be again used in
Chapters 5 and 6.

The vector and axial currents have an expression in terms of the left-handed and
right-handed consistent currents which reads

J µ = J µ
R + J µ

L , J µ
A = J µ

R −J
µ
L . (2.8)

As will be later explained, they are expressed in terms of consistent currents because
they come from the variation of the action. Using the previous expressions of the
consistent anomaly, we can write the anomaly in this basis for a single fermion with
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charge q = 1 as

〈∂µJ µ〉 =− 1
24π2 εµνρσFµνF5

ρσ ,

〈∂µJ µ
5 〉 =−

1
48π2 εµνρσ

(
FµνFρσ + F5

µνFρσ

)
,

where Fµν is the field-strength of Vµ and F5
µν is the field-strength of Aµ. This result

looks worrisome because we have two gauge symmetries that are broken at the
quantum level. However, while before we had two gauge symmetries that were
sort of equivalent, now we have an asymmetry between them.

Fortunately, each symmetry has a clear physical meaning and we can exploit
that to interpret this result. It essentially boils down to the fact that we have to
cancel the anomaly on the vector gauge symmetry at all cost. This is the current that
couples to Maxwell’s equations and consistency of the equations imposes vanishing
of the divergence of the current. However, we have in principle no need to cancel
the anomaly for the axial one so it is safe to drop axial symmetry as a true gauge
symmetry. Once we do this, we can redefine our action, and currents, with terms
that would otherwise be gauge dependent.

These terms that we add to the effective action are called Bardeen counterterms
and in general they read

ΓB =
∫

d4xεµνρσVµ Aν

(
aFρσ + bF5

ρσ

)
.

The variation with respect to the vector field∫
d4xεµνρσδVµ

(
Aν

(
2aFρσ + bF5

ρσ

)
− aVνF5

ρσ

)
,

gives a term that is now added toJ µ. Taking the divergence of this new contribution
to the current, it is quite straight-forward to check that we must take a = − 1

12π2 and
b = 0 in order to cancel the anomaly of the vector current.

We can now take the variation of the counterterm with respect to the axial field
in order to see how the axial anomaly changes∫

d4xεµνρσδAµ

(
−Vν

(
aFρσ + 2bF5

ρσ

)
+ bAνFρσ

)
.

Taking the divergence of this last term and substituting the values of a and b ob-
tained above, we can get to the final expression of the axial anomaly

∂µ〈J µ〉 =0 ,

∂µ〈J µ
5 〉 =−

1
16π2 εµνρσ

(
FµνFρσ +

1
3

F5
µνF5

ρσ

)
.

Please note that the first term of this form of the axial anomaly is equal to the one
we obtained for the global axial symmetry.
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2.1.3 Extension to the non-abelian case

In this section, we cover how the results change for the non abelian case. We first
consider the counterpart of the global axial anomaly to then move on to the chiral
anomaly. Only the second one is pathological so we will also discuss the anomaly
cancellation conditions at the end of the section.

We consider a fermion theory with an external non abelian gauge field. It is
very similar to the QED action (2.1), except for the fact that now the gauge field
comes with a generator of the algebra which is also present in the definition of the
conserved current, according to

Aµ = Aa
µTa , Jµ = ψ̄γµTaψ .

Similarly to QED, global axial transformations are also a classical symmetry in the
massless limit. They possess the same associated conserved current and the latter
also satisfies the pseudovector-pseudoscalar equivalence (2.3).

When one tries to compute the axial anomaly, the first diagrams involved are the
same ones as for the abelian case, up to group factors that appear due to the non-
abelian coupling in the vector vertices. The computation of these triangle diagrams
works in the same way as the abelian case, too. However, the result is gauge depen-
dent. It becomes then obvious that one needs to also include the next diagram: a
box diagram with three vector vertices. The final gauge invariant result reads

〈∂µ Jµ
5 〉 =

g2

4π2 εµνρσ∂µTr
(

Aν∂ρ Aσ +
2
3

Aν Aρ Aσ

)
,

and is known as the singlet anomaly. The three diagrams involved are the ones in
Fig. 2.2 and there is no further contributions to the global anomaly.

This form of the anomaly, written as the exterior derivative of the Chern-Simons
3-form, can be arranged to be formally equal to the abelian anomaly but with the
non abelian field strengths. Moreover, the diagrams have a property with deep
consequences. There is one more diagram than for the abelian case but it comes with
a prefactor that is equal to the one for the triangles. Therefore, anomaly cancellation
imposes only one constraint for the nonabelian case.

Let’s now move on to the gauge anomaly for the nonabelian case. For simplicity, we
consider the action of a Dirac fermion coupled to external non abelian left and right
fields with the same charge q = 1. The action reads

S =
∫

d4x
[
iψ̄γµ

(
∂µ − iLa

µTa
)

PLψ + iψ̄γµ
(

∂µ − iRa
µTa
)

PRψ
]

.

In this theory there are two different gauge fields with associated symmetry trans-
formations

ψ→eiαa
LTa

PLψ + eiαa
RTa

PRψ ,

Lµ ≡ La
µTa →eiαa

LTa
∂µe−iαa

LTa
+ eiαa

LTa
Lµe−iαa

LTa
,

Rµ ≡ Ra
µTa →eiαa

RTa
∂µe−iαa

RTa
+ eiαa

RTa
Rµe−iαa

RTa
.
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FIGURE 2.2: Triangle and box diagrams contributing to the global axial
anomaly for a nonabelian gauge field in four dimensions. The symbols
at the vertices of the loops stand for the gauge factors that need to be
included for the vector couplings. The diagrams were created using

TikZ-Feynman [48].

However, the main new ingredient is that the conservation of the current is no
longer the same, since the currents are only conserved with respect to the covariant
derivative. Therefore, the equations whose quantum corrections we need to analyze
in order to study the nonabelian chiral anomaly read

∂µ(Ja
L)

µ + f abcLb
µ(Jc

L)
µ = 0 ,

∂µ(Ja
R)

µ + f abcRb
µ(Jc

R)
µ = 0 ,

where f abc is defined by the algebra
[
Ta, Tb] = i f abcTc.

It might be convenient to use the basis introduced in (2.7) and (2.8) with the
appropriate extension to the non abelian case. In terms of these new fields and
currents, the conservation equations read

Dµ(Ja)µ ≡ ∂µ(Ja)µ + f abcVb
µ (Jc)µ + f abc Ab

µ(Jc
5)

µ = 0 ,

Dµ(Ja
5)

µ ≡ ∂µ(Ja
5)

µ + f abcVb
µ (Jc

5)
µ + f abc Ab

µ(Jc)µ = 0 .

We start the computation of the quantum corrections to this last equation by ex-
panding perturbatively in a way analogous to (2.4), which tells us which diagrams
have to be calculated. In the abelian case, as we saw in (2.4), only terms with two
gauge fields contributed to the triangle because the third vertex was associated to
the divergence. Here, the triangle will also get contributions with three gauge fields.
Furthermore, there will be nonvanishing contributions from the box diagram and
also from the pentagon. The triangle is still linearly divergent, but the box is log-
arithmically divergent and the pentagon is convergent. All the new contributing
diagrams are depicted in Fig. 2.3, where exchange of the different equivalent legs
has to be performed in order to obtain the consistent anomaly.

These diagrams involve group theory factors coming from the different vertices.
Interestingly, as it happens for the global case, the group theory factor of the rest
of the diagrams is proportional to the one coming from the triangle. Therefore,
the anomaly could be canceled through the vanishing of the triangle prefactor. For
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FIGURE 2.3: Diagrams that have to be added to the ones in Fig. 2.2 in
order to compute the Bardeen anomaly in four dimensions. This is a
schematic representation. The appropriate group factors and external
momenta indexes should be included for the different vertices. The

diagrams were created using TikZ-Feynman [48].

nonabelian groups the anomaly coefficient reads

Tr
[

Ta
{

Tb, Tc
}]

= 0 .

In fact, in those cases in which there are many chiral fermions, this anomaly cancella-
tion condition could constraint the possible charges of the particles in the spectrum
of the theory.

In this vector-axial basis we must again impose that the vector current is con-
served. A Bardeen counterterm, with a more complicated expression than the one
for the abelian case, can be added to the effective action in order to achieve that goal.
Once this ambiguity is fixed, the expression for the nonabelian axial anomaly is

〈Dµ(J a)µ〉 =0 ,

〈Dµ(J a
5 )

µ〉 =− 1
16π2 εµνρσTr

[
Ta
(

FµνFρσ +
1
3

F5
µνF5

µν

+
8i
3
(

Aµ AνFρσ + AµFνρ Aσ + Fµν Aρ Aσ

)
− 32

3
Aµ Aν Aρ Aσ

)]
,

which is popularly known as the Bardeen anomaly [18]. Please note that the first
two terms are formally equal to the abelian case, with the new field strengths

Fµν =∂µVν − ∂νVµ − i
[
Vµ, Vν

]
− i
[
Aµ, Aν

]
,

F5
µν =∂µ Aν − ∂ν Aµ − i

[
Vµ, Aν

]
− i
[
Aµ, Vν

]
.

We have expressed all our results in terms of the consistent currents. Analo-
gously to the abelian case, however, the properties of the anomaly are obscure in
this vector-axial basis. We will not include here the expressions for the left- and
right-handed currents because they do not add much insight, but in terms of those
currents the consistent anomaly is obtained imposing Bose symmetry. As a result, it
would become obvious that the consistent anomaly is not covariant, as it cannot be
expressed only in terms of the field strengths of the two gauge fields. After choos-
ing the appropriate Bardeen counterterm, though, the result in this vector-axial basis
preserves vector gauge symmetry i.e. it depends on Fµν but not Vµ.



18 Chapter 2. Theoretical foundations

2.1.4 Anomaly matching condition

There is a result about anomalies with very deep phenomenological implications,
the so-called anomaly matching condition [77]. In particular, it uses global symme-
tries to pose nontrivial constraints on theories that have different degrees of freedom
in the UV and the IR, like confining theories such as QCD or technicolor. It gives
nonperturbative information of the theory, like constraints on the matter spectrum
at different energy scales or signals of the appearance of spontaneous symmetry
breaking at low energies. Although it won’t be used in the rest of this thesis, let us
point out to the most important aspects of the proof by ’t Hooft, so that the reader
can fully grasp the implications of this result.

We consider a theory with a gauge (local) symmetry group Gl and a global sym-
metry group Gg. In the context in which the matching condition was proposed,
the gauge theory was QCD and the global symmetry was flavor. The G3

l anomaly
has to be canceled for the gauge theory to respect unitarity and the mixed anomaly
Gg × G2

l should also be zero if we want to keep the global symmetry. However, in
principle there is no constraint on the value of the G3

g anomaly. If we weakly gauge
the global symmetry by coupling its Noether current to a gauge field, though, we
will also be forced to cancel it. In that case, we would be forced to supplement the
spectrum of the theory with some spectator fermions which would only be charged
under Gg. Nonetheless, we can guarantee the fields do not alter the dynamics of the
original theory by keeping the gauge coupling small.

In the IR, the relevant degrees of freedom are the Gl bound states and the spec-
tator fields. However, the latter give the same contribution in the UV and in the IR
because they are weakly coupled. In fact, the matching condition still holds in the
limit when the gauge coupling goes to zero and the spectator fields decouple. There-
fore, the global anomaly of the microscopic degrees of freedom have to match those
of the IR composite fermions. If the global symmetry were spontaneously broken at
low energies, then the same arguments would still hold but the Goldstone bosons
would also have a contribution.

In fact, from this work a new terminology for anomalies has been introduced
in the literature. The name ’t Hooft anomalies refers to those anomalies which are
associated to global symmetries that, precisely because they are anomalous, cannot
be gauged.

2.1.5 Gravitational anomalies

Gravity is another gauge theory. If we expand around a flat background

gµν = ηµν + 2κhµν ,

diffeomorphisms are generated by a vector gauge parameter

hµν → hµν +
1
2
(
∂µξν + ∂νξµ

)
.
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It is straight-forward to check that invariance under these gauge transformations
amounts to the conservation of the energy-momentum tensor

∂µTµν = 0 .

Thus, a gravitational anomaly would arise if this conservation equation obtains
quantum corrections. Since this is a gauge symmetry, its associated anomaly has
to be canceled.

In principle, gravity does not couple differently to fermions with different he-
licity. However, CPT transformations must be a symmetry of any physically viable
theory. These transformations reverse the helicity of fermions for 4k dimensions and
they preserve it for (4k + 2) dimensions. Thus, analogously to the discussion that
chiral anomalies only arise in parity breaking theories, gravity will have a contribu-
tion to the chiral anomaly only in 4k dimensions. In (4k + 2) dimensions, though,
pure gravitational anomalies can appear. We will only consider the former case here.

The gravitational contribution to the chiral anomaly is actually a mixed
anomaly. We can therefore use a Bardeen counterterm to impose the cancellation
of the diffeomorphism anomaly at the expense of a nonvanishing anomaly for the
chiral currents, much in the same way we did it for the vector and axial anomalies.
The role of the gauge field is played here by the Levi-Civita connection and the role
of the field strength is played here by the Riemann tensor.

Then, when one performs the perturbative expansion in the path integral ex-
pression for the one-point function of the divergence of the chiral current in a
theory of a fermion coupled to an external graviton, it can be seen that the first
contribution is given by a triangle where the other two vertices are populated by
energy-momentum tensors. The result for the gravitational contribution to the chi-
ral anomaly is

〈∇µJ µ
L,R〉 = ±

1
768π2 εµνρσRα

βµνRβ
αρσ . (2.9)

The triangle will only include one generator of the non abelian gauge theory, so
the cancellation condition in a theory with NR right-handed fermions and NL left-
handed fermions is

NR

∑
i=1

TrTa
R −

NL

∑
i=1

TrTa
L = 0 .

If the gauge field is abelian, this reduces to the sum of the right-handed charges
minus the sum of the left-handed charges. Interestingly, this anomaly cancellation
condition gives rise to nontrivial constraints for the viable models of nature, like the
one on the hypercharges of the Standard Model [4].

2.1.6 Consistency conditions and descent equations

Let us begin with the fermion effective action

eiΓ[A] =
∫

DψDψ̄ exp
[

i
∫

ddxψ̄γµ
(
i∂µ − Aµ

)
ψ

]
,



20 Chapter 2. Theoretical foundations

where the gauge field is Aµ = Aa
µTa. Considering that functional derivation of the

effective action with respect to the gauge field inserts minus the current operator
Jµ,a = ψ̄γµTaψ, if we now take the gauge variation of the effective action the result
is

δεΓ =
∫

ddx
δΓ

δAa
µ

δε Aa
µ = −

∫
ddx〈Jµ,a〉δε Aa

µ .

The gauge variation of the gauge field reads

δε Aa
µ = ∂µεa + f abc Ab

µεc ≡ (Dµε)a ,

so substituting it in the previous equation, integrating by parts and recognizing the
anomaly as the divergence of the current’s one-point function, we can finally obtain
the relation between the effective action and the anomaly

δεΓ =
∫

ddxεaDµ〈Jµ,a〉 ≡
∫

ddxεaAa[A] .

The anomaly is then the gauge variation of the fermion effective action. Thus, one
should in principle be able to compute chiral anomalies by constructing the appro-
priate effective actions.

The composition of two infinitesimal gauge transformations has to satisfy that

δε1δε2 − δε2δε1 = δ[ε1,ε2] .

Applying this relation to the effective action sets constraints on the possible anoma-
lies ∫

ddxεa
2δε2Aa −

∫
ddxεa

1δε1Aa =
∫

ddx [ε1, ε2]
aAa ,

which are called Wess-Zumino consistency conditions [150].
If a generic effective action Γ is a local functional, then there will be no anomaly

associated to it, because it could be canceled by the addition of local counterterms.
Any potential anomaly that is the variation of a functional automatically satisfies the
consistency conditions. However, only if the functional is nonlocal we obtain non-
trivial solutions to the consistency conditions and we can really talk about anoma-
lies.

It can be seen that a nontrivial solution to the consistency conditions is generated
by invariant polynomials in an even-dimensional (D = 2m) space

P(F) = ∑
np≤m

cn,p(TrFn)p ,

where F stands for the field strength of the gauge field. These quantities possess nice
mathematical properties: (1) they are closed forms, and (2) they are gauge invariant.
The former means, thanks to the Poincaré lemma, that they are also locally exact

TrFn = dω2n−1 ,

and ω2n−1 is the Chern-Simons (2n-1)-form. With the help of the second property
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and this last equation, it can also be shown that the gauge variation of the Chern-
Simons form is closed and, therefore, locally exact

δεω2n−1 = dα2n−2 . (2.10)

Going back to the Wess-Zumino consistency conditions, we can take the re-
quired (2n-2)-dimensional nonlocal action to be given, up to a constant cn which
can eventually be found matching the perturbative computation, by the integral of
the Chern-Simons (2n-1)-form

Γ[A] = cn

∫
M2n−1

ω2n−1 .

The integration is over a (2n-1)-dimensional manifold M with boundary. Please
note that, although it is nonlocal in the (2n-2)-dimensional physical space, it is per-
fectly local in (2n-1) dimensions. From this effective action, the resulting anomaly
is ∫

∂M2n−2

εaAa[A] =
∫

∂M2n−2

α2n−2 .

While it satisfies the Wess-Zumino consistency conditions because of being the vari-
ation of a functional, it is a nontrivial solution thanks to the nonlocality of the effec-
tive action. This nice recursive structure that allows us to obtain all the necessary
quantities from the anomaly polynomial is known as the descent equations [134,
135, 158].

Both α and ω are defined modulo an exact form

α2n−2 → α2n−2 + dβ2n−3 ,
ω2n−1 → ω2n−1 + dγ2n−2 ,

because the exterior differential is nilpotent. Then, the gauge variation of ω inherits
this ambiguity

δεω2n−1 → δεω2n−1 + δεdγ2n−2 = δεω2n−1 + dδεγ2n−2 ,

and due to (2.10), it can be seen that the anomaly is thus also defined modulo addi-
tion of the gauge variation of a (2n-2)-form

α2n−2 → α2n−2 + dβ2n−3 + δεγ2n−2 .

It is important to note that, in spite of these ambiguities, the invariant polynomial is
unique. In the same way that the freedom to choose γ2n−2 does not alter ω2n−1, the
choices of both β2n−3 and γ2n−2 do not change P(F). In other terms, different forms
of the anomaly actually refer to one particular anomaly polynomial. In Section 2.1.7,
we will comment more on this and try to make a connection to the different physi-
cally reasonable choices of the chiral anomaly we proposed above.

Here, we have included only cases where there is a single gauge symmetry.
However, generalizations to more complicated polynomials involving several dif-
ferent field strengths can be easily done. The resulting anomalies are called mixed
anomalies, like the gravitational contribution to the chiral anomaly from (2.9). In
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fact, this mathematical structure constraints the appearance of anomalies, imposing
properties for which we only had physical explanations. The simplest example is
that chiral anomalies only appear in even dimensions. What is usually explained
because those are the dimensions in which the notion of chirality is defined, it can
be here understood because the field strengths in the polynomial are 2-forms. An-
other property that can be inferred from the descent equations is that pure gravi-
tational anomalies only appear for 4k + 2 dimensions. What is usually explained
because CPT reverses the helicity of the fermions in 4k but preserves it in 4k + 2, it
can be seen here because the Riemann tensors always appear in pairs in the invari-
ant polynomials. Therefore, pure gravitational anomaly polynomials only appear
for D = 4k.

The discussion about the descent equations appears usually in the literature re-
expressed using the BRST formalism [22, 21, 20, 143]. Essentially using general
properties of the BRST operator s like nilpotency and the fact that it anticommutes
with the exterior derivative, it can easily be seen that the Wess-Zumino consistency
conditions reduce in this language to the vanishing of the BRST operator acting on
the anomaly. In this context, the descent equations are obtained through extensive
use of the so-called Russian formula, that states that the field strength remains the
same under the following substitution: the exchange of the exterior derivative d by
d + s and the addition to the gauge field of the Faddeev-Popov ghost that is intro-
duced in the definition of the BRST operator.

2.1.7 Consistent and covariant currents

The anomaly that can be obtained through the descent equations is called consistent
anomaly because it satisfies the consistency conditions. We can therefore define
the consistent current as the current whose divergence is equal to the consistent
anomaly. However, in general this form of the anomaly, and subsequently of the
current, is not gauge covariant.

It can be shown that there exists a term that can be added to the consistent current
that makes the associated anomaly be gauge covariant [19]. This term receives the
name of Bardeen-Zumino polynomial. The new form of the current after adding
this polynomial to the consistent current is called covariant current and the quantity
equal to its divergence receives the name of covariant anomaly. It is indeed gauge
covariant. Contrary to the consistent current, that is inserted as an operator through
functional variations with respect to the gauge field, this current cannot be obtained
through variations of the action and it will only couple to matter covariantly.

Moreover, one could even define from the anomalies a current with no apparent
anomaly, whose divergence is zero. We call this current a conserved current. Prob-
ably it is not surprising at this point that this current is neither the variation of an
action nor covariant.

In the abelian case, the difference between the consistent and covariant anomaly
amounts only to a factor of three. For the non abelian case, though, the difference is
more evident. While the covariant anomaly can be written as the exterior derivative
of the Chern-Simons form and therefore it is only a function of the field strengths,
the consistent anomaly cannot be written solely in terms of gauge covariant quanti-
ties.
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The fact that we already introduced a consistent anomaly when discussing the
triangle diagrams might be intriguing. Actually, the way the different versions of
the anomaly first appeared in this text was through different choices in the label-
ing of the loop momenta. In particular, the consistent anomaly appeared imposing
Bose symmetry. However, as counterintuitive as it might seem at first thought, this
makes perfect sense. The consistent current is inserted from variations of the effec-
tive action and one expects that the triple variation with respect to the gauge field is
symmetric under the exchange of the different insertions.

In the perturbative computation there were two kinds of ambiguities. We can
try to make a connection between these ambiguities and the ones faced in the con-
struction of the anomaly from α2n−2. The first kind of ambiguity, associated to the
choice of momenta inside the loop, was exploited to construct the meaningful con-
sistent and covariant currents, but it is actually related to β2n−3 and the fact that the
anomaly is defined up to exterior derivatives. From the construction using the de-
scent equations, it becomes obvious that the Bardeen-Zumino polynomial is actually
one particular choice of β2n−3 but there are infinitely many.

In an analogous way, the Bardeen counterterm is associated to one particu-
lar choice of γ2n−2. The standard use of the Bardeen counterterm is to move the
anomaly around the different gauge sectors involved. In particular, we used it to
preserve the vector symmetry instead of the axial one, or to preserve diffeomor-
phisms instead of axial gauge symmetries. But one could in principle use the choice
of γ2n−2 in as many ways as desired.

By this time, our choice of notation for the currents has probably become obvi-
ous. However, since we will make extensive use of it in Chapter 3, let us stop here
and discuss it. At the classical level, there is only one kind of current, the Noether
current. Therefore, we have chosen to call these currents Jµ, supplemented with sub-
scripts in those cases in which there were several present. However, at the quantum
level one can use different definitions of the currents. In particular, along the text
we have used calligraphic letters for the consistent currents J µ and we have also
used Jµ for the covariant current. There are several equations in which we abused
notation, though, by using Jµ inside expectation values and correlators without re-
ferring to the covariant current. It was done in those cases in which we had not yet
decided one particular quantum current definition and we wanted to refer to the
quantum mechanical computation of the classical conservation equations.

2.2 Relativistic hydrodynamics

Hydrodynamics allows us to study the behavior of fluids. In more concrete terms,
it can be understood as a low energy effective theory that is valid when the length
scales of departure from equilibrium are large compared to the mean free path. It
therefore allows for an expansion in small momenta such that there will be a hier-
archy in the different contributions depending on the number of derivatives they
involve. However, it is not an effective theory in the usual sense because there is no
such thing as a well-established effective action, even if this is a very active field of
research.

The relativistic form of hydrodynamics applies when the velocities involved are
large. Its formalism and equations were thought to be well-known by the middle of
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past century [47, 101], but the results about anomalous transport have changed our
considerations. In the next sections we will concentrate on relativistic hydrodynam-
ics (see [98, 125] for reviews). Particularly, we will cover how the conserved currents
can be defined in terms of the hydrodynamic variables and which are the equations
of motion associated to them, how the second law of thermodynamics arises in our
formalism and, finally, how this formalism is modified by anomalies.

2.2.1 Conserved currents

In the hydrodynamic regime, there is a local notion of equilibrium. It is a good ap-
proximation to assume that there is a region around any point that is sufficiently
close to equilibrium. This means that one can define for each of those points a tem-
perature T and a chemical potential µ that will satisfy the usual thermodynamic
relations. If we want to understand the system we need to try to monitor the con-
served quantities associated to these thermodynamic parameters.

Our formalism must be invariant under the action of the Poincaré group, since
we are interested in relativistic hydrodynamics. As a consequence, the conserved
quantities associated to the thermodynamic parameters appear now in the form
of conserved currents. It is possible to match them to the Noether currents if one
knows the field theory describing the microscopics of the system. In this context,
the conservation equations of the currents play the role of equations of motion.

We will consider in the rest of the section the simple case in which only the
energy-momentum tensor Tµν and a U(1) current Jµ appear. The stress tensor Tµν

can be understood as the conserved current associated to spacetime translations and
its conservation law reads

∂µTµν = 0 .

It is symmetric, a property that is automatically satisfied when we define it as the
variation of the action with respect to the metric, and the conserved currents cor-
responding to the remaining symmetries of the Poincaré group, Mµνλ = xµTνλ −
xνTµλ, are trivially conserved from the symmetry of the energy-momentum tensor.
Therefore, they do not give any information and we can safely drop them from our
discussion.

The other conserved current Jµ also satisfies a conservation law

∂µ Jµ = 0 .

In hydrodynamics it is usually assumed that the theory is parity-symmetric and Jµ

is a vector current, with parity-even charge density. However, we could in principle
be interested in an axial current or consider a microscopic theory that breaks parity.
As a consequence, some terms that are not usually considered in the literature could
appear. This will be the case of those associated to anomalous transport. However,
we first cover the construction of Tµν and Jµ in a parity invariant theory for peda-
gogical reasons and only consider the possibility of including parity odd terms in
the section about anomalous hydrodynamics.

We can check the number of degrees of freedom, which is independent of the
specific structure of the conserved currents. For d spatial dimensions, conservation
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of the energy-momentum tensor gives d+ 1 equations and conservation of each vec-
tor current gives one equation. For our case with only one current it is thus enough
to use d+ 2 quantities. On the contrary, if one looks at the energy-momentum tensor
and the current, they have (d + 1)(d + 2)/2 and (d + 1) independent components,
respectively. Thus, we need a prescription to parametrize the conserved currents
in terms of the d + 2 variables and to find a meaningful set of the latter. The usual
choice is a local temperature T(x), a local chemical potential µ(x) and a local fluid
velocity ~v(x), but one might take a different set of quantities. We stick to this choice
in this introduction.

2.2.2 Constitutive relations

We call constitutive relations the resulting form of Tµν and Jµ after expressing all the
coefficients in terms of T, µ and~v. Before moving on to finding the constitutive rela-
tions let us make a remark. In all the expressions from now on, and also on the ones
given above for the conservation equations, we will assume a flat background and
include partial derivatives. The extension to curved spacetime should be straight-
forward by taking covariant derivatives instead. Since the covariant derivative of a
scalar is equal to its partial derivative, in practice there will only be changes when
the differentiation acts on the velocity.

Let us use Lorentz invariance to propose a general definition of the energy-
momentum tensor and the current only according to the possible tensor structures.
We can introduce a timelike velocity four-vector uµ and decompose the energy-
momentum tensor and the current into transverse and longitudinal components us-
ing the projector Pµν ≡ gµν + uµuν. The components of this four-vector in natural
units are uµ = γ(1,~v), where γ = 1/

√
1− |~v|2 is the Lorentz factor. The decompo-

sition of energy-momentum tensor and current in their most general form reads

Tµν = Euµuν + PPµν + qµuν + qνuµ + tµν , (2.11)
Jµ = Quµ + νµ . (2.12)

The coefficients E , P and Q are scalars, the vectors qµ and νµ are transverse to uµ

and the tensor tµν is transverse, symmetric and traceless. We could always recover
the coefficients using uµuν and Pµν as projectors in the longitudinal and transverse
direction, respectively.

We already advanced the existence of a derivative expansion due to the devia-
tions from equilibrium being small. In particular, it consists on a expansion in pow-
ers of derivatives of the hydrodynamic variables T, µ and uµ, in which ideal fluids
are represented by zeroth order terms and any contribution in higher orders will be
subleading. For example, viscous and dissipative terms appear all at first order, and
so does anomalous transport. If we try to build the coefficients in (2.11) and (2.12)
in terms of the hydrodynamic variables, it can be seen that qµ, νµ and tµν necessarily
contain derivatives. Therefore, ideal hydrodynamics can be fully expressed in terms
of the scalar coefficients E , P and Q.

For static equilibrium, we find Tµν = diag(ε, p, p, p) and Jµ = (ρ,~0), where ε,
p and ρ are equilibrium energy density, pressure and charge density, respectively.
After performing the Lorentz transformation corresponding to a constant velocity
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uµ and promoting the variables involved (ε, p, ρ and uµ) to slowly varying fields, it
can be seen that the scalar coefficients in the constitutive relations can be identified
for ideal fluids with a local version of the thermodynamic variables. E is the local
energy density, P is the local pressure,Q is the local charge density and uµ is the lo-
cal fluid velocity. Furthermore, we can use the appropriate equation of state p(T, µ)
to obtain the first law of thermodynamics ε = −p + Ts + µρ for these variables,
where s = ∂p/∂T is the entropy and ρ = ∂p/∂µ. Moreover, thanks to the introduc-
tion of the entropy in this way, we can also find a second law of thermodynamics
in this language. In particular, one can rearrange the longitudinal component of the
energy-momentum conservation and the current conservation with the help of the
thermodynamic relations to give

∂µ(suµ) = 0 . (2.13)

This equation must be interpreted as the conservation of the entropy current i.e.
the entropy does not increase or decrease in ideal hydrodynamics. However, there
could be in principle other zeroth-order terms that produced the non-conservation.

Terms with one derivative have to be taken into account next in the low momen-
tum expansion, but there is an ambiguity that does not appear in ideal hydrodynam-
ics. When one defines the hydrodynamic variables out of equilibrium as fields, there
could be many out of equilibrium definitions of the variables that give the same
value in equilibrium and only differ from each other by gradients. For example,
one could write E = ε(T, µ) + fE (∂T, ∂µ, ∂u), where ε is determined by the equation
of state in equilibrium and fE represents the gradient corrections that depend on
the local temperature, local chemical potential and local velocity. This is a conse-
quence of the fact that there is no operator whose expectation value gives the local
value of any of the hydrodynamic variables, as these have no first-principles micro-
scopic definition and are not well-defined out of equilibrium. However, Tµν(x) and
Jµ(x) do have a microscopic definition. Thus, the different definitions of the hydro-
dynamic variables must be understood as all the possible parametrizations of the
conserved currents. The only important thing that all those different redefinitions
of the parameters have to satisfy is that the stress tensor and the current remain
unchanged. The choice of parametrization is called frame in hydrodynamics.

In particular, one could make a frame transformation

T(x)→ T(x) + δT(x) , µ(x)→ µ(x) + δµ(x) , uµ(x)→ uµ(x) + δuµ(x) ,

where δT, δµ and δu are first order in derivatives. If one imposes for this redefini-
tion that Tµν and Jµ remain constant, the only coefficients of the constitutive rela-
tions that are not invariant under the redefinition are qµ and νµ, and their change is
proportional to δuµ.

This has two very important consequences. First of all, we can choose the frame
to our convenience from the definition of the velocity. Two very usual choices are
those for which either νµ or qµ vanishes, and they are called Eckart and Landau
frames, respectively. The former implies no charge flow in the local rest frame of the
fluid and the latter implies no energy flow. A further option is the frame that we
will use in the rest of the thesis, which is the laboratory frame. It represents how the
motion of a fluid is seen by an observer that does not move alongside the fluid.
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The other consequence is that, since the scalar coefficients are invariant under the
redefinition, we can easily represent the transformed gradient corrections in terms of
the original ones and choose an off-equilibrium definition of T and µ such that two
out of the three scalar coefficients reduce directly to the thermodynamic variables.
In the literature it is common to fix E = ε and Q = ρ and keep P unfixed yet.
Others just look for combinations that are independent of the chosen frame, but this
will not be our approach.

As a result, only determining P , tµν and a certain combination of qµ and νµ is
left to obtain the constitutive relations for first-order hydrodynamics. However, we
can use Lorentz symmetry to constraint the possible tensor structures that involve
one derivative while being scalars, symmetric transverse traceless tensors or trans-
verse vectors, and then impose the hydrodynamic equations to find the constitutive
relations. It can be seen, just as a consequence of Lorentz covariance, that in the
constitutive relations there will appear one free coefficient for the scalars, two for
each vector and one for the tensor. With this, the equation of state p(T, µ) can give
an expression for ε and ρ in terms of T and µ, and the rest of the coefficients in
the constitutive relations can eventually be computed as correlators of the current
and energy-momentum tensor using linear response theory, which we review in the
next section. We will discuss in that section that the physics described by those
transport coefficients must be frame invariant and, therefore, the choice of frame
doesn’t change their value but only the place where they appear in the constitutive
relations.

For any order in the derivative expansion, the number of non-vanishing trans-
port coefficients is not as large as the number of independent tensor structures that
one can write down consistent with Lorentz symmetry. Therefore, further physical
conditions are necessary. In particular, a local form of the second law of thermo-
dynamics helps reducing the number of independent vector structures by one. For
a thermal equilibrium state with constant velocity, the entropy current is Sµ = suµ

and satisfies (2.13) at zeroth order. However, this entropy current should also have
gradient corrections that are functions of the hydrodynamic variables and vanish in
equilibrium, giving as a result a local version of the second law of thermodynamics

∂µSµ ≥ 0 .

This entropy current is not uniquely defined, but the positivity of entropy produc-
tion constraints the transport coefficients.

We can use the thermodynamic relation Ts = p + ε− µρ in its covariant form,

TSµ = puµ − Tµνuν − µJµ ,

to get a form for the entropy current in terms of the coefficients we have been dis-
cussing

Sµ =

[
s +

1
T
(E − ε)− µ

T
(Q− ρ)

]
uµ +

1
T

qµ − µ

T
νµ ,

which is quite easily proved to be frame invariant. It is not surprising now that
frames with E = ε,Q = ρ and either νµ or qµ equal to zero are especially convenient,
since this expression simplifies a lot.
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2.2.3 Anomalous hydrodynamics

We have already covered some generalities about relativistic hydrodynamics but we
have not yet said anything about how hydrodynamics and chiral anomalies com-
bine to give anomalous transport phenomena, like the well-known chiral magnetic
and chiral vortical effects. These contributions have not been considered in the pre-
vious section because we were assuming we were working with a vector current
in a parity symmetric theory. However, terms proportional to the vorticity and the
magnetic field are not only possible but required for a parity-breaking theory, and
are of the same order of dissipative terms.

One could for example focus on a four-dimensional fermion theory that suffers
from a gauge anomaly and a mixed gauge-gravitational anomaly. This would in
general mean anomalous terms that depend on the connections would arise in the
conservation equations of hydrodynamics

∂µ Jµ = PA(A, Γ), ∂µTµν = Fνλ Jλ + QA(A, Γ).

Please note that these expressions must be understood as vacuum expectation val-
ues in the presence of quantum contributions like the anomaly. In particular, we
are here considering the possibility that an anomaly given by PA breaks gauge sym-
metry at the quantum level and an anomaly given by QA breaks diffeomorphisms.
Furthermore, we make use of the covariant form of the currents because they are
good observables, precisely due to their covariance.

For convenience, we consider an effective action for which diffeomorphisms are
conserved, i.e. QA(A, Γ) vanishes. According to what we discussed in Section 2.1,
with only one external gauge field present the covariant anomaly for the chiral cur-
rent reads

∂µ Jµ = −κεµνρσFµνFρσ − λεµνρσTr
(
RµνRρσ

)
.

However, the last term must be dropped in first-order hydrodynamics because it
involves two more derivatives than the rest of the contribution, amounting in total
to four derivatives.

At this point, one could postulate the possibility that terms proportional to the
vorticity and the magnetic field appear in the constitutive relations, as part of qµ and
νµ. In particular, if we consider the energy current Jµ

ε = Tµ
0, then

Jµ = σBBµ + σVωµ + . . . ,

Jµ
ε = ξBBµ + ξVωµ + . . . .

The magnetic field and the vorticity, given respectively by

Bµ =
1
2

εµνρσuνFρσ ,

ωµ = −1
2

εµνρσuν∂ρuσ ,

involve one derivative, so they appear at the same order as viscous and dissipative
terms. There could also be an Ohmic contribution in the constitutive relations, pro-
portional to Eµ = Fµνuν and thus also first order in derivatives. However, it does
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not have an anomalous origin so we do not consider it here.
The transport coefficients associated to the magnetic field and the vorticity are

even under time reversal. This can be seen from the fact that charge and energy
currents, magnetic field and vorticity are all odd under time reversal. As a result,
these transport phenomena do not contribute to the entropy production and are
dissipationless. We will come back to this in the next section about linear response
theory.

The specific values of the coefficients σB,ω and ξB,ω depend on the frame choice.
In this work we compute the one-point functions in the laboratory frame. However,
it was shown by [130] for the Landau frame that most of the unknown coefficients
above are uniquely fixed by demanding consistency of the hydrodynamic expan-
sion in terms of the chiral anomaly coefficient κ. In particular, they could calculate
those coefficients by imposing the satisfaction of the local form of the second law
of thermodynamics. The anomaly produces a new contribution to the divergence
of the entropy current of the form −C µ

T E · B that could have either sign. This is
not the right behavior, since the entropy current must grow. Therefore, they include
terms proportional to the vorticity and the magnetic field in all the possible vectorial
degrees of freedom and use them to prevent the divergence of the entropy current
from a negative value.

For our choice of frame [116, 132], the coefficients read

σB = −8κµ , σV = 2ξB = −
(

8κµ2 + γT2
)

, ξV = −
(

16
3

κµ3 + 2µγT2
)

.

The undetermined coefficient γ was linked in [107] to the mixed gauge gravitational
anomaly for massless fermions

γ = 64π2λ .

Therefore, terms including only dependence on µ are coming from the chiral
anomaly, while the ones containing T2 are coming from the gravitational anomaly.
All the results have also been confirmed at strong coupling through holographic
methods [119, 17, 49, 124, 155, 108, 79, 91, 67, 89, 133]. The universality of the con-
tributions from the gravitational anomaly in the hydrodynamic expansion is some-
what surprising, since the gravitational anomaly itself only enters at third order in
derivatives. In fact, strictly speaking the mixed anomaly is not part of the conserva-
tion equation of the current in first-order hydrodynamics, as we discussed above.

An interesting feature of these transport phenomena is that they are related to
the anomalies through the anomaly coefficient. Therefore, they do not require the
anomaly to be switched on. For the mixed anomaly this might seem obvious, be-
cause we are seeing that the anomaly itself is of higher order in derivatives and it
still has a contribution, but it is also true for pure gauge anomalies. In particular, the
appearance of the coefficients proportional to κ does not require the appearance of
parallel electric and magnetic fields simultaneously. As long as the anomaly coeffi-
cients are nonzero, there is anomalous transport.
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2.3 Linear response theory

A systematic way of monitoring how a system reacts to changes in its environment
has to be found in order to study transport phenomena. The tool we have at hand
for this purpose is called linear response theory and we introduce in this section
some of the basic ingredients that define it.

The modeling of the outside influence is different for classical and quantum sys-
tems. In classical contexts, the changes in the outside are described by forces that
are defined as those terms in the equations of motion that are not dynamical and
we can know at all times. In principle, these equations of motion do not need to be
derived from a Hamiltonian and they can include friction.

However, in quantum mechanical cases, like the ones we are interested in, the
outside influence is described by a new term in the Hamiltonian

δH(t) = φi(t)Oi(t) , (2.14)

where there is an implicit sum in the index i. The analogous part to the force here
is the source φi, which we can tune as we please, and linear response theory allows
us to model how the changes in this quantity alter the different observables Oi. For
simplicity we will make all the discussion of linear response theory in the context
of quantum mechanics and only in the end we will turn to quantum field theory to
make the connection with the rest of the work.

If we wanted to know in general how the observables change under the influence
of the sources, we would have to solve the full theory. However, we can simplify
the problem by assuming that the changes in the source are small and therefore the
variation on the one point functions of the observables is linear

δ〈Oi(t)〉 =
∫

dt′χij(t, t′)φj(t′) . (2.15)

Rigorously, this has to be understood as the leading term from a Volterra series in
small φi. This equation serves as the definition of the response function χij(t, t′).

From now on, we will mostly work in frequency space, so let us include for
completeness the definition of the Fourier transform

f (ω) =
∫ +∞

−∞
dteiωt f (t) , f (t) =

∫ +∞

−∞

dω

2π
e−iωt f (ω) . (2.16)

If we assume that the response function is invariant under time translations, i.e.
only depends on time intervals and not time itself (χij(t, t′) = χij(t− t′)), it can be
seen that the response gives

δ〈Oi(ω)〉 = χij(ω)φj(ω) ,

which means that different frequencies do not mix. This feature would be spoiled
if we also considered higher order corrections beyond linear regime. However, in
this section we restrict ourselves to the study of linear response functions that are
invariant under time translations, and we will use the notation χ(t) ≡ χ(t, 0).
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Let us consider for simplicity that there is only one source in the perturbation of
the Hamiltonian. As a result, we can drop all indexes and it is easier to analyze the
mathematical properties of the response function, which can unveil in some cases
very interesting physical properties too. For example, if the source is real and the
associated observable is a Hermitian operator, i.e. it has real eigenvalues, then we
know from (2.15) that χ(t) must be real too. Furthermore, due to the properties of
the Fourier transform, this means that

χ(−ω) = χ∗(ω) . (2.17)

Another interesting property is that the real and imaginary parts of the response
function contain different physical information. They can be computed as

Reχ(ω) =
1
2
(χ(ω) + χ∗(ω)) =

1
2
(χ(ω) + χ(−ω)) ,

iImχ(ω) =
1
2
(χ(ω)− χ∗(ω)) =

1
2
(χ(ω)− χ(−ω)) ,

where we have used (2.17) to get to the last expressions. If we manipulate them

Reχ(ω) =
1
2

∫
dt
(

eiωtχ(t) + ei(−ω)tχ(t)
)
=

1
2

∫
dteiωt (χ(t) + χ(−t)) ,

iImχ(ω) =
1
2

∫
dt
(

eiωtχ(t)− ei(−ω)tχ(t)
)
=

1
2

∫
dteiωt (χ(t)− χ(−t)) ,

the first thing that becomes evident with these expressions is that the real part is an
even function in ω and the imaginary part is odd. In addition, the imaginary part
treats differently the real space response function depending on the sign of time.
Therefore, it is not invariant under time reversal and it must contain information
about dissipative processes. On the contrary, the real part is time reversal invariant.
This is the reason why the real and imaginary part sometimes receive the name of
reactive and dissipative, or absorptive, part, respectively. Please notice that we dis-
cussed above on the nondissipative nature of anomalous transport from the fact that
the transport coefficients were even under time reversal. They would thus appear
on the real part.

In this context of linear response theory, causality reduces to the vanishing of the
response function χ(t) for negative times. This condition has interesting implica-
tions for the response function in frequency space. If we consider the definition of
the inverse transform from (2.16), it becomes evident that all the frequencies have a
contribution for each value of time t. In order to perform the integral of the inverse
transform, we can analytically continue it to the complex plane and the integration
can be done by closing the contour with a semicircle of infinite radius in the upper
half-plane. The choice of the upper half-plane stems from the fact that the result
must vanish for negative time:

lim
|ω|→∞

e−i(|ω|eiθ)(−|t|) = lim
|ω|→∞

e− sin θ|ω||t|+i cos θ|ω||t| = 0 , for θ ∈ (0, π) .

As a result, we can infer using Cauchy’s residue theorem that the response function
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is analytic in the upper half-plane, and this property originally stems from imposing
causality.

There are further relations between the real and imaginary part of the response
function, which can be obtained from these properties and some basic complex anal-
ysis. We will skip the derivation here, though. They are called Kramers-Kronig
relations and they read

Reχ(ω) = P
∫ +∞

−∞

dω′

π

Imχ(ω′)

ω′ −ω
,

Imχ(ω) = P
∫ +∞

−∞

dω′

π

−Reχ(ω′)

ω′ −ω
,

where P stands for the principal value. There is another version of the relations
that shows how the dissipative part contains all the information about the response
function

χ(ω) =
∫ +∞

−∞

dω′

π

Imχ(ω′)

ω′ −ω− iε
.

Let us now go back to the perturbed Hamiltonian (2.14). The full Hamiltonian
reads

H = H0 + δH .

We want to treat the problem in the interaction picture. Thus, we need to define a
unitary time evolution operator

U(t, t0) = Te−i
∫ t

t0
δH(t′)dt′ ,

which will satisfy by construction Schrödinger’s equation with the associated
Hamiltonian. This operator will give the time evolution of the states

|ψ(t)〉I = U(t, t0)|ψ(t0)〉I ,

and of the density matrix

ρI(t) = U(t, t0)ρI(t0)U−1(t, t0) . (2.18)

if the states are described by it. We are implicitly assuming in all this discussion that
t0 → −∞ and the interaction was not switched on at that time. From now on, we
will drop the subscript I denoting we are in the interaction picture .

Using (2.18), we express the one-point function of any operator as

〈Oi(t)〉 = Tr (ρ(t)Oi(t)) = Tr
(

ρ(t0)U−1(t, t0)Oi(t)U(t, t0)
)

.

It can be expanded perturbatively in small source

〈Oi(t)〉 = Tr
(

ρ(t0)

(
Oi(t) + i

∫ t

t0

dt′
[
δH(t′),Oi(t)

]
+ . . .

))
,

= 〈Oi(t)〉0 + i
∫ t

t0

dt′
〈[

δH(t′),Oi(t)
]〉

0 + ... ,
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where the notation 〈. . .〉0 means an equilibrium average with the unperturbed
Hamiltonian H0. If we now drop the higher terms in the ellipsis and we extend
the integration from t to +∞ with the use of a Heaviside function, we can compare
this equation to (2.15) and obtain the response function in a quantum theory

χij(t− t′) = −iθ(t− t′)
〈[
Oi(t),Oj(t′)

]〉
0 .

This result is known as the Kubo formula [100]. The computation of the response
thus reduces to the computation of this correlator.

2.3.1 Transport coefficients revisited

Once we have introduced the Kubo formalism, our aim is to use linear response
theory to compute transport properties in quantum field theory, so we generalize
all the quantities to not only depend on time but also on space. The generalization
is sort of trivial, changing the arguments t by x ≡ (t,~x) and ω by k ≡ (ω,~k) except
for the step function in the Kubo formula. One can easily recognize that all the
correlators now turn into Green’s functions, as it is usual for quantum field theory,
and, in particular, the one in the Kubo formula is a retarded Green’s function.

Let us now consider a free theory of a boson (or a fermion) that couples to a
external gauge field

δH = Aµ Jµ .

This will help us show how to compute transport coefficients in a simple setup.
Applying the Kubo formula, we could monitor the changes in the current due to
variations of the source as

δ〈Jµ〉 = −i
∫ +∞

−∞
d4x′θ(t− t′)

〈[
Jµ(x), Jν(x′)

]〉
0 Aν(x′) .

Rewriting this expression analogously to (2.15) and Fourier transforming it, we ob-
tain

〈Jµ(k)〉 − 〈Jµ(k)〉0 =
∫ +∞

−∞
d4x

∫ +∞

−∞
d4x′eik·xχµν(x− x′)Aν(x′)

=
∫ +∞

−∞
d4x

∫ +∞

−∞
d4x′eik·(x−x′)χµν(x− x′)eik·x′Aν(x′)

=χµν(k)Aν(k) , (2.19)

where we introduce the notation k · x = ωt−~k ·~x and the dependence in k simply
means that it is a function of (ω,~k). We are now ready to apply the Kubo formalism
to a particular example.

The natural first choice is the response to an electric field, the well-known Ohm’s
law. In the gauge in which A0 = 0, which simplifies this computation greatly, the
electric field is defined in real and momentum space as

Ei(x) = −∂t Ai(x) , Ei(k) = iωAi(k) .
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We can suppose the transport coefficient associated to Ohm’s law is a generic con-
ductivity σij(k) and the current then reads

〈Ji(k)〉 = σij(k)Ej(k) .

If we now substitute this in (2.19) and express everything in terms of Ai(k), we find

〈Ji(k)〉 = σij(k)iωAj(k) = 〈Ji(k)〉0 + χij(k)Aj(k) .

Finally, we can obtain an expression of the transport coefficient by functional varia-
tion with respect to the source

σij(k) =
1

iω

(
χij(k) +

∫ d4k′

(2π)4

〈
δJi(k′)
δAj(k)

〉
0

)
.

The second contribution is sometimes called contact term. We have introduced the
integrals to drop the Dirac deltas that arise because of functional differentiation. If
we wanted the DC limit, it would be safe to take~k = 0 in this expression and then
carefully take the limit of ω going to zero. In other cases in which the momentum
appeared explicitly, like responses to the magnetic field, we would instead have to
take the limit for~k→ 0.

At this point one might be tempted to think that the functional derivative with
respect to the sources could insert new currents in the correlators. However, these
expectation values are computed using the unperturbed Hamiltonian H0. Therefore,
the sources are not present, and no current is inserted. Nevertheless, the expressions
of the currents can in principle depend on the sources and that is precisely why
contact terms like 〈δO/δφ〉0 can sometimes survive.

The expressions of the currents are in some cases more complicated than in this
version of the Ohm’s law. Imagine, for example, relativistic hydrodynamics [98]. We
know how to couple the conserved currents: the energy-momentum tensor couples
to the metric gµν, which we take as a perturbation around flat space gµν = ηµν + hµν,
and the current couples to the gauge field Aµ. We can therefore relate the different
transport coefficients to combinations of correlators of these currents by taking per-
turbations around a certain background an expressing the hydrodynamic variables
in terms of the external sources hµν and Aµ. From a hand waving argument, the con-
served currents Jµ and Tµν are inserted in the correlators by variations with respect
to Aµ and hµν, respectively.

However, we have seen above there is an ambiguity in the choice of frame in
relativistic hydrodynamics, which means there is not only one form for the trans-
port coefficients. In particular, the different definitions of the transport coefficients
amount to different combinations of the components of the response function. How-
ever, the physics of the system must be the same independently of the description
and the result should not depend on the choice of the velocity field. Indeed, the
arbitrariness of the flow velocity translates into the possibility to always express
the transport coefficients independently of correlators of the velocity. The latter can
always be eliminated, and the transport coefficients are expressed in terms of the
correlators of the conserved currents only, as discussed in [6].
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Regarding linear response computations, there is a simple way of reinterpreting
the dependence on the velocity [107]. We can always go to the rest frame of the
fluid, which is defined by uµ = (1, 0, 0, 0), at the expense of the appearance of a
gravitomagnetic potential h0i = (Ag)i due to the boost. This gives uµ = (1, ~Ag)

and allows us to write the local fluid velocity as ~v = ~Ag. Thus, thanks to this trick
all the dependence on the velocity at the constitutive relations can be recasted as
dependence on the metric, which does have a conserved current associated to it. As
a result, we can easily find the components of the response functions that give the
transport coefficients in relativistic hydrodynamics.

Before finishing the section about linear response, we include for completeness
the application of the Kubo formalism to the computation of some of the anomalous
transport coefficients in the laboratory frame. We will focus on the chiral magnetic
and chiral vortical effects on the U(1) current. The constitutive relation for the elec-
tromagnetic current reads〈

Ji(x)
〉
= σBεijk∂j Ak(x) + σVεijk∂jvk(x) ,

where the first transport coefficient σB is the one associated to the chiral magnetic
effect and σV is related to the chiral vortical effect. We first substitute the velocity by
the gravitomagnetic field and Fourier transform this expression〈

Ji(k)
〉
= σBεijkik j Ak(k) + σVεijkik jh0k(k) .

Please note that the only sources that we need to consider are Ak and h0k. Using
now the Fourier transformed definition of the response function we find another
expression for the current〈

Ji(k)
〉
=
〈

Ji(k)
〉

0
+ χij(k)Aj(k) + χi,0jh0j(k) ,

where

χij(k) = −i
∫

d4xeik·xθ(t)
〈[

Ji(x), J j(0)
]〉

0
,

χi,0j(k) = −i
∫

d4xeik·xθ(t)
〈[

Ji(x), T0j(0)
]〉

0
.

Equating both expressions we get a relationship among the transport coefficients,
response functions and the equilibrium expectation value of the current. In the con-
text of the chiral anomaly, the current Ji is the usual fermion current, so variations of
the current with respect to the sources will give no contribution. Therefore, we can
safely obtain the transport coefficients taking functional derivatives with respect to
the sources. The final result for constant magnetic field and vorticity gives

σB =− i lim
~k→0

εijl χij(0,~k)
2kl

,

σV =− i lim
~k→0

εijl χi,0j(0,~k)
2kl

.
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With these equations we conclude the review of linear response theory. We will be
able to apply it to strong coupling dynamics when we find a way to compute the
Green’s functions in the context of AdS/CFT. We now move on to cover the basic
aspects of the correspondence.

2.4 Holography

More than forty years ago, several authors established what got to be known as
black hole thermodynamics [30]. Different quantities associated to black holes
could be reinterpreted as thermodynamic variables and satisfy the same equations.
Among the different new thermodynamic relations that were proposed, one stood
as particularly intriguing: the area of the horizon played the role of entropy for the
black hole. It was first proposed by Bekenstein, as a proportionality relation. How-
ever, Hawking managed to fix the expression to

SBH =
kB A
4`2

P

in its seminal work about the thermal radiation emitted by black holes that now
receives his name [74]. In that paper, one of the major puzzles in modern theoretical
physics was also first encountered, the so-called information paradox, which is an
extremely interesting topic that would require a whole new thesis by itself. The
result of the Bekenstein-Hawking entropy got a solid confirmation when a string
theoretical computation gave the right result for a class of five-dimensional extremal
black holes [136]. The result was then reproduced with similar techniques for many
other classes of black holes, but such a computation for the Schwarzschild black hole
is still missing.

The Bekenstein-Hawking entropy is especially striking because it seems to indi-
cate that all the information about the 3-dimensional black hole is actually stored in
its 2-dimensional horizon. It also saturates the Bekenstein bound, which was pro-
posed few years later [23] and establishes a maximum of entropy that can be stored
in a finite region of space with a finite amount of energy.

This lead to the proposal of the holographic principle as a property of string the-
ory and, supposedly, any theory of quantum gravity. According to the principle, the
information about any region would be encoded on its lower-dimensional bound-
ary. It was first proposed by ’t Hooft [76] and further developed by Susskind in
the context of string theory [137], although Charles Thorn had been holding similar
ideas for some time [140].

The most prolific realization of the holographic principle so far has been the
AdS/CFT correspondence. Its successes are so abundant and profound that it has
somehow convinced the high energy physics community that the holographic prin-
ciple is a property to be expected from any theory of quantum gravity. In what
remains of this chapter we will try to cover all the basic necessary aspects of it.
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2.4.1 Brief review of the AdS/CFT duality

The AdS/CFT conjecture states that conformally invariant theories in d dimensions
are equivalent in the large N limit to supergravity on d + 1 dimensional AdS space
times a compact manifold. In those cases in which the compact manifold is a sphere,
the dual theory is maximally supersymmetric.

The paradigmatic example is that of 4-dimensional N = 4 super Yang-Mills
theory, which is dual to Type IIB superstring theory in AdS5×S5. This example was
already studied in detail in the original paper of the duality [114]. In fact, one can
make an intuitive early check of the duality by matching the symmetries of both
theories. First of all, the isometry group of AdS5 is SO(4, 2), which becomes evident
if we express AdS as an embedded hyperboloid

x2
1 + x2

2 + x2
3 − x2

0 − x2
−1 = −α2

in R4,2, whose metric is ds2 = dx2
1 + dx2

2 + dx2
3 − dx2

0 − dx2
−1. Regarding S5,

the isometry group is SO(6). Therefore, as a result, the total isometry group is
SO(4, 2)× SO(6) on the gravity side. Appropriately, for the CFT the SO(4, 2) com-
ponent comes from the conformal group, and the SO(6) is the internal R-symmetry
relating the six scalar fields and four fermions, thus matching the isometry group
of the gravitational theory. Moreover, though it is not as simple to show, there is a
further matching between the 32 supersymmetries of both sides.

It is also instructive to check how the free parameters of both theories relate to
each other. On the gravity side, the relevant dimensionless parameters are the string
coupling gs and the curvature scale in units of the string length L/ls. There exists
a relation to the gauge coupling gYM and the rank of the gauge group N from the
CFT, that can be better understood in terms of the ’t Hooft coupling λ ≡ g2

YMN. It is
given by

L4

l4
s

∝ λ , (2.20)

gs ∝
λ

N
. (2.21)

We must remark that, though most of the community nowadays expects the duality
to hold for the whole range of parameters, the limit in which it was found, and the
one which we will be using in our work, is that of large λ and even larger N. On one
hand, λ � 1 guarantees that L is large in string units and, therefore, there are no
stringy corrections to the geometry. On the other hand, N � λ� 1 makes the string
coupling small and, therefore, the quantum corrections become irrelevant. Further-
more, in this limit it becomes manifest that the AdS/CFT duality is a strong/weak
coupling duality: it allows us to study gauge theories at strong coupling via weakly
coupled gravity theories.

Some more examples of theories that satisfied the duality were already given in
the original paper by Maldacena. Moreover, since the conformal field theory is ob-
tained as the projection at infinity of the bulk gravitational physics, one could obtain
more general nonconformal field theories by modifying the boundary conditions
from those of AdS. This suggested the existence of a more general gauge/gravity
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duality and somehow anticipated one of the nicest features of the duality. Holog-
raphy establishes an equivalence between the holographic direction and an energy
scale, thus geometrizing the renormalization group flow in a very natural way. The
boundary of AdS would correspond in this picture to the UV of the gauge theory
and, consequently, the AdS asymptotics (with its SO(4, 2) isometry group) would be
associated to an ultraviolet fixed point from which the renormalization group would
flow. In Chapter 3 we explore this idea of holographic renormalization group in the
context of anomalous transport.

The full computational power of the AdS/CFT duality was uncovered when a
prescription to compute correlators of the CFT was finally proposed [153, 64]. One
first establishes the equivalence between the partition functions of each side. In fact,
in the weak coupling limit in which gravity becomes classical, the partition function
of the bulk is essentially the exponential of the on-shell action. In this matching of
partition functions, the one associated to the gravity side can be seen as a function
of the boundary conditions, much in the same way it is a function of the sources of
each operator for the field theory

Zgravity
[
φ = Φ|∂AdS

]
=
〈

e−
∫

φO
〉

CFT
,

where we denote the bulk fields by Φ and their boundary values by φ, to clearly
make the connection to the sources of (2.14). The different correlators can be ob-
tained by functional differentiation with respect to the sources and they will then
be interpreted as propagation in the bulk of the associated fields with appropriate
boundary conditions fixed by the sources. Furthermore, this gives an interpretation
to the form of the bulk fields near the boundary.

The boundary of AdS is a regular singular point. This means that it appears as
singular in a very particular way at the level of the equations of motion for the bulk,
but it has regular asymptotic solutions. Those series solutions around the boundary,
obtained using Frobenius method, possess only two independent modes. Therefore,
a generic field Φ can be approximated as

Φ = r−∆− (φ + . . .) + r−∆+
(
φ̂ + . . .

)
.

The exponents ∆± are different depending on the particular field, but we can go
back to the equivalence of the partition functions to interpret the different quantities
in this asymptotic expansion. In particular, it can be shown that φ plays the role of
the source, φ̂ is proportional to the expectation value of the operator and ∆+ is its
conformal dimension.

The bulk field corresponding to a certain inserted operator is found using sym-
metries, since both objects should have the same Lorentz structure and quantum
numbers. For example, we can go back to the examples relating linear response
theory with anomalous hydrodynamics. External gauge fields are source for cur-
rents associated to global symmetries, and they can be seen as the boundary values
of dynamical gauge fields in the bulk. Similarly, the projection on the boundary of
bulk gravitons is the source for the energy-momentum tensor. Moreover, all this
construction can be generalized to cases with multiple operators sourced simulta-
neously and the mixing of the operators translates to interactions between the fields
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in the bulk.
So far we have discussed the part of the holographic dictionary that refers to op-

erators, but we have not commented on the states. The two simplest cases are pure
AdS, which corresponds to the vacuum of field theory, and an AdS black hole, which
is dual to a thermal state. The temperature of the thermal state can be obtained as
the Hawking temperature of the black hole and, if there were chemical potentials
present, they are computed as the difference in the zero-component of the gauge
field between the boundary and the horizon. This computational definition can be
better understood if we interpret the chemical potential as the potential that must
be overcome to bring a charge from the boundary to the horizon.

In this discussion of the holographic dictionary we have decided not to include
many details or mathematical expressions for the sake of brevity. While the duality
is the central technique in all of our projects, our true aim is to understand anoma-
lous transport phenomena. Thus, we are not really interested on the correspondence
itself. However, we perform many holographic computations in the rest of the chap-
ters, so the practical workings of the duality will still become explicit below. If the
reader is interested on finding more details on the theoretical aspects of the duality,
she could find them in the plethora of available reviews and books [3, 7, 80, 118].

The gauge/gravity duality has proved itself as a technique of invaluable com-
putational power in contexts where there was no other available tool. In particular,
it allows to study the perturbatively inaccessible field theory regime of strong cou-
pling through simpler gravitational computations. Thus, it has somehow brought
the long-waited expectation of comparing string theory to experiments. As a conse-
quence, it has been extensively applied to contexts as varied as QCD [31], hydrody-
namics [81] or condensed matter physics [156]. In those cases in which it was possi-
ble to perform the computations at both sides of the correspondence, the agreement
has been perfect. Another of the reasons why application of holography have been
so popular is that out of equilibrium physics, which are usually difficult to study,
are very simply implemented thanks to the duality, as it will become manifest in
Chapter 6: they reduce to time dependence on the gravity side.

There has been some criticism along the years on the extensive applications of
holography. Some of the most prominent arguments against them, and the duality
in general, are that the correspondence is still a conjecture and not a theorem, that
it could not describe the universe because we observe the universe to be dS and not
AdS, that super Yang-Mills is not really QCD or even that the nonsupersymmetric
bottom-up models usually used in applications to condensed matter theory pos-
sessed unstable vacuum solutions [120]. In our projects however our approach has
been to assume the duality to be true and perform computations in general relativity
in order to gain intuition about general features of the anomaly induced transport
phenomena in strong coupling regimes. Furthermore, although we used nonsuper-
symmetric models in all of our projects, we expect all the presented computations
to be reproducible in supersymmetric theories.
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2.4.2 Anomalies in holography

Chiral anomalies are included in holography through the addition of Chern-Simons
terms to the action [49, 17], like

S→ S +
∫

dd+1x
√
−gICS [A, F, Γ, R] .

This must be understood in the context of the anomaly inflow picture, where these
Chern-Simons terms, that are local terms in the bulk, play the role of the nonlocal
effective action of the dual field thoery. However, what is somehow peculiar in
the context of AdS/CFT is that we will be performing all the computations in the
bulk and, therefore, those Chern-Simons terms have a contribution in the relevant
equations of motion.

All the anomalies in holography are ’t Hooft anomalies, as they are associated
to global symmetries of the dual field theory. Otherwise, they would have to be
canceled for the theory to be consistent. However, it is important to note that they
are associated to bulk gauge symmetries and the associated fields are true gauge
fields.

We will consider in the following a very rich structure of anomaly effective ac-
tions. In general, the possible abelian chiral anomalies in five-dimensional holo-
graphic theories can be characterized as: U(1) × U(1)2 anomalies, like the Adler-
Bell-Jackiw anomaly from (2.5); U(1)3 anomalies, which would be the global ver-
sion of the gauge anomaly from (2.6); and mixed gauge-gravitational anomalies,
like the one from (2.9). We now comment on the second and third types, because
they illustrate all the interesting aspects.

In a four-dimensional field theory, the bulk Chern-Simons action that gives rise
to a pure U(1)3 anomaly and a mixed gauge-gravitational anomaly reads

ICS = εµνρστ Aµ

(κ

3
FνρFστ + λTr

(
RνρRστ

))
, (2.22)

where Fµν is the field-strength of Aµ and Rνρ is Riemann’s tensor expressed as a 2-
form. We have implicitly introduced a notation we will use in the rest of this thesis:
boldface is used when referring to forms whose internal indexes are dropped.

The dynamics are not affected by the addition of a total derivative to the action.
In particular, we can use this freedom to move the anomaly from one sector to an-
other. We explicitly work it out for the mixed anomaly, since we will later use the
form of the anomaly for which diffeomorphisms are anomalous. The total deriva-
tive is

− 4λ∇ν

(
εµνρστ AµTr

(
Γρ∂σΓτ +

2
3

ΓρΓσΓτ

))
. (2.23)

If we add it to (2.22), it gives

I′CS =
κ

3
εµνρστ AµFνρFστ + 2λεµνρστFµνTr

(
Γρ∂σΓτ +

2
3

ΓρΓσΓτ

)
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or in terms of the curvatures

I′CS =
κ

3
εµνρστ AµFνρFστ + λεµνρστFµνTr

(
ΓρRστ −

1
3

ΓρΓσΓτ

)
. (2.24)

This has no effect on the bulk dynamics but it modifies the definition of the current
operators. While the physical content of them is the same in both descriptions, their
interpretation is slightly different in the two cases.

In holography the notion of consistent and covariant currents is very transpar-
ent, and completely analogous to quantum field theory. Chapter 3 is devoted to
understand the different definitions of the currents and their use in the context of
the holographic renormalization group flow to simplify the computations. Thus, we
will not include much detail here, but let us briefly comment on them for the sake
of completeness of this introductory chapter. The consistent current in holography
is the one that is obtained by projecting at the boundary the variation of the on-shell
action with respect to the associated gauge field. The covariant current, on the other
hand, is always obtained from the consistent current as the result of subtracting the
gauge variation of the consistent current from itself. In general, the redefinitions of
the current can be done through the use of counterterms, like the total derivative
in (2.23). In fact, this particular one is the extension to holography of a Bardeen
counterterm that moves the anomaly from the gauge sector to the diffeomorphism
sector.

We conclude the theoretical introduction with this brief review of anomalies in
holography. It is now time to move on to the original content of this thesis.
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Chapter 3

Holograhic renormalization group
approach to anomalous transport

Holographic renormalization group (RG) flows are better understood with the help
of radially conserved quantities. Since the radial coordinate is dual to an energy
scale, those quantities do not get renormalized. Finding them will allow us to find
exact relations between their values at different points along the holographic direc-
tion.

We are interested in field theories whose global symmetries are anomalous. This
means that their associated bulk gauge invariance will be broken by Chern-Simons
terms. However, one could still play with the definition of the currents in order to
find quantities with suitable conservation laws. We will introduce then what we
call membrane currents, that possess a nice behavior with respect to the RG. Their
conservation laws can then be used to characterize the anomalous transport in terms
of the currents at the horizon.

In this project we make a special emphasis on gravitational anomalies. They
arise due to Chern-Simons terms that are higher order in derivatives and, conse-
quently, the whole construction of the currents becomes more intricate. However,
it can be performed successfully and it helps us better understand the anomalous
gravitational transport coefficients.

The chapter is based on [36]. It is organized as follows: in Section 3.1 we put
our work in context and motivate it; in Section 3.2 we review the construction of the
membrane currents and the Wald procedure, and we then apply it to a nonanoma-
lous preliminary example; in Section 3.3 we use the constraint equations of the bulk
theory to propose a definition of membrane currents and we compute the radially
conserved fluxes for anomalous theories; in Section 3.4, we extract the anomalous
transport coefficients from the radially conserved quantities, and, finally, in Section
3.5 we sum up the chapter and include some concluding remarks.

Let us make some comments about notation and conventions before moving on
to the actual content of the chapter. Since we will be treating the radial AdS coor-
dinate separately because of its role as an energy scale, we need to perform a d + 1
decomposition using the ADM formalism [11]. As reviewed for example in [121],
this simplifies if we use the Fefferman-Graham gauge for the bulk metric

ds2 = dr̂2 + γabdxadxb , (3.1)
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where the asymptotic AdS expansion reads

γij = e2r̂γ
(0)
ij + γ

(−2)
ij + e−2r̂γ

(−4)
ij + . . . .

In this expression γ
(0)
ij must be interpreted as the (curved) background metric of the

CFT.
The spacetime is subsequently foliated with surfaces Σ of constant r̂ and it thus

makes the renormalization group interpretation very transparent. This gauge fixing
can only be consistently imposed near the boundary and it might produce artifi-
cial singularities near the horizon, so we will switch to a slightly different coordi-
nate system in that region. The new radial coordinate R will be implicitly defined
through asymptotics in Section 3.4. At some points the ADM decomposition of
some of the quantities might not be explicit, but all the results can be recovered by
the use of identities −Γr̂

ab = Kab and Γb
ar̂ = Kb

a , where Kab stands for the extrinsic
curvature on those hypersurfaces Σ and is given in Fefferman-Graham coordinates
by Kab =

1
2 ∂r̂γab.

We use Greek indexes like µ and ν to denote bulk tensors, while tensors on the
boundary Σ are denoted with Latin letters a, b, etc. When confusion may arise,
quantities intrinsic to Σ are denoted by hatted names, like R̂abcd. This choice of
indexes is also used in the rest of the thesis. The bulk covariant derivatives are
denoted by ∇µ and the membrane covariant derivatives by Da. In much of the
formal discussion we employ an on-shell formalism. Then, we denote equality up
to equations of motion by the .

= symbol.

3.1 Motivation

During the last years there has been a renewed interest in the dynamics of gravi-
tational theories on null horizons. The first works date back to the early days of
the membrane paradigm, according to which the geometric fluctuations of the null
geometry can be seen as hydrodynamic modes through the projection of Einstein’s
equations [141]. However, in the context of holography this construction receives
a new interpretation because the radial coordinate of AdS spacetime can be inter-
preted as an energy scale for the dual theory [75, 50, 126]. The relationship can only
be established explicitly in some particular cases, but they suggest that fluctuations
of the horizon geometry could be related to the low energy physics of the dual field
theory.

This intriguing feature can only be studied quantitatively if a relation between
the one-point functions and the horizon data is known, which typically requires the
solution of the bulk dynamical equations. Even then, it is sometimes not straight-
forward to disentangle the contribution due to the horizon from the rest of the bulk.
However, in some special cases the relation can be established and the dual field
theory observables are fully expressed in terms of quantities evaluated at the hori-
zon. In [82], the authors considered homogeneous neutral backgrounds and were
able to show that some particular combinations of bulk fields were independent of
the radial coordinate in the low momenta zero frequency limit, which is also called
DC limit. This observation allowed them to compute general responses in that limit
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in terms of horizon fluctuations, showing perfect agreement with the usual results.
According to this technique, there was no necessity to know the dynamics of the rest
of the bulk.

Later works have been able to extend this mechanism to more general theories,
notably [43, 45, 46]. The most interesting result is the realization that the radially
conserved quantities are really the fluxes of certain currents through constant radial
coordinate hypersurfaces Σ. The integration over the hypersurfaces in those fluxes
explains in a very natural way why the responses could only be computed through
this procedure at the DC limit. Besides this, these works were also able to show
that this reasoning applies to the U(1) current, but also to the dual heat current if
the spacetime was stationary, thus giving a prescription to compute responses in the
energy current.

Although the connection was pointed out later [111], the conserved fluxes are
closely related to the Komar charges of general relativity. They are rigorously de-
fined by the Wald procedure [148] and this method allows one to obtain a closed
(d− 1)-form k, that does not vanish on-shell, from the variation of the action under
gauge transformations or diffeomorphisms. The closure relation of this quantity im-
plies under certain conditions that its fluxes through the hypersurfaces Σ introduced
above are conserved radially and those fluxes are related to the fluxes of the mem-
brane currents. In the last years, this link has been used to compute DC responses
in many gravitational theories.

As already said, holography has been used extensively to study transport phe-
nomena induced by anomalies [102]. Most work has been devoted to analyzing
the DC responses sourced by magnetic field and vorticity in four dimensional field
theories that possess an anomalous U(1) symmetry. Holography has been partic-
ularly useful linking part of the transport coefficients to the mixed gauge gravita-
tional anomaly [107]. As already discussed, this relation is surprising because the
gravitational contribution to the axial anomaly seems to appear at higher order in
derivatives, and therefore it would not be expected to contribute at leading order
in the hydrodynamic expansion. While the way this result arises in quantum field
theory is a little bit obscure, in holography it can be understood as coming from
a purely extrinsic term that appears when the five-dimensional action is projected
onto the four-dimensional spacetime where the dual theory lives.

This contribution from the gravitational anomaly has received further attention
in different contexts. Various arguments have been developed from the point of
view of effective field theory to fix the coefficients only from equilibrium considera-
tions [89, 88, 87]. In holography it has been seen it could arise as horizon fluctuations
in [33] and the relation to the dual one point function was given from the bulk equa-
tions of motion in [13]. Furthermore, it was recently showed by various authors [56,
55] that a part of this contribution can be explained through the matching of the
global gravitational anomalies.

In this work we connect the aforementioned two lines of research, i.e. holo-
graphic conserved charges and anomalous transport. In order to do so, we need
to extend the membrane paradigm to Chern-Simons theories, looking for quantities
that satisfy constraints formally equal to the usual field theory Ward identities, and
show that these match the conserved quantities given by the fluxes of the Komar
charges. The Wald construction becomes complicated for these theories because the
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Chern-Simons actions are noncovariant, but we make use of previous work from
[138, 29, 12].

Since there have been many similar works in the last years, let us conclude this
section with a discussion on how our work relates to the references in the literature:

• The general conservation equations for the U(1) currents were already derived
by [65, 60] by direct analysis of the equations of motion, which allowed them to
prove the universality of the U(1) transport. When compared to the work pre-
sented in this chapter, ours extends the discussion to energy fluctuations and
formalizes the connection between the conserved quantities and the anoma-
lous Wald construction. Such an use of the dynamical equations to relate the
value of the CFT currents with horizon fluctuations was previously hinted by
the work of [13].

• The connection between the conserved fluxes of [43] and the Wald construction
is not new. However, to our knowledge it was formalized recently [111], while
the work this chapter is based on was being completed. Its application to
the anomalous theories had yet to appear. We formalize such extension and
identify the conserved fluxes as the suitably defined membrane currents of the
theory.

• The constraint equations were already analyzed in the near horizon region in
[33]. However, an explicit link to the membrane currents was missing.

3.2 Membrane currents and conserved charges

3.2.1 Membrane currents

We start giving a procedure to obtain membrane U(1) currents and a membrane
stress tensor. We can define them as fields living on a spacelike hypersurface which
are asked to satisfy relations formally equal to the usual field theory Ward identi-
ties. We can resort to the usual constraint equations of the bulk theory to find them
as projections of bulk fields onto the hypersurfaces. In principle, they might need
to undergo holographic renormalization to avoid singularities. However, the coun-
terterms added do not change the form of the Ward identities or the DC transport
properties, so we will no further comment on them.

The constraint equations appear as components in the equations of motion, usu-
ally associated to the radial direction, so they are expected to hold all along the bulk.
However, they only possess a clear interpretation in the boundary, where they are
equivalent to the field theory’s Ward identities. We use this intuition to propose that
the constraint equations in other points of the foliation must be interpreted as Ward
identities in the effective theory description at low energies and exploit it for our
purposes.

Let us therefore introduce a hypersurface Σ of constant radial coordinate r̂. We
consider a generic action containing a metric and a gauge field. Only later we will
introduce particular examples. If we want to obtain the constraints for an arbitrary
value of r̂, we cut the radial integration of the action at the associated Σ. The on-shell
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variation of the action evaluated at such a hypersurface reads

δSΣ =
∫

Σ
ddx
√
−γ

(
1
2

tabδγab + JaδAa

)
, (3.2)

where one can write

tab .
=

2√
−γ

δSg

δγab
, (3.3)

Ja .
=

1√
−γ

δSg

δAa
. (3.4)

It becomes evident from (3.2) that if one takes Σ to be the boundary, one recovers the
usual definitions of the energy-momentum tensor and the gauge current according
to the holographic dictionary.

The constraints are then found by considering the gauge and diffeomorphism
variation in (3.2), and they read

Da Ja = 0 ,

Datab − Fba Ja = 0 .

We can see they are formally equal to the Ward identities for the U(1) current and
the stress tensor in standard field theory.

These membrane observables may be defined at every Σ, but they are in gen-
eral non trivially related between one surface and the other. Finding such a rela-
tion would still involve the solution of the dynamical equations. In terms of these
membrane currents, though, the equations of motion can be expressed as first order
partial differential equations.

3.2.2 Wald construction and conservation laws

Relating the full membrane currents between different membranes requires solving
the equations of motion, as we have just commented. We can however exploit some
symmetries to connect them partially. In particular, there are conserved charges that
can be used to relate the zero modes of these currents between different membranes.
They can be derived through the Wald construction as follows.

We first consider the variation of the bulk action

δSΣ =
∫

EδΦ + dθ (3.5)

with respect to the set of fields Φ, which gives us the equations of motion E. The
result is only defined up to a total derivative. The d-form θ on which it acts is called
the presymplectic form.

Now suppose that the variation is made with respect to a diffemorphism gen-
erated by ξ and a gauge variation generated by α, such that δ = δξ + δα. From
now on we include subscripts ξ and α to denote which contributions arise for each
transformation. The variation of any form with respect to diffeomorphisms is given
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by
δξω = Lξω = iξdω + d

(
iξω
)

, (3.6)

where Lξ is the Lie derivative with respect to the generator ξ. The second identity
is known as Cartan formula and it is a quite remarkable result, because it relates
interior product, exterior derivative and Lie derivative.

We now go back at (3.5) and assume the action is covariant, that it has no anoma-
lies. Applying (3.6) to the Lagrangian L, the first term gives no contribution because
L is a d + 1 form and we can write

δξ L = diξ L . (3.7)

Using this, we can rewrite the variation of the action as an on-shell closure relation

dJξ,α
.
= 0

for the Noether current
Jξ,α

.
= θξ,α − iξ L . (3.8)

This current has various ambiguities, as pointed out by Wald [148]. In particular, we
can add to it an exact form dk without spoiling its closedness

Jξ,α → Ĵξ,α = θξ,α − iξ L + dkξ,α .

We can fix this ambiguity by demanding that it is zero on-shell

Ĵξ,α
.
= 0 ,

which can always be done because Ĵ is locally exact on-shell due to Poincaré’s
lemma. This vanishing of the Noether current implies also that k is closed on-shell
when the gauge transformations or diffemorphisms leave the background solution
invariant. This particular choice of k is called Komar form. We briefly review how it
can be done in the following.

Let us first consider pure gauge transformations. The transformation of the
gauge field is given by δα A = dα, so a transformation that leaves the field invariant
will be defined by a constant α. For such transformations the presymplectic form
vanishes identically. This happens because all its contributions include one varia-
tion of the fields and it is therefore proportional to dα. Then, plugging this in (3.8)
we get our desired closure relation

0 .
= Ĵα

.
= dkα , for α = const .

The closed form k can be integrated on a (d− 1)-dimensional hypersurface and one
recovers the Gauss law. However, in holography we can make a different use of
this quantity. If we integrate the Komar form on a d dimensional hypersurface Σ of
constant r̂, this integral gives the flux of kα through Σ. Expressed in components,
these fluxes read

Ia .
=
∫

Σ
ddx
√
−g
(
nµkµν

α Pa
ν

)
, (3.9)

where kµν
α is the Hodge dual of kα, nµ is a vector normal to Σ and Pa

µ is an orthogonal
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projector onto Σ. In the Fefferman-Graham gauge, they reduce to n = ∂r̂ and Pa
µ =

δa
µ. Due to the simplicity of this form, we will sometimes omit them for the sake of

clarity.
The closure relation in terms of the Hodge dual of kα reads ∂µkµν

α
.
= 0. It allows

us to find an expression for the radial derivative of the fluxes

∂r̂ Ia .
=
∫

Σ
ddx∂b

(√
−γkab

α

)
,

where we have introduced the induced metric γ. In most cases, when the surface
terms go to zero sufficiently fast, the right-hand side vanishes giving rise to a radial
conservation equation for the fluxes. We will see below that the evaluation of that
integral requires some extra care when some DC modes are present. In the context
of holography this radial conservation can be interpreted as an RG equation for Ia.
More on this will be commented below.

In the case of diffeomorphisms the natural generalization is to impose a Killing
condition on the set of bulk fields LξΦ .

= 0, which assures invariance under diffeo-
morphisms. This is slightly different from the trivial gauge transformations given
by constant α because it is not guaranteed that Killing equations are satisfied for
generic backgrounds. Thus, the construction of the diffeomorphism charge imposes
nontrivial restrictions on the possible solutions.

The presymplectic current is by construction proportional to the variation of the
fields, so it vanishes on-shell if there exists a Killing vector. The extra term in (3.8)
proportional to the Lagrangian can always be written as a total derivative as long as
L is covariant. Because of Poincaré’s lemma, (3.7) induces that locally

iξ L .
= dζξ .

Then, one can define a new quantity k′ξ = kξ − ζξ which is a closed (d− 1)-form

0 .
= Ĵξ

.
= dk′ξ .

In a similar way to the gauge case, one can define a flux Ha by integrating k′ on a d
dimensional surface

Ha =
∫

Σ
ddx
√
−g
(

nµk′ξ
µνPa

ν

)
. (3.10)

Analogously to Ia, we can express the radial derivative of the flux as

∂r̂Ha .
=
∫

Σ
ddx∂b

(√
−γk′ξ

ab
)

.

Due to our application to systems in equilibrium, we must take our Killing vec-
tor associated to time translations, i.e. ξ = ∂t. Fortunately, this choice allows us to
apply the construction to the heat current and, subsequently, to the energy current.
Therefore, this result is usually presented as a spatial flux Hi. For these components
the term proportional to the Lagrangian in the Noether current gives no contribu-
tion.

The holographic importance of this construction becomes apparent once the con-
served fluxes are written as functions of our previously defined membrane currents.
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We will now work out in detail the case of Einstein-Maxwell theory. This will allow
us to better understand the workings of the construction for simpler theories before
moving on to cases with anomalies.

3.2.3 Preliminary example: Einstein-Maxwell theory

Let us consider Einstein-Maxwell theory with cosmological constant in d + 1 space-
time dimensions. The action is given by

Sg =
1

16πG

∫
dd+1x

√
−g
(

R− 2Λ
L2

)
− 1

4

∫
dd+1x

√
−gFµνFµν + SGH ,

where
SGH =

1
8πG

∫
Σ

ddx
√
−γK , (3.11)

is the Gibbons-Hawking counterterm, which assures a well defined variational
problem at a general Cauchy surface. The coupling G is Newton’s constant and
L represents the AdS length.

Using (3.3) and (3.4), we can obtain

tab = − 1
8πG

(
Kab − γabK

)
, (3.12)

Ja = 2nµ
∂L

∂Fµν
Pa

ν = −nµFµνPa
ν . (3.13)

which are the Brown-York tensor and the membrane current, respectively.
We can also recognize the presymplectic form from (3.5). For this theory and, in

general, for any action that depends on the gauge field only through the curvature,
the presymplectic form associated to gauge transformations is given by

θα =
∂L
∂F

dα ,

whose Hodge dual reads

θ
µ
α = 2

∂L
∂Fµν

∂να .

The equations of motion read ∇µ
∂L

∂Fµν
= 0. Therefore, we can easily exploit the

ambiguity in the definition of the Noether current in order to make it vanish on-
shell. If we add ∇νkµν

α to it, for

kµν
α = −2

∂L
∂Fµν

α ,

the Noether current finally gives

Ĵµ
α = −2α∇ν

∂L
∂Fµν

.
= 0 .
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Let us now make the connection between the fluxes (3.9) for kµν
α and the current

(3.13). One can immediately see that both results match for α = 1. Therefore, the
radially conserved flux Ia is, as noted by [44], just the flux of such currents

Ia = −
∫

Σ
ddx
√
−γJa .

By construction, it coincides with the flux of the dual CFT’s U(1) current when Σ
is equal to the boundary. The fact that it does not change along the holographic
direction means that we are able to obtain the dual theory’s result completely in
terms of the horizon data

Diffeomorphisms require a more involved computation. For theories depending
only on the curvatures Rα

βµν and Fµν the presymplectic current is

θ
µ
ξ = 2

∂L
∂Rµν

ρ
σ

δΓν
ρ
σ + 2

∂L
∂Fµν

δAν .

For the Einstein-Maxwell theory, in particular, θ is given by [83]

θ
µ
ξ =

1
16πG

gµνgρσ
(
∇ρδgνσ −∇νδgρσ

)
+ 2

∂L
∂Fµν

δAν .

Particularizing for diffeomorphisms, it becomes

θ
µ
ξ =

1
16πG

∇ν (∇νξµ −∇µξν) + 2
∂L

∂Fµν

(
∇ν(Aρξρ) + Fνρξρ

)
. (3.14)

The Noether current can be constructed by adding ξµL to this term. Then, to find the
Komar form we look for a total derivative that added to the Noether current makes
it vanish on-shell. A careful rewriting shows that the derivative of

kµν
ξ =

1
4πG

∇[µξν] + Aαξα ∂L
∂Fµν

(3.15)

reduces the Noether current to a linear combination of Einstein and Maxwell equa-
tions and one arrives to the spatial flux density

2nµkµν
ξ Pi

ν = − 1
8πG

Kibξb + Acξc Ji ,

where we have used that in Fefferman-Graham coordinates ∇r̂ξa = −Kabξb, if ξa is
radially independent.

At this point we are ready to compute the conserved flux associated to diffeomor-
phisms (3.10). It coincides with one half of the flux of the membrane heat current

Hi =
1
2

∫
Σ

ddx
√
−γ

(
ti

bξb + Acξc Ji
)
=

1
2

∫
Σ

ddx
√
−γQi . (3.16)

On the conformal boundary, this result gives the dual theory’s heat current flux. The
factor of 1/2 could be absorbed in a redefinition of ξ.
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In this discussion we have in principle considered the Einstein-Maxwell La-
grangian. However, in our computations of the membrane currents and the presym-
plectic currents we have not assumed any particular dependence on the field-
strength Fµν. On the contrary, we have assumed the gravitational dependence to
be that of the Einstein-Hilbert action. Therefore, strictly speaking, all the expres-
sions would remain valid if we performed the construction for other Lagrangians
which are functions of the curvature Fµν and possibly to uncharged matter too.

The construction of the Komar charges would remain unchanged under the ad-
dition of counterterms to the action like the ones used for holographic renormaliza-
tion. This is a consequence of the on-shell nature of the construction. Furthermore,
this assures that, as long as the charges are finite on the horizon, their associated
one-point functions need no renormalization.

Another way of understanding it is that one can usually rearrange the equations
of motion in order to find divergence free currents that are equivalent to kµν, like it
was done for gauge transformations in the seminal work [82]. For diffeomorphisms,
finding these divergence free currents is usually more cumbersome. It always re-
quires considering Einstein’s equations dotted with the Killing field ξµ and using
various identities related to Lie derivatives, as in [43].

The construction for anomalous theories is slightly different. We now move on
to cover how it can be extended to such cases.

3.3 Extension to anomalous theories

In holography anomalies are introduced in a very natural way by adding to the ac-
tion Chern-Simons terms, as discussed in Section 2.4.2. Extra care is needed, though,
when dealing with gravitational contributions to the anomaly [128]. When the con-
straints of the gravitational side are ADM decomposed, it can be seen that they do
not match field theory’s Ward identities due to some extra terms containing the ex-
trinsic curvature. Fortunately, these terms do not survive once AdS asymptotics are
imposed.

However, there is no reason to suppress these extrinsic contributions away from
the conformal boundary. Furthermore, in this work we propose a way to inter-
pret the resulting Ward identities. Our approach is looking for a redefinition of the
membrane currents that allows us to obtain constraints for every constant radial
coordinate hypersurface that are formally equal to the usual field theory Ward iden-
tities. We exploit the freedom to choose the definition of the current operators in the
presence of anomalies and look for new currents that possess nice properties from
the point of view of the RG. The way to choose a particular definition is by adding
certain local counterterms in the boundary, but this does not affect the form of the
Komar charges. This suggest that there exists a certain “preferred choice” in the
definition of the currents from the point of view of the holographic RG.

Besides that, a theory that contains gravitational Chern-Simons terms does not
have in general a well defined variational problem due to the presence of higher
derivatives. This is of course extremely problematic for the construction of the space
of solutions. This point is usually overlooked in holography because the gravita-
tional anomaly coefficient λ is subleading in the large N expansion and therefore
the variational problem may get corrected by other subleading terms. As far as we
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are concerned, understanding the stability of such solutions requires some more
work. Related issues have been studied in AdS/CFT in the context of topologically
massive gravity (TMG) [127]. In particular, [113] showed the presence of finite mo-
mentum instabilities for charged black-holes in five dimensions. In Appendix C of
[36] we comment on how these works on TMG can be linked to the modifications
of the membrane currents, but we will not include such discussion in this docu-
ment because it is a detour from our main purpose. Since imposing asymptotic AdS
boundary conditions from the beginning guarantees the stability of the solutions,
we will take such boundary conditions and not make further efforts to study the
definition of the Cauchy problem .

In the following we build on the construction from the previous section in or-
der to find the different currents and their relation to the Komar charges. We will
see that it is precisely the extrinsic terms that carry the relevant information regard-
ing anomalous transport. We mainly focus on four dimensional field theories but,
since the equations are known to follow a general structure, we will keep a general
notation, as in [12].

3.3.1 Equations of motion and presymplectic current

Let us consider a (d + 1)-dimensional gravitational theory of the form

S =
1

16πG

∫
dd+1x

√
−g
(

R− 2Λ
L2

)
+
∫

dd+1x
√
−gLmat

+
∫

dd+1x
√
−gICS [A, F, Γ, R] + SGH , (3.17)

where Lmat denotes the matter Lagrangian and ICS is the bulk Chern-Simons action
as defined in (2.22). We have also included SGH, which is the Gibbons-Hawking
term given by (3.11) and is included to make the variational problem well-defined
for the Einstein-Hilbert action. The matter Lagrangian is taken again to be a function
of Fµν only, although uncharged scalars could be added too. The presence of charged
matter, on the contrary, would spoil the simple structure we will encounter below
for the long wavelength limit of the theory, as will become evident in Chapter 5.

Let us now take the variation of the action to obtain the equations of motion and
the presymplectic current

δICS =

(
∂ICS

∂F
δF +

∂ICS

∂A
δA
)
+

(
∂ICS

∂dΓ
dδΓ +

∂ICS

∂Γ
δΓ

)
.

Integrating by parts leads to

δICS = ΣµδAµ + EµνρδΓρ
µν + d

(
∂ICS

∂F
δA +

∂ICS

∂dΓ
δΓ

)
,

https://link.springer.com/content/pdf/10.1007%2FJHEP04%282018%29134.pdf#appendix.C
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where

Σµ =
∂ICS

∂Aµ
− 2∇ν

∂ICS

∂Fνµ
,

Eµν
ρ =

∂ICS

∂Γρ
µν

− 2∇σ
∂ICS

∂R ρ
σµ ν

,

and Σµ is known as the Hall current. The usual form of Einstein’s equations is
obtained as the variation with respect to the metric and the Chern-Simons action
in (3.17) is a function of connections and curvatures, as opposed to ICS[A, dA, Γ, dΓ].
Therefore, we need to rearrange the second and fourth terms such that the equations
of motion appear contracted with variations of the metric and the derivatives are
taken with respect to R and not dΓ. The final result for the variation is

δICS = ΣµδAµ −∇ρΣµνρδgµν +∇µ

(
2

∂ICS

∂Fµν
δAν +

∂ICS

∂∂µΓρ
δΓρ + Σαβµδgαβ

)
,

where
Σµνρ =

1
2
(Eµνρ + Eµρν − Eρµν)

is the spin current. From the full variation of the action we can obtain the equations
of motion

2∇µ
∂Lmat

∂Fµν
= Σν , (3.18)

Gµν −Λgµν = Tµν
mat +∇ρΣ(µν)ρ , (3.19)

where Tµν is the matter stress tensor. We have also found the Chern-Simons part of
the presymplectic current

θ
µ
CS = 2

∂ICS

∂Fµν
δAν + 2

∂ICS

∂Rµρ
δΓρ + Σαβµδgαβ . (3.20)

In the five dimensional theory (2.22), the Hall and spin currents read

Σµ = κεµαβγδFαβFγδ ,

Σµνρ = 2λεµαβγδFαβRνρ
γδ .

In general both currents are covariant expressions even if they come from a non-
covariant action. This intriguing feature motivated a series of works on the exten-
sion of the Wald construction to theories with a noncovariant Lagrangian [138, 29,
12]. Their construction includes a large part of the technical tools we use in this
work and it was key to us in order to extend our results past perturbation theory.
We review it below and include the explicit derivative of the Komar charges in the
relevant cases.
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3.3.2 Anomalous membrane currents

The explicit form of the constraint equations can be found through variation of the
on-shell action. In theories supplemented with gravitational Chern-Simons terms
there is in general no counterterm à la Gibbons-Hawing that makes the variational
problem well defined. There are instabilities of the Ostrogradski type because of
the appearance of higher derivatives, but it is even more worrisome the fact that an
ill-defined variational problem can spoil the unitarity of the dual theories. All the
effects it might have are still not clear, but some cases have already been studied,
like the one in AdS3 [127].

The on-shell variation takes the general form

δSΣ =
∫

Σ
ddx
√
−γ

(
1
2

tabδγab +
1
2

uabδKab + lab
cδΓ̂c

ab + J
aδAa

)
, (3.21)

where the precise form of the various quantities depends on the choice of Chern-
Simons action. We separate the variation with respect to the connection from the
one with respect to the induced metric because, while tab only contains gauge and
diffeomorphism invariant quantities, lab

c might not be covariant if anomalies are
present.

The presence of the connections A and Γ in the Chern-Simons action spoil the
gauge and diffeomorphism invariance of the theory. This leads to an anomalous
variation of the action

δ̄SΣ
.
=
∫

Σ
ddx
√
−γnµ

(
α

∂ICS

∂Aµ
+ Λ

∂ICS

∂Γµ

)
, (3.22)

where the variation δ̄, which includes simultaneously gauge transformations and
diffeomorphisms, is defined as

δ̄A = dα ,
δ̄Γ = dΛ + [Λ, Γ] ,

such that (Λ)µ
ν = ∂νξµ is the connection’s gauge parameter. The anomalous varia-

tion (3.22) must be equal to (3.21) when the variations of the fields are particularized
to gauge transformations and diffeomorphisms.

Let us now treat the gauge and diffeomorphism cases separately.

Anomalous gauge constraint

The consistent current J a is given by

J a .
=

1√
−γ

δSg

δAa
= 2nµ

(
∂Lmat

∂Fµν
+

∂ICS

∂Fµν

)
Pa

ν . (3.23)

Integrating by parts the gauge variation of (3.21) and equating it to (3.22), we get the
anomalous constraint for the consistent current

DaJ a = −nµ
∂ICS

∂Aµ
. (3.24)
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This constraint has a slightly different interpretation depending on whether a pos-
sible gravitational anomaly lies in the diffeomorphism sector, like in (2.24), or in the
gauge sector, like in (2.22). For pedagogical reasons, we treat both cases separately
in the following.

Let us consider the first case, in which the mixed anomaly lies in the diffeomorphism
sector. No gravitational characteristic class appears on the right hand side of (3.24),
but the definition of the consistent membrane current picks up some contribution
from the Chern Simons term. In particular, the constraint now reads

DaJ a = −κ

3
εabcdFabFcd ,

and we can decompose the consistent current in three different parts

J a = 2nµ
∂Lmat

∂Fµν
Pa

ν + Ja
CSK + Ja

BZ .

The first one is the contribution that we already obtained for the Einstein-Maxwell
theory and comes from the first term in (3.23). It is present in all the possible defini-
tions of the current and it has no ambiguity associated because it is not produced by
the anomaly. The other two parts come from the ADM decomposition of the Chern-
Simons contribution to (3.23). Contributions involving extrinsic curvatures are col-
lected in the extrinsic Chern-Simons current Ja

CSK, and Ja
BZ is the usual Bardeen-

Zumino polynomial needed to define covariant currents, which we can recognize as
the purely intrinsic part.

For the theory with mixed anomaly introduced above, the Bardeen-Zumino
polynomial receives two contributions from the gauge and gravitational sectors,
such that Ja

BZ = Ja
A + Ja

Γ̂
. The different parts of the current are given by

Ja
CSK = −8λεabcdK f

b DcK f
d ,

Ja
A =

4
3

κεabcd AbFcd ,

Ja
Γ̂
= 4λεabcdTr

(
Γ̂b∂cΓ̂d +

2
3

Γ̂bΓ̂cΓ̂d

)
.

Since Ja
A is a well-known result, let us now make some further comments only on

the relevant aspects of the different gravitational contributions.
Among the parts coming from the gravitational anomaly, the extrinsic current is

the only one which is first order in spacetime derivatives. That makes it a good can-
didate to encode the anomalous horizon fluctuations involving the vorticity. How-
ever, a simple asymptotic analysis shows that Ja

CSK vanishes identically at the con-
formal boundary [12]. Thus, any relevant effect must be dynamically generated
inside the bulk. Furthermore, the extrinsic current is perfectly diffeomorphism and
gauge invariant from the point of view of the membrane Σ, so it cannot contribute
in any way to the anomaly. Nothing prevents it from having physical consequences,
though.
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The intrinsic contribution Ja
Γ̂

can be seen to give rise to the mixed anomaly, ac-
cording to

Da Ja
Γ̂
= λεabcdTr

(
R̂abR̂cd

)
.

Therefore, the mixed anomaly can be moved to the gauge sector by a Bardeen coun-
terterm of the form

BΣ = −
∫

Σ
ddx
√
−γ Aa Ja

Γ̂
= −

∫
Σ

ddx
√
−γ 4λεabcd AaTr

(
Γ̂b∂cΓ̂d +

2
3

Γ̂bΓ̂cΓ̂d

)
.

(3.25)
In that case the consistent current loses its Ja

Γ̂
contribution, while the extrinsic part

remains as a defining feature of the membrane current. We could therefore write the
resulting constraint equation as

Da

(
J a − Ja

Γ̂

)
= −κ

3
εabcdFabFcd − λεabcdTr

(
R̂abR̂cd

)
, (3.26)

which is formally equivalent to the usual consistent form of the U(1)3 anomaly plus
the mixed gauge-gravitational anomaly.

Let us now consider the other case, which is also the usual approach to this theory
in the literature. We consider from the beginning a Chern-Simons action (2.22) that
is diffeomorphism invariant, like in [108]. The right-hand side of the constraint
equation now obtains a contribution from the gravitational sector that reads

nµ
∂ICS

∂Aµ

∣∣∣∣
grav

= −λεabcdTr
(
R̂abR̂cd

)
− Da Ja

CSK .

and one has to add a counterterm explicitly dependent on the extrinsic data

SCSK =
∫

Σ
ddx
√
−γ Aa Ja

CSK = −
∫

Σ
ddx
√
−γ 8λεabcd AaK f

b DcK f
d , (3.27)

in order to recover the correct Ward identity and obtain the correct definition of the
membrane currents.

Without the inclusion of such a counterterm the horizon physics are the same.
However, one might feel tempted to explain the anomalous fluctuations as a re-
sponse to the “thermal” anomaly

Athermal ≡ 64π2T2Eg · Bg ,

where Eg and Bg are the gravitoelectric and gravitomagnetic fields on the horizon,
as for example in [33]. We prefer not to think about it this way, since this is not a
true anomaly, as it comes from the divergence of a physical current and it is state
dependent.

At this point we can go back to the different possible definitions of the anomalus
currents discussed in Section 2.1.6. We can define for each membrane a consistent
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current J a that is obtained as the on-shell variation of the action

J a .
=

1√
−γ

δSg

δAa
,

a covariant current Ja whose variation under gauge transformations and diffeomor-
phisms is zero

δα,ξ Ja = 0 ,

and even a conserved current Ja
cons whose divergence is zero

Da Ja
cons = 0 .

The explicit expressions, considering the possibility of adding a Bardeen countert-
erm cBΣ to the action, read

J a = 2nµ
∂Lmat

∂Fµν
+ Ja

CSK + Ja
A + (1− c)Ja

Γ̂
, (3.28)

Ja = 2nµ
∂Lmat

∂Fµν
Pa

ν + Ja
CSK , (3.29)

Ja
cons = Ja + Ja

Γ̂
+

3
2

Ja
A . (3.30)

The factor 3/2 in the definition of the conserved current depends on the dimen-
sionality of the theory. In general it can be extracted by writing the covariant U(1)3

anomaly as a total divergence.

Anomalous diffeomorphism constraint

The diffeomorphism constraints allow us to define a consistent membrane stress
tensor. We might encounter problems in the construction due to the presence of
higher derivative terms. These terms vanish at the boundary due to the asymptotic
AdS boundary conditions but they could in principle have a contribution inside
the bulk. We will treat the metric and the extrinsic curvature, which is essentially
given by a radial derivative of the metric, as independent fields and this will help
us achieve our goal of defining valid membrane currents.

Since the variation under diffeomorphisms of the different fields is given by the
Lie derivative with respect to the diffeomorphism generator ξ, we can use the fol-
lowing formulas

Lξγab = Daξb + Dbξa ,

Lξ Aa = ∂a

(
Abξb

)
+ Fabξb ,

LξKab = ξcDcKab + DaξcKcb + DbξcKac .

This allows us to extract the diffeomorphism constraints as the terms proportional
to the Killing field ξa in the on-shell variation of the action (3.21) under diffeomor-
phisms

δξSΣ =
∫

Σ
ddx
√
−γ

(
DaΘab − FbcJc + AbDcJ c + ∆b

)
ξb , (3.31)
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where we have defined for convenience

Θab = tab + uacKb
c + Dd

(
ld(ba) + l(adb) − l(ab)d

)
,

∆b = −1
2

uacDbKac ,

and J a is given in (3.28). Furthermore, if we divide the stress tensor into the
Einstein-Hilbert and anomalous parts, as in tab = tab

EH + tab
λ , we get the following

expressions

tab
λ = nµ

(
Σabµ + Σbaµ

)
, (3.32)

uab = 2nµnν

(
∂ICS

∂Rµaν
b −

∂ICS

∂R b
µa ν

)
,

lab
c = 2nν ∂ICS

∂R c
νa b

,

which follow from the ADM decomposition of the radial component of the presym-
plectic current (3.20). The remaining part of the stress tensor tab

EH is given by (3.12).
Let us now assume a counterterm cBΣ, where BΣ is given by (3.25), has been

added to the action in order to move the anomaly to the gauge sector. Apart from
the consistent current, as above, this only affects Θab in the following way

Θab → Θab − cDd

(
ld(ba) + l(adb) − l(ab)d

)
− 4cλεmnp(aDe

(
AmRnp

b)e
)

.

The constraint equations are then derived by equating δξSΣ in (3.31) to the consistent
diffeomorphism anomalyAb, which is obtained from the second term in (3.22) when
it is also rearranged as a term proportional to ξb plus total derivatives. The resulting
constraints take the general form

Cb = DaΘab − FbcJc + AbDcJ c + ∆b − (1− c)Ab .
= 0 . (3.33)

This form of the consistent constraint suggests that Θab must be interpreted as the
consistent membrane stress tensor. For the particular theory we have chosen, the
anomaly is

Ab = 2λγbc 1√
−γ

∂a

(√
−γεde f gFde∂ f Γa

gc

)
.

We can also exploit the freedom to define different operators in anomalous theo-
ries for the stress tensor. The covariant stress tensor Tab, for example, can be found
reexpressing the Ward identity in terms of covariant quantities. In order to do this,
we need to drop from the stress tensor the explicit dependence on the gauge field Am
and also the dependence on the noncovariant variation with respect to Christoffel’s
connection lab

c, as in

Tab = Θab − (1− c)Dd

(
ld(ba) + l(adb) − l(ab)d

)
+ 4cλεmnp(aDe

(
AmRnp

b)e
)

.
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The final expression for the covariant membrane stress tensor is simply

Tab = tab + uacKb
c . (3.34)

and its associated Ward identity, written also in terms of the covariant current (3.29),
reads

DaTab − Fbc Jc + ∆b + 2λεcde f Da

(
FcdRab

e f

)
= 0 .

The last term of this equation, which is the result of combining the consistent
anomaly with the pieces that distinguish consistent operators from covariant oper-
ators, must be interpreted as the covariant diffeomorphism anomaly. We can intro-
duce inside the definition of the membrane stress tensor a term that cancels the last
total derivative in the constraint equation. We propose this must be the conserved
stress tensor Tab

cons analogous to the conserved current, which reads

Tab
cons = Tab + 2λεcde f FcdRab

e f .

As the energy-momentum tensor now contains an antisymmetric part, we have
ended up with a Lorentz anomaly for this definition of the membrane stress ten-
sor.

From the intuition gained in the preliminary example from Section 3.2.3, we
know that the quantity that appears in the conserved flux associated to diffeomor-
phisms is the heat current. Therefore, it will prove more convenient for our purposes
to work with the heat current which we define as

Qa = Θa
bξb + AbξbJ a . (3.35)

Its conservation is only spoiled by the diffeomorphism anomaly

DaQa = (1− c)Abξb . (3.36)

The right-hand side can always be cancelled by taking c = 1, which is the choice of
counterterms that moves the anomaly completely to the gauge sector.

We have proposed a new definition for the heat current (3.35) as the result of
exchanging ta

b by Θa
b in the usual definition, given for example in (3.16). However,

this new definition produces a constraint, given by (3.36), that is formally equal to
the usual field theory’s constraint for the heat current. We thus understand this as a
consistency check for our proposal of Θab as the membrane consistent stress tensor.

Analogously to the other membrane currents, we can define a conserved heat
current Qa

cons which is divergence-free. We will skip the construction here but it can
be found in Appendix A of [36]. The final result reads

Qa
cons = Θa

bξb + AcξcJ a − (1− c)
1√
−γ

∂b

(√
−γlba

cξc
)
+ 2(1− c)l(ab)

cΛc
b .

Now that all the different relevant quantities have been derived, let us introduce
the explicit expressions for the Chern-Simons action given by (2.24). The different

https://link.springer.com/content/pdf/10.1007%2FJHEP04%282018%29134.pdf#appendix.A
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components of the membrane stress tensor read

tab
EH = − 1

8πG
(Kab − Kγab) ,

tab
λ = −8λεmnp(a

(
2DnKb)

p Fr̂m + γb)lK̇lnFpm − FpmKb)
l Kl

n

)
,

uab = 8λεmnp(aFmnKb)
p ,

lab
c = 2λεamnpFmnΓb

pc .

Before moving on to the construction of the Komar charges, let us make some
remarks on the form of the constraint equations (3.33). First of all, it is important
to notice that our candidate Θab for the consistent membrane stress tensor does not
coincide with the well-known Brown-York prescription

Θab 6= 2√
−γ

δSg

δγab
,

precisely due to the additional term coming from the extrinsic curvature contribu-
tions. One may wonder if this is an artifact of the way in which we have organized
the various fields in the constraint equation, since one could in principle include
the modification into a redefinition of ∆b. However, as we have already discussed,
that term is necessary in the definition of the heat current (3.35) to obtain the right
constraint.

Another important consistency check for our proposal is that it gives the right
near boundary limit for the dual stress tensor 〈Ta

b〉, which is easily computed from
(3.21) using that asymptotically δKa

b = δγa
b plus subleading terms. No other con-

tributions arise as long as strictly AdS boundary conditions are imposed

〈Ta
b〉 = lim

r→∞

√
−γ (ta

b + ua
b) = lim

r→∞

√
−γ

(
tab + uacKcb

)
= lim

r→∞

√
−γΘa

b .

Furthermore, holographic renormalization would give no contribution to the new
terms in the definition of the membrane stress tensor.

Yet another check can be performed by moving the anomalies entirely to the
gauge sector and using the asymptotic expansion to compare to the known results
for the bare stress tensor. The result from [117] is recovered.

Our prescription has been already applied successfully to systems where mo-
mentum relaxation is introduced in the presence of a mixed gauge gravitational
anomaly. In this case, the higher derivative corrections stemming from uab are cru-
cial for the restoration of the symmetry of the mixed two point functions in the
presence of a magnetic field. This will be covered in Chapter 4.

However, the most interesting aspect of it is that the constraint equations (3.33)
are expected to hold all along the bulk. In general, they just differ from the usual
Ward identities due to the contribution ∆b, which is only guaranteed to vanish in the
conformal boundary. Such difference takes a suggestive form if we think of uab as
the expectation value of an independent operator, associated with the mode excited
by the extrinsic curvature. From our point of view this is reflected in the constraint
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equation, where
∆b ∼ uacDbKac

appears in the form [ operator times ∂(source) ], also presented for example by JaFb
a.

This structure suggests that this second operator, even if turned off at the confor-
mal boundary, dynamically gets an expectation value as we slide through the bulk.
This is somehow similar to the reasoning in [127], where such operator was indeed
shown to survive at the conformal boundary for general solutions and lead to loga-
rithmic correlators with the canonical stress tensor in AdS3.

In the following section we match the membrane currents defined here to the
conserved fluxes related to diffeomorphisms and gauge transformations.

3.3.3 Anomalous Wald construction and conservation laws

The construction of conserved fluxes associated to diffeomorphisms and gauge
transformations in Chern-Simons theories is mainly taken from [12, 29] where the
subtleties of the construction are also discussed at length. It is important to keep
in mind that all the construction can be derived by explicitly using the equations of
motion (3.18) and (3.19) and assuming the background solution to posses a Killing
vector field. This is important because of two reasons that have already been pointed
out. First, it makes the construction independent of the choice of counterterms used
to define the membrane currents, and, second, the charges are consequently inde-
pendent of any holographic renormalization procedure to remove divergences.

In the presence of bulk Chern-Simons terms the Wald construction is known to
be plagued by ambiguities [29]. These are due to the lack of covariance for the bulk
action, which introduces various subtleties in the extraction of the Komar form kµν

from the Noether charge. In particular, the Chern-Simons terms give further con-
tributions to the on-shell vanishing Noether current Jξ,α which are proportional to
the gauge parameters α and Λ. One can however still derive the conservation equa-
tion for the appropriate fluxes once a particular gauge is chosen. The charges thus
derived are not covariant, but a covariant prescription for the differential Noether
charge was given in [12], which allows one to unambiguously define the Wald en-
tropy at a bifurcation surface. We will follow instead the ideas of [29] and the re-
marks in (5.3) of [12] which are closer in notation to the construction of Section 3.2.2.
The price to pay will be a noncovariant expression for kµν, which from our perspec-
tive is a feature rather than a bug. In fact, it allows us to link the flux conservation
to the RG properties of the conserved current and the conserved stress tensor.

We are using the construction introduced in section 3.2.2 as a base, so we will
only point out the differences. Again, the variation of the Lagrangian may be written
as

δ (L + ICS) = EδΦ + dθ .

However, when the variation is taken with respect to diffeomorphisms (ξ) or gauge
transformations (α), the Lagrangian does not change simply as a Lie derivative due
to the lack of covariance of the Chern-Simons terms. Indeed a further piece Ξξ,α
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arises because of the inflow of the consistent anomalies

δξ,αL = diξ L ,
δξ,α ICS = diξ ICS + dΞξ,α ,

where
Ξξ,α = α

∂ICS

∂A
+ Λ

∂ICS

∂Γ

and, as before, (Λ)a
b = ∂bξa. The new contribution appears as a total derivative.

Therefore, it is still possible to define a Noether current

Jξ,α = θξ,α − iξ (L + ICS)− Ξξ,α ,

that is closed on-shell
dJξ,α

.
= 0 .

Inspired by Section 3.2.2, we can define an improved current Ĵξ,α that vanishes
on-shell through the addition of a total derivative. The interest of defining Ĵξ,α is
that, according to the case without anomalies, it can be used to find conserved fluxes
once ξ or α are chosen to preserve the solutions. In this case, Ξξ,α introduces some
subtleties because it is proportional to the gauge parameters instead of their deriva-
tives. Once this is solved, though, most of the construction is essentially equal.

This issue can be circumvented introducing a (d− 1)-form y such that

Ξξ,α − dy = Ξ′dα,dΛ , (3.37)

where Ξ′ only depends on the gauge parameters through their exterior derivative.
Please notice this is not an on-shell identity, both sides must be equal independently
of the equations of motion. The existence of a solution to this equation is conve-
niently guaranteed by the closedness of the anomaly polynomials. Rearranging the
on-shell vanishing current, we get

Ĵξ,α = θξ,α − iξ(L + ICS)− Ξ′dα,dΛ + dk′ξ,α , (3.38)

where
k′ξ,α = kξ,α − y

is the new candidate for the Komar form.
The importance of making the first three terms of the on-shell vanishing current

(3.38) be proportional to dα and dΛ becomes evident now. We can choose dα =
dΛ = 0 and cancel that part of Ĵξ,α, subsequently obtaining the necessary closure
relation

dk′ξ,α = 0 .

More details on the generality and coordinate dependence of this construction can
be found in [29]. We now treat separately the cases of gauge transformations and
diffeomorphisms.
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Anomalous gauge charge

The gauge contribution to the presymplectic current can be obtained combining the
presymplectic current of 3.2.3 with (3.20). It can be written as

θ
µ
α = 2

(
∂L

∂Fµν
+

∂ICS

∂Fµν

)
∂να ,

while the anomalous term is given by

Ξµ
α = α

∂ICS

∂Aµ
,

and the Noether charge is defined as the sum of both contributions

Jα = θα − Ξα .

We must look now for a surface term kµν
α such that if we add its derivative ∇νkµν

α to
the Noether current, the latter vanishes on-shell. The result is

kµν
α = −2α

(
∂L

∂Fµν
+

∂ICS

∂Fµν

)
,

and the new Noether current reads

Ĵµ
α = α

(
−2∇ν

∂L
∂Fµν

− 2∇ν
∂ICS

∂Fµν
− ∂ICS

∂Aµ

)
= −α

(
2∇ν

∂L
∂Fµν

+ Σµ
A

)
.

This last expression vanishes on-shell according to (3.18).
We still need to rearrange the Noether current, such that the dependence on the

gauge parameter of all the terms apart from the Komar charge is only through its
derivative. Let us particularize (3.37) to our case and express the right-hand side
with the explicit dependence on ∇µα to give

α
∂ICS

∂Aµ
−∇νyµν = Ξ′µν∇να .

From the structure of Chern-Simons terms, we know that there exists a quantity `µν

that satisfies
∂ICS

∂Aµ
=

κ

3
εµνρστFνρFστ = ∇ν`

µν .

In particular, the value of this quantity is

`µν =
2κ

3
εµνρστ AρFστ

Using this, we can fix the form y in the gauge case to be

yµν = α`µν .
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For the Chern-Simons action in (2.24), one gets

1
2

Ja
A = nµ`

µνPa
ν .

At this point, one might find intriguing that this term is precisely the one required
to define a conserved current from a consistent current, according to (3.30).

The complete Komar charge can be written as

k′α
µν = −2

(
∂L

∂Fµν
+

∂ICS

∂Fµν

)
− `µν ,

and it indeed gives rise to the conserved current

nµk′µνPa
ν = −Ja

cons .

As already discussed for the non anomalous case, if the fields decay fast enough at
the boundary of Σ, the closedness of k′α makes the flux of the gauge charge on Σ
radially conserved. In the context of the holographic RG, this conservation for the
flux can be reinterpreted as the conservation of the flux of the conserved membrane
current Ja

cons

∂r̂

∫
Σ

ddx
√
−γJa

cons = 0 .

We commented above that the Wald construction could be followed for anomalous
cases but only at the expense of ending up with a noncovariant Komar charge. The
noncovariance becomes now obvious when we present the result in terms of the
noncovariant conserved current Ja

cons. This is not a major obstruction for our goal,
since we will be able anyway to recover the gravitational anomalous transport from
horizon fluctuations. However, for particular cases the continuity equation of the
Komar form does not simply reduce to the radial conservation of the flux of the
conserved membrane currents, due to the appearance of surface contributions. In
those cases the extraction of the transport coefficients becomes more cumbersome.

In particular, as we discuss below, those surface contributions appear for the
U(1)3 anomaly. It was shown by [60] that it is a consequence of having a constant
magnetic field present. In that same reference, the authors show that the results for
the anomalous conductivities remain valid in a large number of theories in which
the field strength appears in higher powers. From our Komar charge construction
the difference between those theories would be introduced through the ∂Lmat/∂F
contribution and we would expect all those terms to vanish at the horizon in the
absence of external electric fields once infalling boundary conditions were imposed.

Another point made in [60] is that massive vector fields in the bulk, possibly
in the form of a Stückelberg field, alter the form of the conservation equation and
the conductivities receive nontrivial bulk corrections. It can be seen at the level of
the equation of motion because the Maxwell equation is no longer a total derivative
and, therefore, the bulk gauge field obtains an effective mass and the dual current
acquires an anomalous dimension, ceasing to be conserved. In our construction,
this behavior can be seen because, in the presence of a Stückelberg field θ, there is
no choice for the gauge parameter that leads to an invariant transformation, since
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δαθ = α 6= 0. Thus, there is no way to make the presymplectic form vanish on-shell
and the Komar form fails to be closed. One particular case in which this happens
will be discussed in Chapter 5. In that example, we interpret the corrections to the
axial conductivity due to charged scalar fields as an infrared screening of the axial
charge.

Anomalous diffeomorphism charge

The construction in the case of diffeomorphisms is slightly more involved due to the
higher number of terms we need to take care of. We go on assuming mixed anoma-
lies to lie in the diffeomorphism sector, according to (2.24), because the gravitational
sector then depends only on field strengths and behaves better in the presence of
constant background magnetic fields. The gauge sector, though, presents in this
case some subtleties due to the asymptotic divergence of the vector potential Aµ.

The presymplectic current θξ can be obtained from the Einstein-Maxwell part in
(3.14), which we call here θEM

ξ , and the Chern-Simons contribution from (3.20). The
final result is

θξ =θEM
ξ +

∂ICS

∂F
(
diξ A + iξ F

)
+

∂ICS

∂R
(
diξΓ + iξdΓ + dΛ + [Λ, Γ]

)
+ Σαβµ∇(αξβ) ? dxµ . (3.39)

The anomalous term is
Ξξ = Λ

∂ICS

∂Γ
,

which supplements the presymplectic current to give the Noether current.
We need to add a total derivative dkξ to the Noether current

Ĵξ = θξ − iξ (L + ICS)− Ξξ + dkξ , (3.40)

such that it makes the current vanish on-shell. Similarly to the presymplectic cur-
rent, which we decomposed in an Einstein-Maxwell part and a Chern-Simons part,
we introduce the notation that kξ has a part denoted by kEM

ξ that is equal to (3.15)
and a part stemming from the Chern-Simons action that needs to be worked out.

The explicit expression of the Hodge dual of kξ is, in components,

kµν
ξ = (kEM

ξ )µν − 1
2

ξρ
(
Σµ

ρ
ν + Σνµ

ρ + Σρ
µν
)
+ ξρ Aρ

∂ICS

∂Fµν
+∇ρξσ ∂ICS

∂Rσ
ρµν

. (3.41)

Regarding the vanishing of the Noether current, it works as follows. On one hand,
the first anomalous term in (3.41) combines with the last term in (3.39) to give the
spin current. On the other hand, the rest of (3.41) combines with the rest of the
Chern-Simons presymplectic current to give Maxwell’s equations, after some ma-
nipulations using identities between differential forms.

Following the previous discussion for the gauge case, we add and subtract to
(3.40) the total derivative of yµν. If we find a yµν that makes the dependence on the
gauge parameter of the rest of the Noether current be only through derivatives, we
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will have the on-shell conserved quantity

k′µν = kµν − yµν .

We thus need to fix yµν. It can be done once a particular theory is picked, as dis-
cussed in [29]. We take again the theory to be given by (2.24), so the anomaly is taken
to be in the diffeomorphism sector. However, the search for the Komar charges is an
on-shell construction and the equations of motion do not change under the addition
of total derivatives to the Lagrangian, so this choice has no physical significance.
One might wonder why we have insisted on this choice in all the discussion when in
the literature about anomalous transport the anomaly is always taken in the gauge
sector.

The reason why we choose this anomaly becomes evident in the next step, in
which we construct the yµν for our particular theory. If we chose a Chern-Simons
action like (2.22), yµν would be zero, but the last term in (3.41) would give a gauge
dependent contribution

∇ρξσ ∂ICS

∂Rσ
ρ
∼ εµναβγ AγRσρ

αβ∇ρξσ .

This form is troublesome for the constant magnetic field analysis required to recover
the anomalous transport coefficients. The linear coordinate dependence of a gauge
connection of the form Ai ∝ εijkxjBk would make manipulations through Stokes
theorem subtle and ill-defined.

There will only be contribution to Ξ from the mixed anomaly, which can be ex-
pressed schematically as

ICS = λF ∧ CS(Γ) .

For this choice,
∂ICS

∂Γ
= λF ∧

(
R− Γ2

)
= λF ∧ dΓ ,

and the relation for y now reads

Λ
∂ICS

∂Γ
− dy = Ξ′dΛ ,

so it becomes evident that y can be

y = λΛF ∧ Γ ,

whose explicit expression in components is

yµν = λεµνρτσFτσΓα
ρβΛβ

α .

The final Komar charge is given by k′ = k− y, whose flux over each constant ra-
dius hypersurface can be related to the RG equation for the membrane heat current.
We need to take a static solution, for which ξ = ∂t is a Killing field, and compare the
expression for this charge to the membrane stress tensor Θab. Let us take a look at
the explicit form of nν(k′ξ)

µνPa
µ after ADM decomposing it. We express it separated



68 Chapter 3. Holographic RG approach to anomalous transport

in different terms that match the different contributions of the membrane currents,
as in (

kµν
EH + ξρ Aρ

∂ICS

∂Fµν

)
nνPa

µ = −1
2

tab
EHξb −

1
2

AbξbJ a ,

−1
2

ξb

(
Σµbν + Σbµν

)
nνPa

µ = −1
2

tab
λ ξb ,(

−1
2

ξbΣνµb +∇ρξσ ∂ICS

∂Rσ
ρµν
− yµν

)
nνPa

µ = −1
2

uacKcbξb − 1
2

ζa ,

where ζa is given by

ζa = 4l(ab)
cΛc

b + lab
cΓ̂c

bdξd + lba
cΓ̂c

bdξd − lbc
dΓ̂a

bcξd − 2
1√
−γ

∂b

(√
−γlba

cξc
)

.

The equations above look rather messy. However, we can use the intuition we
have gained from the U(1) case to check whether they combine into the conserved
heat current

kar̂
ξ = −1

2

(
Θabξb + AbξbJ a − 1√

−γ
∂b

(√
−γlba

cξc
)
+ 2l(ab)

cΛc
b

)
. (3.42)

The computation is tedious but conceptually straight-forward, as one needs to com-
pute explicitly the intrinsic contributions to Θab. The computation simplifies greatly
by realizing

lba
cΓ̂c

bdξd = −lbc
dΓ̂a

bcξd .

One finally finds

Θabξb = tab
0 ξb + tab

λ ξb + uacKcbξb − 1√
−γ

∂b

(√
−γlba

cξc
)
+ 2l(ab)

cDbξc − lbc
dΓa

bcξd ,

which allows to prove (3.42).
Then, for surface terms decaying fast enough, the conservation equation reads

0 = ∂r̂

∫
Σ

ddx
√
−γ

(
Θabξb + AbξbJ a − 1√

−γ
∂b

(√
−γlba

cξc
)
+ 2l(ab)

cΛc
b

)
= ∂r̂

∫
Σ

ddx
√
−γQa

cons .

This must be interpreted as an RG equation for the membrane conserved heat cur-
rent. Here, again, it is Θab the one that appears in the RG equation and not the
Brown-York tensor.
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3.4 Extraction of anomalous transport coefficients

3.4.1 Asymptotics, thermodynamics, sources and radial conserva-
tion

Let us consider a generic asymptotically AdS stationary black hole solution. We
must understand it as an order by order fluid-gravity expansion in spatial deriva-
tives. The transport coefficients correspond to the first order corrections to the one
point functions of the currents. However, it is instructive to keep the discussion as
general as possible in the near-horizon region, where only regularity and stationar-
ity need to be imposed in order to evaluate the extrinsic membrane currents. We
are interested in the effects of both U(1)3 and mixed gauge-gravitational anomalies.
Therefore, we study charged black hole solutions with no electric fields.

Our ansatz now takes the form

ds2 =
dR2

F(R)
− f (R)uaubdxadxb + g(R)habdxadxb ,

A = At(R)uadxa + abdxb ,

where we have naturally decomposed the metric and the gauge field into their pro-
jections parallel and perpendicular to the Killing vector ξa = (1,~0). In particular,
we get

ua = −
1

f (R)
γabξb , At = Aaξa ,

and
habξb = ha

bub = abξb = 0 .

All of the functions in the ansatz above, if not indicated explicitly, depend on the
radial and the spatial coordinates only.

We no longer use the Fefferman-Graham coordinates near the horizon and we
choose the new radial coordinate R in such a way that one can consistently impose
the gauge fixing AR = 0. In particular, we define R implicitly through the asymp-
totic expansions at the conformal boundary and the horizon because we will only
evaluate the quantities involved in those regions. Near the boundary, the expansion
is equal to the Fefferman-Graham one: F(R) ∼ 1, f (R) ∼ g(R) ∼ e2R and all the rest
of the quantities in the ansatz are of order one. At the horizon, asymptotics are fixed
by regularity and infalling conditions [82]. In particular, f (R) and F(R) vanish at
the location RH of the horizon, while their quotient remains finite. Additionally, the
derivative of f (R) at the horizon is related to the Hawking temperature T through

∂R f = 4πT

√
f
F
+ O( f , F) .

This temperature must be interpreted as the temperature of the dual thermal state.
At the horizon we can finally fix, without loss of generality, g(RH) = 1 and
∂Rg(RH) = 1, so that hab plays the role of the induced metric on the horizon.

A notion of chemical potential is also required to fully specify the thermodynam-
ics of the system. In order to avoid cluttering of formulas, we fix the gauge for the
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vector potential in such a way that At(R → ∞) = 0 and At(RH) = −µ, where µ is
the chemical potential of the dual CFT state. However, as noncovariant charges are
involved one may be worried by the fact that the choice of gauge could affect the
result. The safe way to proceed would be erasing the dependence on gauge choice
by working with the covariant version of the membrane current and stress tensor. In
fact, we can always obtain an expression of the one-point function of the covariant
currents in terms of horizon data even if the holographic RG equations are writ-
ten in terms of the conserved version of the membrane currents. The RG equation
can be written in a manifestly covariant way through the use of the gauge invariant
chemical potential

µ =
∫

dR FRaξa = At(∞)− At(RH) .

Thus, we use that particular gauge for convenience but it has been checked that one
could reproduce the result in a fully covariant way.

The magnetic field Ba and the vorticity ωa are R-independent quantities that can
be computed on each spacetime slice Σ as

Ba =
√
−γεabcdub∂cad ,

ωa = −1
2
√
−γεabcdub∂cud .

It should be noted that from this definition the curl of the U(1) gauge field does
not only include the magnetic field. The latter appears supplemented with a term
proportional to the time component of the gauge field and the vorticity, according
to √

−γεabcdub∂c Ad = Ba − 2Atω
a . (3.43)

The radial conservation equations vary under the change of coordinates. The
definitions of the conserved fluxes, (3.9) and (3.10), do not vary, thanks to the ap-
pearance of the Levi-Civita tensor. However, one must be careful when performing
the radial integration to include appropriate factors of the normal vector nµ. For
simplicity, we write the conservation equation as

∂R Ia +
∫

Σ
d4x∂b

(√
−γ

1√
F

kba
α

)
= 0 , (3.44)

∂RHa +
∫

Σ
d4x∂b

(√
−γ

1√
F

kba
ξ

)
= 0 . (3.45)

Now the relations between boundary and horizon data are obtained by integrating
in dR instead of dr̂.

Infalling boundary conditions at the horizon are typically imposed in order to
compute the appropriate retarded correlators. In computations involving response
to constant magnetic field or constant vorticity, like ours, these conditions play no
role because the transport coefficients could be obtained from zero-frequency corre-
lators. However, they might be important, for example, if we computed response to
electric fields. In our setup, though, they still prove useful, since they guarantee the
vanishing of the nonanomalous part of the current. We now show this vanishing in
a few lines.
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Let us introduce ingoing and outgoing Eddington-Finkelstein coordinates

dv = uadxa +
dR√

f F
, du = uadxa − dR√

f F
.

Infalling boundary conditions reduce in this set of coordinates to independence of
u at the horizon. In particular, for the field strength of the gauge field one gets

Fua = ξbFba −
√

f FFRa = 0 .

From here, we obtain that

ξbFba =
√

f FFRa =

√
f
F

FR
a =

√
f nµFµ

a ,

and, subsequently, ∫
H

d4x
√
−γnµFµb =

∫
H

d4x
√
−γ

1√
f

ξaFa
b ,

which is finite and proportional to the electric field’s flux at the horizon. Then, in
our setup, infalling boundary conditions, or u-independence at the horizon, imply
the vanishing of the fluxes of FRa at the horizon.

It was advanced above in Section 3.3.2 that the extrinsic curvature is expected to
play a crucial role in the extraction of the transport properties. It becomes evident
from its definition, which for our choice of coordinates reads

Kab =

√
F

2
∂Rγab .

We can then take its expansion near the horizon

Kab =
1
2

√
f (−4πTuaub + hab) + O( f , F) .

The extrinsic curvature is thus our candidate for introducing temperature factors in
the transport coefficients.

3.4.2 Membrane paradigm for anomalous currents

We finally compute the transport coefficients making use of all the mathematical
tools introduced in the previous sections. The structure followed will be presenting
the conserved fluxes, expressing them in terms of the membrane currents and then
performing the computations of the one-point functions of the covariant operators.
We treat the two types of anomalies separately. First, we analyze the mixed anomaly
and, then, we move on to cover the U(1)3 anomaly.
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Mixed gauge-gravitational anomaly

The precise form of the Chern-Simons action considered is

ICS =
∫

d5x
√
−g2λεµνρστFµν

(
Γα

ρβ∂σΓβ
τα +

2
3

Γα
ργΓβ

σαΓγ
τβ

)
.

Since we add no Bardeen counterterm, this corresponds to the choice c = 0 in the
construction of the consistent membrane currents from Section 3.3.2. One can explic-
itly verify that, with this choice, the continuity equations given by (3.44) and (3.45)
can be integrated on Σ with no contributions from the boundary, so both conserved
fluxes, Ia and Ha, will be radially conserved. These fluxes have already been shown
to be respectively equivalent to the fluxes of the conserved versions of the current
and heat current

Ia = −
∫

Σ
ddx
√
−γJa

cons , (3.46)

Ha =
1
2

∫
Σ

ddx
√
−γQa

cons . (3.47)

The explicit expressions for the integrands are

Ja
cons =J a =

1√
F

FRa + Ja
CSK + Ja

Γ̂
,

Qa
cons =Θa

bξb + AcξcJ a − 1√
−γ

∂b

(√
−γlba

cξc
)
+ 2l(ab)

cΛc
b .

When integrating the radial conservation equations, we will use the fact that the
evaluation of the fluxes on the conformal boundary give rise to the integrals of the
CFT one-point functions of the respective operators.

Let us start with the current one-point functions. Integrating in dR the conserva-
tion equation for the gauge flux ∂R Ia = 0 gives∫

d4x
√
−γ(0)〈Ja

cons〉 =
∫

H
d4x
√
−γJa

cons(RH) .

Since we are interested in contributions up to first order in derivative, the left-hand
side reduces to the integral of the one-point function of the covariant current because
the term Ja

Γ̂
gives contributions starting from third order. In the horizon evaluation,

we can additionaly discard the non-anomalous FRa term from the discussion above
about the infalling boundary conditions. Therefore, the one point function of the
covariant current can be expressed as the horizon integral of the extrinsic Chern-
Simons current Ja

CSK∫
d4x
√
−γ(0)〈Ja〉 =

∫
H

d4x
√
−γJa

CSK(RH) + O(∂3) .

The value of the Chern-Simons current at the horizon is completely general and is
only a consequence of the regularity of the near horizon geometry. In fact, we can
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obtain the final result explicitly expanding its expression

√
−γJa

CSK = −8λ
√
−γεabcdKb

eDcKde

= 32λπ2T2√−γεabcdub∂cud + λ
√
−γεabcd (16πTubueDchde − 2 f hb

eDchde)

= 32λπ2T2√−γεabcdub∂cud + O( f , F) .

Integrating and remembering that the vorticity is constant along the radial coordi-
nate, one gets the familiar answer∫

d4x
√
−γ(0)〈Ja〉 = −64λπ2T2ωa .

We stress how the gravitational transport follows from the state dependent extrinsic
contribution to the membrane currents given by Ja

CSK. It would be interesting to
understand whether it is possible to link out of equilibrium fluctuations of the chiral
vortical effect to horizon variations of such membrane current.

Let us now turn to the treatment of the diffeomorphism conserved flux. We are inter-
ested in expanding only to first order in derivatives. Therefore, if both the horizon
and the boundary are flat, we drop all the intrinsic contributions involving labc be-
cause their first contribution appears at third order in derivatives. Then, integrating
the diffeomorphism flux Ha between the boundary and the horizon gives∫

d4x
√
−γ(0)〈Ta

bξb〉 =
∫

H
d4x
√
−γ

(
ta

bξb + uacKcbξb + Acξc Ja
CSK

)
+ O(∂3) ,

where we have implicitly used the gauge choice A(R→ ∞) = 0 and substituted the
current in the horizon by the only nonvanishing contribution at that point Ja

CSK.
We need to evaluate the right-hand side on the horizon to extract the one-point

function of the energy current. The third term on the right-hand-side follows imme-
diately from the evaluation of the gauge fluxes and gives∫

H
ddx
√
−γAcξc Ja

CSK = 64λπ2T2µωa ,

where we have used the gauge choice Acξc(RH) = At(RH) = −µ. The first
term of the right-hand-side, on the other hand, can be split into the Einstein-Hilbert
part (tEH)

a
b given in (3.12) and the anomalous part (tλ)

a
b, which is made up of spin

currents and given in (3.32). It can be shown that the former gives the ideal part of
the stress tensor [33], which however does not contribute to the heat current due to
the orthogonal projection. The anomalous part can also be shown to vanish at the
horizon
√
−γta

λbξb(RH) = 32π2T2λ
√
−γεe f ga

(
u f ubξb − u f ubξb

)
Fge + O( f , F) = 0 ,

where we have used the asymptotic expansion of the extrinsic curvature and the
vanishing of field-strength at the horizon. Please notice that these two quanti-
ties correspond to the Brown-York prescription for the stress tensor at the horizon,
although they show no anomalous transport. The inclusion of the operator uab
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sourced by the extrinsic curvature in the definition of the membrane stress tensor
becomes thus necessary. The evaluation of this contribution gives

√
−γuabKbcξc = 16π2T2λεae f gFe f ug + O( f , F) = 32π2T2λ (Ba + 2µωa) .

Expressing everything together, we obtain∫
d4x
√
−γ(0)〈Ta

bξb〉 = 32π2T2Ba + 128π2T2µωa .

which gives the right transport coefficients for the anomalous gravitational trans-
port. It must be noted that now the chiral magnetic effect for the energy current,
which persists without chemical potential, is completely captured by the horizon
fluctuations of the extrinsic part of the proposed membrane stress tensor Θa

b. It
could therefore be interpreted as the energy counterpart of Ja

CSK and it might be in-
teresting to explore the possibility that further information about nonequilibrium
dynamics of the energy chiral magnetic effect may be encoded in the time depen-
dent fluctuations of this quantity.

U(1)3 anomaly

We fix the Chern-Simons action to be

ICS =
∫

d5x
√
−g

κ

3
εµνρστ AµFνρFστ .

The important continuity equations are again given by (3.44) and (3.45), and the
fluxes can also be connected for this case to the conserved versions of the current and
heat current, according to (3.46) and (3.47). However, further care is needed when
integrating the continuity equations, as noticed in [60]. The Komar charges now
depend explicitly on Aa. This impedes a priori the application of Stokes theorem if
constant magnetic fields are present. However, it is possible for our case to rearrange
the expressions involving Aa as total radial derivatives, but we would not expect
this feature in general.

The explicit expression of the quantities involved in the continuity equations, for
the gauge choice AR = 0, reads

Ja
cons =

1√
F

FRa + 2κεabcd AbFcd ,

kba
α = −4κ

√
Fεabcd Ac∂R Ad ,

Qa
cons = (tEH)

a
bξb + ξc AcJ a ,

J a =
1√
F

FRa +
4κ

3
εabcd AbFcd ,

kba
ξ =

4κ

3

√
Fεabcd Ac∂R Ad Aeξ

e ,

where we have already dropped from kba
α and kba

ξ the parts that decay sufficiently
fast at the boundary of the slice and, therefore, give no contribution to the continuity
equations. As we already advanced above, we can rearrange the new term in the
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closure relation of kα as a total radial derivative. The derivation begins with∫
Σ

ddx∂b

(√
−γ

1√
F

kba
α

)
=−

∫
Σ

ddx∂b

(√
−γ4κεabcd Ac∂R Ad

)
=−

∫
Σ

ddx
√
−γ4κεabct (∂b Ac∂R At − At∂R∂b Ac) .

In order to obtain the expression in the second line we need to realize that a is a
spatial index and there is no time dependence on any quantity, so either c or d are
equal to 0, and, moreover, ∂b At = 0. Then the expression in the second line can be
explicitly expanded in all the possible terms. The first contribution gives

−
∫

Σ
ddx
√
−γ4κεabct∂b Ac∂R At = −

∫
Σ

ddx
√
−γ4κεabct (At∂R At∂buc + ∂R At∂bac) ,

(3.48)
and the second contribution gives∫

Σ
ddx
√
−γ4κεabct At∂R∂b Ac =

∫
Σ

ddx
√
−γ4κεabct (At∂R (At∂buc) + At∂R∂bac) .

(3.49)
The first term of (3.48) can be combined with the first term of (3.49) to give∫

Σ
ddx
√
−γ4κεabct A2

t ∂R∂bud .

However, this last contribution and the second term in (3.49) are proportional to
the radial derivative of the vorticity and the magnetic field, respectively, so both
contributions vanish. Therefore, only the second term of (3.48) survives and it can
be rewritten as a total radial derivative. The final result for the extra term in the
radial conservation of the flux is∫

Σ
ddx∂b

(√
−γ

1√
F

kba
α

)
= −∂R

∫
Σ

ddx
√
−γ4κAtBa .

The same reasoning applies to the diffeomorphism charge, thus giving∫
Σ

ddx∂b

(√
−γ

1√
F

kba
ξ

)
= ∂R

∫
Σ

ddx
√
−γ

2κ

3
A2

t Ba .

The only difference in the procedure appears in the integration by parts. It now has
to be performed carefully, realizing that At∂R At = ∂R(A2

t /2).
Let us go back to the computation of the one-point functions. The gauge conti-

nuity equation (3.44) now reads

∂R

∫
Σ

d4x
√
−γ (Ja

cons + 4κAtBa) = 0 .

Integrating in the radial direction we get∫
d4x
√
−γ(0)〈Ja

cons〉 =
∫

H
d4x
√
−γJa

cons(RH)− 4κµBa ,
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where we have used the gauge choice At(RH) = −µ and the definition of the mag-
netic field. We can now relate the conserved current to the covariant one

Ja
cons = Ja + 4κεabcd Ab∂c Ad .

At the horizon, the first term vanishes due to infalling boundary conditions and the
second term gives 4κAt times (3.43), so we obtain∫

H
ddx
√
−γJa

cons(RH) = −4κµ (Ba + 2µωa) . (3.50)

On the other hand, the second term in the conserved current gives no contribution
in the boundary due to our gauge choice At(R→ ∞) = 0. Therefore, the final result
for the one-point function is∫

ddx
√
−γ(0)〈Ja〉 = −8κµBa − 8κµ2ωa ,

which fits the usual results for holographic anomalous transport coefficients.
The diffeomorphism continuity equation (3.45) now reads

∂R

∫
Σ

ddx
√
−γ

(
Qa

cons +
4
3

κA2
t Ba
)
= 0 .

Since we are here considering only the U(1)3 anomaly, the usual Brown York tensor
obtained from the Einstein-Hilbert action is the only contribution to the membrane
stress tensor and the complete conservation law is

∂R

∫
Σ

d4x
√
−γ

(
Ta

bξb + AcξcJ a +
4
3

κA2
t Ba
)
= 0 .

In our gauge choice this gives the matching∫
d4x
√
−γ(0)〈Ta

bξb〉 =
∫

H
d4x
√
−γAcξcJ a +

4
3

κµ2Ba ,

where we have already discarded the contribution of the Brown-York tensor at the
horizon. The evaluation of the consistent current is completely parallel to (3.50). The
final result is∫

d4x
√
−γ(0)〈Ta

bξb〉 = −
∫

d4x
√
−γ(0)〈Ja

ε〉 = 4κµ2Ba +
16
3

κµ3ωa ,

where we have also introduced the energy current. The result matches the usual
equilibrium values.

3.5 Discussion

We have extended the construction of membrane currents to anomalous theories.
In doing so we identified how extrinsic contributions coming from gravitational
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Chern-Simons terms are linked to the thermal anomalous transport at the horizon.
Such terms vanish at the conformal boundary but are dynamically generated at
lower energies, finally giving the expected thermal effective action on the horizon.
This is very reminiscent of the Wilsonian integration of gapped excitations. Thus, it
would be interesting to see if such a parallel can indeed be made and, in that case,
how those modes have to be interpreted.

The horizon properties can be reformulated as CFT observables through the us-
age of conserved fluxes and we have shown that such fluxes coincide, up to sub-
tleties in the U(1)3 case, with conserved membrane fields. This is a nontrivial exten-
sion of the previous arguments, allowing us to explain various results found in the
literature in a simple and elegant way.

Finally, holographic systems have long been used in the study of non-
equilibrium processes and the first studies regarding the gravitational anomaly have
been recently published [106]. It would be interesting to see if the membrane cur-
rents we have defined, which precisely account for these anomalous hydrodynamic
fluctuations at the horizon, could be used to get analytical insight over such phe-
nomena.
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Chapter 4

Anomalous transport and holographic
momentum relaxation

The currents associated to the chiral magnetic and vortical effects are dissipationless.
In this chapter our goal will be studying if these anomalous transport phenomena
are affected by the breaking of translation symmetry. This breaking is performed in
holography via the inclusion of linear massless scalar field couplings such that the
graviton acquires an effective mass. We show that the chiral magnetic and vortical
conductivities are independent of the holographic disorder coupling. The model
with momentum relaxation reproduces the usual equilibrium values of the conduc-
tivities in terms of chemical potential and temperature. However, it requires the use
of the membrane stress tensor introduced in the previous chapter, which solves the
puzzle found in [115] when using the uncorrected form of the energy-momentum
tensor. One can thus understand this chapter as a corollary to the previous one.

This chapter is based on [38]. It is organized as follows: in Section 4.1, we mo-
tivate the project and comment on the specific purpose of the work; in Section 4.2,
we present the 5-dimensional model of holographic momentum relaxation, we dis-
cuss the construction of the background and introduce the form of the current and
energy-momentum tensor necessary to obtain the right transport coefficients; in Sec-
tion 4.3, we compute the DC electric conductivity and also the chiral magnetic and
chiral vortical conductivities; finally, in Section 4.4, we sum up the results and in-
clude some conclusions about the project.

4.1 Motivation

In the context of holography, higher dimensional black holes can be used to study
strongly coupled quantum systems because the hydrodynamics of the latter can be
mapped to the dynamics of the black hole horizon. In hydrodynamics, momentum
is an exactly conserved quantity and its conservation produces convective transport
of charge and infinite DC conductivities. However, in applications to condensed
matter physics one would expect to find momentum conservation broken and, con-
sequently, finite DC conductivities.

Thus, it is necessary to find a way to engineer momentum relaxation in holo-
graphic theories in order to apply the gauge/gravity duality to strongly coupled
condensed matter systems. It can be done by making the graviton acquire an ef-
fective mass [145, 41, 27, 28, 42]. A particularly simple mechanism to generate the
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graviton mass, which we will use in the following, involves massless scalar fields
with spatially linear profiles [9].

There have been several publications analyzing the models with massless scalars
for field theories in (2+1) dimensions. In [61] it was found that the holographic DC
conductivity σ satisfies a lower bound e2σ ≥ 1 in terms of the bulk Maxwell cou-
pling e2. This implies that this form of disorder cannot produce a transition between
a metal phase and an insulator phase. However, one could in principle include addi-
tional couplings, resulting in the renormalization of e and, possibly, a change in the
bound. In particular, [14, 59] show that coupling between the massless scalars and
the gauge field gives rise to conductivities unbounded from below. Furthermore,
for certain regions of parameter space the conductivities can become negative, sig-
naling the appearance of instabilities.

We find intriguing the effect this form of holographic disorder could have on
anomalous transport. For the sake of generality, we consider the models with fur-
ther couplings between the scalar and gauge sectors used in [14, 59]. However, chi-
ral anomalies only appear on even dimensions so some minor considerations must
be taken into account in order to generalize their theory to (3+1) dimensions. On
one hand, the electric DC conductivity will still be present for one higher dimension
but the scaling of the conserved current and, as a result, of the conductivity changes.
On the other hand, we need to introduce the anomalies via Chern-Simons terms and
this will produce the well-known chiral magnetic and chiral vortical effects.

In particular, we include a U(1)3 and a mixed gauge gravitational anomaly,
whose associated Chern-Simons actions have already been extensively discussed
in previous chapters. Since the chiral magnetic and chiral vortical effects are pro-
duced by the anomaly, one expects them to receive no quantum corrections and to
give rise to dissipationless transport. Thus, in this chapter our purpose is to check
explicitly that their form does not depend on the mass of the graviton or the disorder
parameters.

4.2 Holographic momentum relaxation

The action of our model is

S =
∫

d5x
√
−g
[

1
16πG

(
R +

12
L2

)
− 1

2
∂µX I∂µX I − 1

4
F2 − J

4
∂µX I∂νX I Fµ

λFλν

]
+ SCS + SGH + SCSK , (4.1)

where I = 1, 2, 3, G is Newton’s constant, L is the AdS radius and we have already
fixed the cosmological constant Λ = −6/L2 that gives AdS spacetime in 5 dimen-
sions. From now on we set 16πG = L = 1.

Momentum relaxation is introduced in holography using a Stückelberg mecha-
nism on the gravity sector. The three massless scalar fields X I play the role then of
Goldstone modes associated to the breaking of translation symmetry and, through a
spatially linear profile, they give a mass to the graviton. We also include a Maxwell
field A though the usual kinetic term of a gauge field (where F = dA) and the scalars
couple to this gauge sector via the term proportional to J, which represents one of
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the possible interactions used to monitor the effects of disorder on the charged sec-
tor of the theory [14, 59]. We expect the gauge sector to be anomalous, receiving
contribution both from a U(1)3 and a mixed gauge-gravitational anomaly. Thus, we
add a Chern-Simons action SCS of the form (2.22), such that diffeomorphisms are
not anomalous. The extra terms SGH and SCSK are local counterterms. The former
is the Gibbons-Hawking term. It is given by (3.11) and is usually included to have
a well-defined variational problem. The other counterterm SCSK is given by (3.27)
and is included to give the right anomalous Ward identity when the mixed anomaly
is completely on the gauge sector, as discussed in Section 3.3.2.

The equations of motion are

0 =Gµν − 6gµν +
1
2

Fµ
λFλν −

1
8

gµνF2 − 1
2

∂µX I∂νX I +
1
4

gµν∂ρX I∂ρX I

− J
4
(
X̃.F.F + F.X̃.F + F.F.X̃

)
µν

+
J
8

gµνTr
(
X̃.F.F

)
− 2λεαβγδ(µ∇ρ

(
FβαRρ γδ

ν)

)
,

0 =∇νFνµ +
J
2
∇ν(X̃.F)µν − J

2
∇ν(X̃.F)νµ + εµνρστ

(
κFνρFστ + λRα

βνρRβ
αστ

)
,

0 =�X I +
J
2
∇µ

(
∂νX I Fν

λFλµ
)

,

where we have defined X̃µν = ∂µX I∂νX I inspired by [59], since this allows us to in-
troduce a very compact notation for contractions e.g.

(
X̃.F.F

)
µν

= ∂µX I∂ρX I Fρ
λFλ

ν.
As already commented, momentum dissipation is implemented by giving the

scalar fields a linear profile. We associate each of the three scalars to one of the three
spatial dimensions, and define

X1 = kx , X2 = ky , X3 = kz .

Because the scalars couple only through derivatives, the field equations and solu-
tions will still be formally translational invariant. The parameter k gives the graviton
however a mass and this suffices to make the DC conductivity of a charged black
hole solution finite. As we will see, it also fixes a preferred frame (the rest frame
of the impurity density) and no frame ambiguity in the definition of the anomalous
transport coefficients appears [6, 123, 132].

4.2.1 Background construction

In order to define the background we look for charged black hole solutions with
AdS asymptotics of the form

ds2 =
1
û

(
− f (û)dt2 + dx2 + dy2 + dz2

)
+

dû2

4û2 f (û)
,

At = φ(û) ,

where û relates to the usual Poincaré radial coordinate through û = 1/r2. Since all
the functions only depend on û, we will drop the dependences from the expressions
and use primes in this chapter to denote derivatives with respect to û. The equations
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of motion for the blackening factor and the time component of the gauge field are

0 = f ′ +
2
û
(1− f )− û2

3
(
φ′
)2 − k2

4
,

0 = φ′′ .

The solution of the equations has three total integration constants: one for f and
two for φ. The one in f is fixed by imposing that the horizon sits at û = 1. The
two integration constants in φ are fixed by imposing the definition of the chemical
potential (µ = φ(0)− φ(1)) and that φ vanishes at the horizon. The final solution
reads

f = (1− û)
(

1 + û− k2

4
û− µ2

3
û2
)

,

φ = µ (1− û) .

The temperature is

T =
1
π

(
1− k2

8
− µ2

6

)
.

In this simple theory the background does not depend on the charge disorder cou-
pling J and it therefore reduces to the solution found in [9].

4.2.2 Holographic covariant currents

As we have seen in the previous chapter, the mixed gauge-gravitational Chern-
Simons term makes the analysis of the holographic dictionary much more compli-
cated than in the standard case because it is a higher derivative term. The standard
definitions of the holographic operators change even if we treat the anomalous ac-
tion in an effective field theory spirit, computing only the leading effects of a expan-
sion in small λ.

Let us now specialize the definitions of the holographic operators proposed in
Section 3.3.2 to the current example. For convenience we switch in this section to
the standard Fefferman-Graham coordinates, given by (3.1), so that we can recover
all the expressions of the operators as they are written above. We will work with the
covariant version of the operators.

Please note that, although we do not explicitly write the expression of the one-
point functions of the currents to avoid cluttering, it involves the computation of
integrals with the appropriate volume element, according to what we did in Section
3.4. The reader might be confused because this is not the standard way to define the
current in holography. As it will be done in Chapters 5 and 6, the standard defini-
tions of CFT operators in holography also include the square root of the determinant
of the induced metric.

The covariant Ward identity for diffeomorphisms is

Di

(
ti

j + uilKl j

)
= uilDjKil + Fij Ji −Y I DjXI − 2λDk

(
εlmnpFlmRk

jnp

)
,
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where we have decomposed the covariant membrane stress tensor given in (3.34) in
its two contributions and we have introduced

Y I = Ẋ I +
J
2

(
Fr̂iẊ I + Fji∂jX I

)
Fir̂ ,

which is the momentum conjugate to X I . Dots denote derivatives with respect to
the Fefferman-Graham radial coordinate. The covariant current Ji also appears in
the covariant Ward identity and now it receives a further contribution proportional
to the J coupling, according to

Ji = Fir − 8λεijklKm
j DkKlm +

J
2

(
Fir̂∂iX I∂jXI − ẊI Ẋ I Fr̂j − ẊI∂iX I Fij

)
.

The covariant Ward identity for gauge transformations gives the usual anomalies

Di Ji = −εijkl
(

κFijFkl + λRa
bijRb

akl

)
.

Please notice the factor 1/3 difference with respect to the consistent form of the
anomaly, given by (3.26). In fact, one could use the holographic anomaly coefficients
κ and λ and compare the results to those of a weakly coupled theory with Nχ chiral
fermions. The matching of anomaly coefficients gives

κ =
Nχ

32π2 , λ =
Nχ

768π2 . (4.2)

The tensor tij can be divided into the standard Brown-York contribution tij
EH and

a part that stems from the mixed gauge gravitational Chern-Simons term tij
λ, and our

new definition of stress tensor also includes the other operator uij, as discussed in
Section 3.3.2. Let us include them all here for the sake of clarity when we use them
later

tij
EH = −2(Kij − Kγij)

tij
λ = −8λεmnp(i

(
2DnK j)

p Fr̂m + γj)lK̇lnFpm − FpmK j)
l Kl

n

)
,

uij = 8λεmnp(iFmnK j)
p ,

So far, the additional terms in the stress tensor might appear to be only required
by our desire to have constraint equations that are formally equal to the usual field
theory ones or to have nicely behaved holographic RG equations. However, we
will see they are essential to get the physical results of the anomalous transport
coefficients, thus generalizing the expression found in [117] to cases in which γ(−2)

does not vanish in (3.2).
The usual contribution (tEH)

i
j is still divergent and needs to be regularized by

the standard counterterms [70]. In contrast, the additional contributions (tλ)
i
j and

uilKl j are already finite before the holographic renormalization is performed. We
must remark that, in the case of holographic pure gravitational anomalies dual to
two-dimensional field theories, a similar correction has been found in [99].
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Once we have clarified which are the relevant operators, it is time to move on to
study the linear responses. We will first compute the electric DC conductivity and
then the chiral magnetic and chiral vortical effect.

4.3 Conductivities

4.3.1 Electric DC conductivity

Let us introduce the small perturbations

Az = ε(−Et + az(û)) ,

gtz =
ε

û
hz

t (û) ,

gûz =
ε

û
hz

û(û) ,

where E is the external electric field and the perturbations do not introduce addi-
tional sources, i.e. they are zero at the conformal boundary. The equations of motion
are

0 =
(

1 + 2Jµ2û3
)

hz
û −

Eµû
k2 f

(
1− k2

2
Jû
)

,

û2 f
(

h′zt
û

)′
=

k2

4

(
1 + 2Jµ2û3

)
hz

t + µû2
(

1− k2

2
Jû
)

f a′z ,

0 =

[(
1− k2

2
Jû
) (

f a′z − µhz
t
)]′

,

and they can be solved following [44]. Let us sketch the reasoning as follows.
The quantity we are interested in is the electric DC conductivity. Considering the

perturbations, the current reads

Jz = 2 lim
û→0

f a′z .

Therefore, the conductivity can be calculated as σDC = Jz/E if we obtain an expres-
sion for f a′z at the boundary. The third equation of motion is a total derivative and
it can therefore be directly integrated. In particular, it can be integrated between the
boundary and the horizon, giving an expression for one half of the current

f a′z

∣∣∣∣
û→0

=

(
1− k2

2
J
) (

f a′z − µhz
t
) ∣∣∣∣

û→1
, (4.3)

where we have used that hz
t = 0 at the boundary.

Imposing regularity of the metric at the horizon helps us relate the different met-
ric perturbations as

2 f hz
û

∣∣∣∣
û→1

= −hz
t

∣∣∣∣
û→1

. (4.4)



4.3. Conductivities 85

However, the first of the three equations of motion is actually an algebraic equation
for hz

û, so we can find an expression for 2 f hz
û that holds for any û. It reads

2 f hz
û =

Eµû
k2

2− k2 Jû
1 + 2Jµ2û3 . (4.5)

So far we have obtained the current in terms of horizon quantities in (4.3) and
we know how to relate the two metric perturbations around the horizon (4.4). The
missing piece is obtaining a′z near the horizon. However, if we take the second of
the equations of motion around the horizon and substitute hz

t according to (4.4) and
(4.5), we can solve for a′z near the horizon in the resulting algebraic equation and
obtain the remaining piece. The DC conductivity finally reads

σDC =

(
1− k2

2
J
)1 +

(
1− k2

2 J
)

4µ2

k2 (1 + 2Jµ2)

 .

This expression is the dimensionless conductivity where we have set the horizon to
ûh = 1. It is qualitatively of the same form as the one discussed in the AdS4 model
in [59]. In particular, it also vanishes for k2 J = 2 and it can even become negative
in some range of the parameters, thus indicating an instability. We also note that for
J = 0 the dimensionless conductivity obeys a similar bound as the one proven for
holographic matter in 2+1 dimensions in [61]. However, since our main interest is
the anomalous transport coefficients, we do not further investigate the properties of
σDC.

4.3.2 Chiral magnetic conductivity

We now introduce the magnetic field as a perturbation by

Ay = εBx ,
Az = εaz(û) ,

gtz =
ε

û
hz

t (û) .

The equations of motion for the perturbations are

−4κBµ =

[(
1− k2

2
Jû
) (

f a′z − µhz
t
)]′

,

û2 f
(

h′zt
û

)′
=

k2

4

(
1 + 2Jµ2û3

)
hz

t + µû2
(

1− k2

2
Jû
)

f a′z

− 2Bλ f
(

3k2û + 16µ2u2 + 12 f − 12
)

.

The strategy to integrate these equations is as follows. First we solve the equation
for az by writing

hz
t =

f
µ

a′z +
4κBû + c1

1− k2

2 Jû
,
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where c1 is an integration constant. Imposing regularity, the presence of a mass
term for the graviton fluctuations fixes hz

t to zero in the horizon, so c1 = −4κB.
However, if k2 = 0 this is not the case and c1 cannot be fixed through this argument.
It eventually corresponds to the choice of frame in a hydrodynamic setup.

With this expression for hz
t , the equation corresponding to this field is now con-

verted into a third order equation for az. It can be integrated and the reamaining
three integration constants can be fixed by demanding regularity of the solutions
on the horizon. Without going into the details of the solution, we note that this
procedure results in the asymptotic expansions

az = 4κBµû + O(û2) ,

hz
t = −

(
κµ2 + 8λπ2T2 − λ

k2

2

)
Bû2 + O(û3) .

The result is independent of J, and k only appears on the metric perturbations. If
we apply the usual holographic dictionary the energy-momentum tensor is given
by T0z = 4g′tz(û = 0) [70], which coincides with our tEH

0z , and therefore k would
also appear on the transport coefficient. However, we have already argued that we
need also to include (tλ)

ij and uikKkj to compute the correct energy current. Their
contributions read

(tλ)
ij = 0 ,

(u · K)ij = 2k2Bλδi(0δz)j .

Using this, we can relate the components Θi0 of the covariant membrane stress ten-
sor to the energy current and finally obtain

~J = 8κµ~B ,
~JE = (4κµ2 + 32λπ2T2)~B .

Taking into account (4.2), these are the usual expressions for the chiral magnetic
effect in the covariant charge and energy currents. Please notice the results here
have the opposite sign from those in Section 2.2.3. We have taken the opposite sign
convention for the magnetic field.

4.3.3 Chiral vortical conductivity

Vorticity is introduced in this language as a gravitomagnetic field Bg in the z di-
rection. The relation between vorticity and the gravitomagnetic field follows from
observing that ωi = 1

2 εijk∂juk. In the rest frame in which uµ = (1,~0), the gravito-
magnetic vector potential is the mixed space-time component of the metric in the
dual field theory ds2 = −dt2 + 2 ~Ag · d~xdt + d~x2. The relation is subsequently fixed
to be ~Bg = −2~ω if we define the gravitomagnetic field as ~Bg = ~∇× ~Ag.
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We now take the perturbations to be

Ay = εBgûµx ,
Az = εaz(û) ,

gty =
ε f (û)

û
Bgx ,

gtz =
ε

û
hz

t (û) ,

where we have already considered, from the intuition gained in Section 3.4, that the
gravitomagnetic field produces a current due to drag when the chemical potential
is present.

The equations of motion for the perturbations are

4κBgµ2û + Bgλ

(
20 f ′2 − 16

(
f − 1)

f ′

û
+

16µ2

3
û2 f ′

)
=

[(
1− k2

2
Jû
) (

f a′z − µhz
t
)]′

,

û2 f
(

h′zt
û

)′
=

k2

4

(
1 + 2Jµ2û3

)
hz

t + µû2
(

1− k2

2
Jû
)

f a′z

− λBgµ f
(

17k2û + (172/3)µ2û3 + 80 f − 80
)

.

The strategy to integrate these equations is the same as before. We first solve the
equations for az by writing

hz
t =

f
µ

a′z + 32Bg
1− û

1− k2

2 Jû

(
(−16û2 − 16û− 16− 144û4 + 48û3)λµ3 − 72κµ (1 + û)

+
(

576û3 − 24k2û− 144k2û3 + 192û2 − 24k2 + 192û + 24k2û2 + 192λ
)

µ

+
λ

µ
(−576û− 36k4û2 + 144k2 − 576û2 + 288k2û2 − 576− 9k4 + 144k2û)

)
,

where we have explicitly substituted the blackening factors and chosen the inte-
gration constant such that hz

t vanishes at the horizon. The vanishing of the metric
perturbation is again a consequence of imposing regularity, unless k2 = 0. The
equation for hz

t is now converted into a third order equation for az(u) and it can be
solved with the same boundary conditions as in the case of the magnetic field. The
details of the lengthy solutions are not interesting to us. The resulting asymptotic
expansions are

az = (2κµ2 + 16π2T2λ)Bgû + O(û2) ,

hz
t = −

(
2
3

κµ3 + 16λµπ2T2
)

Bgû2 + O(û3) .

In contrast to the case with magnetic field, the asymptotic expansions are completely
independent of the disorder parameters J and k, even for the energy current. This
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fits our expectations, because the new contributions that have to be taken into ac-
count in the membrane stress tensor depend only on the external electromagnetic
fields but not on the external gravitomagnetic fields. The final result for the response
due to gravitomagnetic field reads

~J =
(

4κµ2 + 32π2T2λ
)
~Bg ,

~JE =

(
8
3

κµ3 + 64λµπ2T2
)
~Bg .

Remembering that gravitomagnetic field and vorticity are related by ~Bg = −2~ω,
these are the usual responses of a chiral fluid due to vorticity.

4.4 Discussion

Chiral magnetic and chiral vortical effects are anomaly induced dissipationless
transport phenomena. In this chapter we have shown that in a simple holographic
model of disorder their expression does not change. This result could have been ex-
pected and, moreover, the response in the charge current could have been inferred
from [60]. However, the result of the energy current has required the involved con-
struction of membrane currents from the previous chapter. It therefore serves as a
further consistency check of the construction and a practical example where the use
of such generalization of the energy-momentum tensor is required.

The mixed gauge gravitational Chern-Simons term modifies the definition of the
holographic energy-momentum tensor because of its higher derivative nature. In
our construction, we allow the extrinsic curvature to vary independently of the met-
ric and then we demand that the energy-momentum tensor satisfies a constraint
equation in which the extrinsic curvature acts like an external source conjugate to
the operator uij. Although our background is asymptotically AdS, even to first
order in the gravitational Chern-Simons coupling λ the new terms in the energy-
momentum tensor give a nonvanishing contribution. This contribution appears due
to the fact that the asymptotic expansion of the metric contains a constant term, i.e.
gtt = − 1

û + k2

4 + O(û) and gûû = 1
4û + k2

16 + O(û). This constant term is a direct con-
sequence of the presence of a background of massless scalar fields. Furthermore,
the contributions of tij

λ and (u · K)ij are crucial to restore the usual form of the chiral
magnetic effect in the energy current.

Let us make some further technical remarks regarding the details of the compu-
tation before moving on to the next chapter. First of all, we have seen that in the
theory with a massive graviton, regularity at the horizon imposes the vanishing of
one of the integration constants that are usually free for translation symmetric theo-
ries, thus choosing a frame in the hydrodynamic sense. In particular, it fixes a frame
that should be interpreted as the disorder rest frame [123, 132].

In addition, in our gravity action we have included two terms that involve higher
derivatives: the gravitational Chern-Simons term and the charge disorder term pro-
portional to the coupling J. Due to their higher derivative nature, they should be
understood from an effective field theory point of view as perturbative couplings
that are somehow subleading in the large N expansion.
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This is for granted in the Chern-Simons contributions, as seen in the previous
chapter, because we only consider linear response in the magnetic field and the vor-
ticity. However, it is not so for the J coupling. In fact, we adopt the approach of [14,
59] of taking such coupling in a non-perturbative way in order to obtain comparable
results. The interesting results are precisely the existence of an unphysical region in
parameter space in which the DC conductivity becomes negative and the fact that
the anomalous transport coefficients are independent of J and can be computed for
any value.

Finally, let us make a connection to the results in [90], in which the Stückelberg
field appears in the gauge sector, instead of associated to gravity, and it thus breaks
gauge invariance in the bulk. In that case the chiral magnetic effect changes from its
usual form, contrary to what happens here. Our understanding of this difference is
that massive gravity breaks spatial translation invariance but there is no anomalous
conductivity associated to conserved momentum. The anomalous terms in Θ0i must
be interpreted as an energy current and not as the (non-conserved) momentum den-
sity. In this picture, the currents corresponding to momentum conservation are then
the purely spatial components, in the same way that the energy and charge currents
are associated to energy and charge conservation, even in the presence of anoma-
lies. It would be very interesting then to engineer a mechanism in holography that
breaks energy conservation.
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Chapter 5

Holographic Weyl semimetals

The holographic Weyl semimetal is a model for strongly coupled topological
semimetals. The model presents a topological quantum phase transition separat-
ing a topological phase with non-vanishing anomalous Hall conductivity from a
trivial state. In this chapter we investigate how this phase transition depends on
the parameters of the scalar potential i.e. the mass and the quartic self coupling.
Our results suggest that the quantum phase transition persists for a large region in
parameter space. We then compute the axial Hall conductivity which, from the al-
gebraic structure of the axial anomaly, one would expect to be 1/3 of the electric
Hall conductivity. We find that this holds once a non-trivial renormalization effect
on the external axial gauge fields is taken into account.

This chapter is mostly based on [37]. The original manuscript appeared in a time
when there were some concerns in the community about the correctness of using
holographic nonsupersymmetric bottom-up models, as these theories might pos-
sess unstable vacuum solutions [120]. Thus, we included a discussion in Section 4
of [37] on how the results of the quantum phase transition could be reproduced in
a well-known top-down model. It is based on a consistent truncation of type IIB
supergravity and has been used before in the study of holographic superconduc-
tors [10]. However, we have decided not to include the discussion about the axial
Hall effect in this top-down model in the thesis, since it does not provide new in-
sight.

The chapter is organized as follows: in Section 5.1 we discuss the motivations
to propose and analyze a holographic model of Weyl semimetals; in Section 5.2, we
present the model and the different operators; in Section 5.3, we use the existence
of a critical gravitational solution as a guiding principle to explore the universality
of the quantum phase transition and its dependence on the free parameters of the
model; in Section 5.4, we review the first results concerning the model and include
our results for the axial magnetic effect; and, finally, in Section 5.5 we conclude the
chapter with a summary of the project.

5.1 Motivation

A Weyl semimetal is a topological state of matter whose electronic quasiparticles are
chiral fermions [149, 142]. It presents exotic transport properties, like anomalous
Hall effect, that can be understood as effects due to chiral anomalies [102]. The
band structure of Weyl semimetals is characterized by pointlike singularities in the
Brillouin zone, around which electronic excitations can be understood as left- or

https://link.springer.com/content/pdf/10.1007%2FJHEP02%282017%29138.pdf#section.4
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FIGURE 5.1: Spectrum of the Weyl semimetal model. In the left panel
(b2 > M2), the topological phase is depicted, with the two Weyl nodes
in the spectrum separated by a distance 2

√
b2 −M2 in momentum

space. In the right panel (b2 < M2), the system is gapped with a gap
given by 2

√
M2 − b2 and therefore it represents the trivial phase.

right-handed Weyl spinors. These quasiparticles always appear in pairs of opposite
handedness, according to the Nielsen-Ninomiya theorem and the spinors from one
of those pairs can be separated in momentum space when time-reversal symmetry
is broken. When trying to explain the anomalous Hall effect in a manner compatible
with Fermi liquid theory, such that all the physics was explained via quasiparticles
with energies around the Fermi level, it was realized that the Weyl spinors could
be understood as monopoles of the Berry curvature in momentum space [69]. The
charge of this monopole is a topological invariant and therefore it is still relevant
when interactions are included [151].

There exists a quantum field theoretical model whose behavior around the band
touching points describes accurately a Weyl semimetal [35]. It consists on a Dirac
fermion charged under an external gauge field and with a Lorentz breaking cou-
pling~b. The Lagrangian reads

L = ψ̄
(
iγµ∂µ + M

)
ψ− eψ̄γµ Aµψ− ψ̄γ5~γ ·~bψ . (5.1)

The spectrum of this theory can be easily computed by Fourier transforming the
resulting equations of motion and expressing the frequencies for which the deter-
minant of the differential operator vanishes as a function of momentum. It can be
seen in Figure 5.1 that there are two very different regimes depending on the relative
value of |~b| and |M|. For simplicity and without loss of generality, in the rest of the
chapter we take the Lorentz breaking coupling~b along the z-direction, i.e.~b = b~ez.

If |b| > |M|, the spectrum is ungapped and the wave function around the cross-
ing points is well-described by a Weyl fermion. The separation of the Weyl cones
is 2(b2 − M2)1/2, so the system can be described by an effective Lagrangian like
(5.1) with M = 0 and bz = (b2 − M2)1/2. On the contrary, the system is gapped
for |b| < |M| and the effective Lagrangian is that of a massive Dirac fermion with
M = (M2 − b2)1/2. Therefore, this model presents two phases, the topologically
nontrivial Weyl semimetal phase and a trivial insulating phase, which are separated
by a quantum phase transition. However, in both phases the same symmetries are
broken by a nonzero value of M and b. Therefore, it is a topological phase transition
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and the Landau classification for phase transitions does not apply. In addition, in
the presence of additional massless Dirac fermions the trivial phase is not gapped
and then it represents a trivial semimetal instead of an insulator. In fact, in the holo-
graphic model that we will present below, the nontopological phase is a semimetal.
The order parameter of the transition is the anomalous Hall effect

~J =
1

2π2
~b× ~E , (5.2)

which is zero for the insulating phase and nonzero for the topological phase, and
the responsible for its appearance is the axial anomaly (2.5).

One might wonder if it is possible to construct a model at strong coupling that
reproduces the relevant physical phenomena present in Weyl semimetals i.e if it is
possible to propose a model that possesses a quantum phase transition between a
phase with anomalous Hall effect and another one without it. The reason why this is
a sensible concern is that the Fermi velocity in a Weyl semimetal is low compared to
the speed of light and this can be related to an effective large fine structure constant
similarly to graphene. This line of reasoning motivated the work to propose holo-
graphic models of Weyl semimetals. In this chapter we review the model presented
in [103] and later expanded in [105, 104], but there have been some other approaches
in which the holographic fermion spectral functions were studied [85, 86, 73, 66].

Holography has proved itself useful for the understanding of strongly correlated
relativistic systems, including superconductors [71], strange metals [112, 40] or lat-
tice systems [78]. It has also been crucial for a deeper understanding of anomalous
transport, as extensively discussed in this thesis, so it is very natural to use the intu-
ition gained from those works in order to study Weyl semimetals. Furthermore, in
holography some of the subtleties in the computation of the anomalous Hall effect
are not problematic. In field theory, the anomalous Hall effect appears as a one-loop
contribution to the polarization tensor and some ambiguities arise related to its reg-
ularization [84]. They can be resolved either by matching to a tight-binding model
[62, 144] or by introducing chiral edge states at the boundaries, called Fermi arcs,
to cancel the anomaly [58]. In holography, however, demanding gauge invariance
solves all those problems and the nontrivial renormalization is mapped to the dy-
namics in the radial coordinate. In this chapter such a nontrivial renormalization
will be very relevant in the computation of the axial magnetic effect.

5.2 The holographic model

The action of the model is

S =
∫

d5x
√
−g
[

1
16πG

(
R +

12
L2

)
− 1

4
F2 − 1

4
F2

5 − (DµΦ)∗DµΦ−V(Φ)

+
κ

3
εµνρστ Aµ

(
F5

νρF5
στ + 3FνρFστ

) ]
+ SGH, (5.3)

where G is Newton’s constant, L is the AdS length, κ is the Chern-Simons coupling
constant, we have already fixed the cosmological constant Λ = −6/L2 that gives
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AdS spacetime in 5 dimensions and SGH is the Gibbons-Hawking term given by
(3.11). From now on we set 16πG = L = 1.

The field content of the action is motivated from the expected symmetries of the
dual field theory. We introduce a vector gauge field Vµ and an axial gauge field
Aµ, whose field strengths are respectively F = dV and F5 = dA, in order to ac-
count for the electromagnetic and axial U(1) symmetries of the system. The scalar
field Φ is only charged with respect to the axial field via the covariant derivative
Dµ = ∂µ − iqAµ and has a quartic potential V(Φ) = m2|Φ|2 + λ

2 |Φ|4. Explicit
breaking of the axial U(1) symmetry can be achieved by switching on the non-
normalizable mode. We will later relate precisely this non-normalizable mode to a
mass term in the dual theory. The final ingredient in the action required to make the
axial symmetry anomalous is the five-dimensional Chern-Simons term with the par-
ticular choice for the coefficients shown above. They are chosen such that the gauge
variation of the action mimics the VVA and AAA anomalies of Dirac fermions and
preserves the vector-like gauge symmetry.

Variation of the action gives the following equations of motion

0 =Gµν − 6gµν +
1
8

gµνF2 − 1
2

Fµ
ρFνρ +

1
8

gµνF2
5 −

1
2

F5 ρ
µ F5

νρ

+
1
2

gµν

[
(DρΦ)∗DρΦ + m2Φ∗Φ +

λ

2
(Φ∗Φ)2

]
− (D(µΦ)∗Dν)Φ ,

0 =∇νFνµ + 2κεµνρστF5
νρFστ , (5.4)

0 =∇νFνµ
5 + κεµνρστ

(
F5

νρF5
στ + FνρFστ

)
+ iq (−Φ∗DµΦ + (DµΦ)∗Φ) , (5.5)

0 =∇µ(DµΦ)− iqAµDµΦ−m2Φ− λ(Φ∗Φ)Φ,

where ∇µ is the gravitational covariant derivative.
We can define the consistent currents J a and J a

5 as the variation of the on-shell
action with respect to the associated gauge fields

J µ = lim
r→∞

δS
δVµ

= lim
r→∞

√
−g
(

Fµr + 4κεrµνρσ AνFρσ

)
, (5.6)

J µ
5 = lim

r→∞

δS
δAµ

= lim
r→∞

√
−g
(

Fµr
5 +

4κ

3
εrµνρσ AνF5

ρσ

)
. (5.7)

As already commented on, these expressions might look different from the ones
written above, but they give equivalent results. The difference is due to the use of
the Poincaré radial coordinate r, instead of the Fefferman-Graham radial coordinate
r̂, and the inclusion of the square root of the metric determinant. The square root
of the bulk metric determinant here accounts in the language of Chapter 3 for the
normal vector and the square root of the induced metric determinant that appears
on the integrals over the constant r̂ hypersurfaces Σ. Some of the arguments in this
chapter are more clearly understood in the context of the holographic RG, so we
will later make use of r-dependent membrane currents. For the sake of clarity, we
denote them in this chapter as J µ

(m)
and J µ

5(m)
, and they can be obtained from (5.6)

and (5.7) by dropping the limit to the boundary.
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Finally, the Ward identities can be directly found by the use of the radial compo-
nent of (5.4) and (5.5), and they read

∂aJ a = 0 ,

∂aJ a
5 = −κ

3
εabcd

(
FabFcd + 3F5

abF5
cd

)
+ iq

√
−g (Φ∗DrΦ− (DrΦ)∗Φ) . (5.8)

Again, we could do as in Chapter 4 and match the anomaly coefficients to the field
theory ones.

Before entering into the details of the calculations, let us characterize the physical
meaning from the dual theory’s point of view of the Lagrangian parameter space:

• The bulk mass m2 determines the scaling dimension of the operator dual to Φ,
according to:

∆Φ =
d +
√

d2 + 4m2

2
,

where d = 4 for our case. The most natural choice, and the one made in
the first works on the model [105], is m2 = −3. This choice gives ∆Φ = 3.
Therefore, the operator dual to Φ has the dimension of a fermion bilinear mass
term in four dimensions and its source has dimension one, so it can be taken
as a boundary mass M. It is the most natural choice indeed because it gives
the right interpretation of the last term in (5.8) as the mass term in the Adler-
Bell-Jackiw anomaly (2.5). If ∆Φ 6= 3, however, the mass has to be defined by
taking appropriate powers of the non-normalizable mode, as discussed below
when we introduce the holographic dictionary (5.11).

• The quartic coupling λ is a measure of the effective number of degrees of free-
dom that are not decoupled in the infrared for the trivial phase. This can be
understood in terms of the holographic relationship between the rank of the
gauge group and the cosmological constant, as explained below in Section 5.3.
In particular, at vanishing quartic coupling the theory loses all degrees of free-
dom in the IR and becomes strongly coupled, while for vanishing gravitational
coupling the charged degrees of freedom are negligible.

• Finally, the charge q modulates the mixing between the operators dual to Φ
and AM. In the limit q → 0 these two operators do not mix along the RG,
and all the interesting physics is lost. Applying the techniques from Chapter
3, we can better understand these mixing, and also the difference to the vector
current [105]. Let us express the equations of motion (5.4) and (5.5) in terms of
the membrane currents

d
dr

(
J µ

(m)
+
√
−g4κεrµνρσ AνFρσ

)
= 0 , (5.9)

d
dr

(
J µ

5(m)
+
√
−g

2
3

κεrµνρσ AνF5
ρσ

)
= 2

√
−gq2φ2

(
Aµ − 1

q
∂µθ

)
,

where we have decomposed the complex scalar according to Φ = φeiθ and
assumed no dependence on the boundary coordinates. Understanding it as an
RG equation, it is apparent how the properties of the axial coupling will match
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between the UV and the IR only in the limit q → 0. On the contrary, the first
equation is the total radial derivative of the vector current independently of
the point in parameter space and it lets us express the one-point function of
the current completely in terms of horizon data.

We are looking for solutions which are asymptotically AdS. Our background
must present anisotropy due to a nonzero axial field. This axial field will be later
related to the separation of the nodes b in the field theory model (5.1). Therefore,
our zero temperature ansatz is

T = 0 : ds2 = u
(
−dt2 + dx2 + dy2

)
+

dr2

u
+ hdz2 , Φ = φ , A = Azdz ,

where we have implicitly assumed that the separation between the nodes is along
the z-axis, without loss of generality.

We expect our holographic model of Weyl semimetals to reproduce at zero tem-
perature the topological quantum phase transition from the field theory model.
Thus, it must interpolate between a topological phase with a nonzero Hall conduc-
tivity and a trivial phase in which the Hall conductivity vanishes. Indeed, when
one tries to solve the equations of motion asymptotically near the horizon for zero
temperature using this ansatz, one sees that the system has three kinds of solutions.
These turn out to correspond to the trivial phase, the non-trivial phase and the crit-
ical point located between the other two phases. In particular, if we now plug this
background in the RG equation for the vector membrane current (5.9), one can see
that the transport coefficient of the anomalous Hall effect (5.2) for this action gives

σH
xy = 8κAz (0) . (5.10)

Thus, a solution with Az(0) 6= 0 will be topological while the trivial phase will
appear when Az vanishes at the horizon. We include this result here to motivate the
search for the three solutions that give rise to the critical point and the two phases,
but we have not been very rigorous. All the details are covered in Section 5.4.

For finite temperature, we expect to find an AdS black hole geometry, so our
finite temperature ansatz is

T 6= 0 : ds2 = −udt2 + f
(

dx2 + dy2
)
+

dr2

u
+ hdz2 , Φ = φ , A = Azdz .

In this case there is only one solution at the horizon. It fits our expectation, because
at finite temperature the phase transition becomes a smooth crossover.

The phase structure is labeled in the field theory model by the ratio M/b, which
is the only physically meaningful dimensionless parameter at zero temperature due
to conformal symmetry. In general, if the critical value is (M/b)c, then for (M/b) <
(M/b)c we have a topologically nontrivial solution and for (M/b) > (M/b)c we
have a trivial solution, as shown in Figure 5.3. When (M/b)c goes to infinity, it
means that the trivial phase has shrunk to only one point. The mass M, which
explicitly breaks the axial U(1) symmetry, can be introduced by demanding that
the non-normalizable mode of the scalar does not vanish. The distance between the
nodes b, on the other hand, can be simply represented by a constant axial gauge
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FIGURE 5.2: Schematics of the RG flow of the model. At low energy an
unstable critical point is present at a certain value of M/b, correspond-
ing to a Lifshitz scaling solution. Small deviations in M/b around this
point will make the system flow in the infrared to either the topological

phase to the left or to the trivial one to the right.

field. Thus we impose the following boundary conditions

lim
r→∞

rΦγ = M , lim
r→∞

Az = b , (5.11)

such that the ratio M/b is dimensionless independently of ∆Φ the dimension of the
operator dual to Φ. In particular, we have introduced γ = (4− ∆Φ)

−1 to account
for the dependence of ∆Φ on the bulk mass m2.

5.3 Universality of the topological quantum phase
transition

Our aim for this section is to determine the universality of the topological quantum
phase transition. We assume that the existence of a critical solution monitors the
appearance of a quantum phase transition. Therefore, we try to understand how
the change in the parameters of the model affects the possibility to find a critical
solution and the value of (M/b)c. The first step to map (m2, q, λ) into the critical
value (M/b)c is to find an asymptotic solution in the IR that we can integrate to the
boundary and match to the boundary conditions given in (5.11).

The equations of motion for the zero temperature background read

0 =A′′z +

(
2u′

u
− h′

2h

)
A′z −

2q2φ2

u
Az ,

0 =φ′′ +

(
h′

2h
+

2u′

u

)
φ′ −

(
q2A2

z
h

+ m2 + λφ2
)

φ

u
,

0 =
3u′′

4u
+

3u′2

8u2 +
1
4

φ′2 − 3
u
+

φ2

4u

(
m2 +

λ

2
φ2 − q2A2

z
h

)
− 1

8h
A′z

2 ,

0 =u′′ − u′h′

2h
+

2
3

uφ′
2 − 2

3h
q2A2

zφ2 ,

where primes denote, as in the rest of the chapter, derivatives with respect to
Poincaré’s radial coordinate r. Following [105], we expect three solutions. One of
them is a scaling solution and it actually satisfies these equations of motion all along
the bulk: it is the critical solution. The other two, however, are only asymptotic solu-
tions in the IR and they represent the two different phases. Although we are mainly
interested in the critical solution as a signal of existence for the phase transition, let
us also discuss the other two.
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Asymptotic solutions for topological and trivial phase

The approach to solve the equations asymptotically begins by taking an ansatz with
the expected asymptotics

u = u0r2 , h = h0r2 , Az = A0 , φ = φ0 .

If we solve for the accompanying coefficients, it can be seen that this particular
ansatz gives two solutions. Either φ or Az has to vanish at the horizon and for each
case the coefficient of u acquires different values (u0 = 1 and u0 = 1 + m4/(24λ),
respectively). For the solution with vanishing A0, φ0 is also fixed to

√
−m2/λ. In

contrast, the coefficient on h is undetermined for both cases, thus allowing for a
rescaling such that h = r2.

According to (5.10), the case with A0(0) = 0 is the trivial solution and, therefore,
the case with φ0(0) = 0 represents the topological solution. In order to find the full
asymptotic solutions, understanding the computation in a perturbative way makes
the computation simpler. We then take irrelevant perturbations (u1, h1, φ1 and A1)
around these two solutions, that must be regular at the horizon and subleading for
small r. We expand the equations to first order in perturbations and keep only the
leading terms. It can be seen that on both cases the equations for u1 and h1 decou-
ple and the solutions of those equations have to be taken to zero from regularity.
However, the equations for φ1 and A1 look rather different in the two cases.

On one hand, the leading terms in the equations for the topological phase read

0 = φ′′1 +
5
r

φ1 −
q2A2

0
r4 φ1 ,

0 = A′′1 +
3
r

A′1 −
2q2A0

r2 φ1 .

We first solve for φ1 and then we plug in the solution on the other equation. The
final result gives

u = r2 ,

h = r2 ,

φ =
φ1

(2qA0)5/2
e−

qA0
r

r3/2 ,

Az = A0 +
φ2

1

64q5A6
0

e−
2qA0

r r .

On the other hand, the leading terms in the equations for the trivial phase read

0 = φ′′1 +
5
r

φ′1 +
48λm2

(24λ + m4) r2 φ1 ,

0 = A′′1 +
3
r

A′1 +
2q2m2

λ
(

1 + m4

24λ

)
r2

A1 .
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FIGURE 5.3: The zero temperature Hall conductivity for different val-
ues of the model’s parameters. It can be observed how the critical value

for the M/b parameter changes in the different cases.

We can solve the A1 equation and then the φ1 equation. The complete solution is

u =

(
1 +

m4

24λ

)
r2 ,

h = r2 ,

Az = A1rβ1 ,

φ =

√
−m2

λ
+ φ1rβ2 ,

where

β1 = −1 +

√
1− 48q2m2

m4 + 24λ
,

β2 = −2 + 2

√
1− 12λm2

m4 + 24λ
.

Let us now move on to the scaling solution that will be associated to the critical
point.

Critical solution

It is possible to obtain a Lifshitz-like geometry with a non-trivial scaling exponent in
the z-direction that is solution of the equations of motion for the whole bulk. How-
ever, we expect to maintain AdS asymptotics in the boundary, such that the dual
field theory is Lorentz invariant. Therefore, we understand this scaling solution
also as IR asymptotics that will have to be numerically integrated to the conformal
boundary. This geometry represents the critical solution and we will focus on it
for the rest of this section. In particular, we will concentrate on the computation of
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(M/b)c for each choice of the parameters in the Lagrangian. In general, there is only
one critical solution for a given value of m2, λ and q.

We begin with a scaling ansatz

u = u0r2α , h = h0r2β , Az = A0rγ , φ = φ0rδ .

Imposing the equations of motion, we find

u = u0r2, h = h1r2β, Az = rβ, φ = φ0,

where h1 is h0/A2
0. The four parameters (u0, h1, β and φ0) are functions of (m2, q and

λ), according to

0 = 3h1(u0 − 1)− 1
8

u0β2 +
1
4

φ2
0(h1m2 − q2) +

1
8

φ4
0h1λ,

0 = 2u0h1(1− β)− 2
3

q2φ2
0,

0 = 3u0β− 2q2φ2
0,

0 = m2h1 + q2 + λh1φ2
0.

Solving the last three equations for u0, h1 and β, we obtain the following rela-
tions:

u0 =
2q2φ2

0
3β

,

h1 = − q2

m2 + λφ2
0

, (5.12)

β = − 2q2

m2 + λφ2
0 − 2q2

. (5.13)

The first equation turns into a third order equation in φ2
0. Not all the solutions of

the third order equation are physical. Therefore, it is necessary to impose some
constraints, which can be summed up in the following way:

Regularity: β needs to be larger than zero.

Reality: Az and φ need to be real, because we want to recover a real value of M
and b in the UV. This gives us the conditions that β is real and φ2

0 is real and
positive.

Null-energy condition: We impose the null-energy condition TMNξMξN ≥ 0, with
ξM any future-pointing light-like vector field. Taking ξ = 1√

u dt +
√

hdz and

making use of Einstein’s equations gives TMNξMξN = GMNξMξN = 1− β, so
the null-energy condition reads β ≤ 1. This condition also enforces realness of
the axial field since it ensures the positivity of h1, as it becomes obvious from
(5.12) and (5.13) that β = 2/(2 + h−1

1 ).

Once the physical solution of the system has been found, one can flow to asymp-
totic AdS in the UV by perturbing the system with irrelevant perturbations around
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the Lifshitz fixed point
u = u0r2(1 + δu rχ),

h = h1r2β(1 + δh rχ),

Az = rβ(1 + δa rχ),
φ = φ0(1 + δφ rχ).

The fact that all the perturbations have the same scaling exponent χ follows imme-
diately from the linearized form of the equations of motion. Solving these again for
the new parameters (χ, δu, δh, δa, δφ) it is important to enforce realness and reg-
ularity on this solutions and this requires χ to be real and positive. The equation
has seven solutions but there is only one solution satisfying these two conditions.
The other four parameters can be expressed as a function of only one of them. The
possibility to integrate numerically the solution to the UV using the equations of
motion will only depend on the sign of this free parameter. Finally, the boundary
conditions (5.11) allows us to complete the map from (m2, q, λ) to (M/b)c and study
the appearance and location of the phase transition.

Decoupling of degrees of freedom

So far we have concentrated on using the possibility to find a scaling solution as
criterion for the existence of a quantum phase transition. However, we can use the
holographic dictionary to find a more physical argument to justify our results. From
(2.20) and (2.21), we can relate the number of degrees of freedom N to the Anti de
Sitter length L and the string length ls as

N ∝
(

L
ls

)4

. (5.14)

The UV/IR correspondence of holography maps the geometry near the bound-
ary of spacetime to the ultraviolet conformal fixed point of the dual QFT, while the
deep bulk geometry (which in the finite temperature case is a black hole’s horizon)
contains information about the infrared degrees of freedom. If both the ultraviolet
and infrared geometries are asymptotically AdS then (5.14) implies that

NIR

NUV
=

(
LIR

LUV

)4

,

where NUV/IR denote the UV/IR degrees of freedom and LUV/IR represents the UV
and IR Anti de Sitter length scales. Of course, in order for classical gravity to be a
valid description, both NUV and NIR are formally infinite, but their ratio remains a
finite quantity. LIR is defined implicitly through the infrared cosmological constant
ΛIR = − 12

L2
IR

whose value can be computed explicitly as ΛIR = − 12
L2

UV
+ V(ΦIR).

Then, the counting of degrees of freedom can be expressed as

NIR

NUV
=

(
ΛUV

ΛIR

)2

. (5.15)
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Since AdS is an Einstein manifold, the ratio between the IR and UV degrees of free-
dom can also be expressed in terms of the scalar curvature

NIR

NUV
=

(
RUV

RIR

)2

. (5.16)

Please notice that this quantity can never be greater than one as we flow between
two AdS spacetimes, since it would violate the holographic version of the celebrated
C-theorem [54, 52].

While this reasoning applies in a straightforward way in the case of AdS asymp-
totics, it has to be generalized if the IR geometry is not AdS. We use the scalar cur-
vature as an estimator of the degrees of freedom, since it is the only constant length
scale which is physically observable. In our holographic model there are three dif-
ferent possible infrared geometries which all have different curvatures. Using (5.15)
and (5.16), a straightforward computation gives(

NIR

NUV

)
top

= 1,(
NIR

NUV

)
triv

=
1(

1 + (m2)2

24λ

)2 ,

(
NIR

NUV

)
c
=

(
10

u0(6 + β(3 + β))

)2

.

Notice that only the result for the critical solution depends on the charge q. Con-
sistency with our weak coupling intuition would require that the decoupling of de-
grees of freedom is intermediate between the two phases, according to(

NIR

NUV

)
top

>

(
NIR

NUV

)
c
>

(
NIR

NUV

)
triv

.

Results

The result of the two methods described above are presented in Figures 5.4 and
5.5, where we study dependence on λ and m2, respectively. In the case of the de-
pendence on λ we clearly see that, for large enough λ, the critical M/b parameter
diverges. This implies, as the topological phase still exists for lower M/b than the
critical one, that the transition to the trivial semimetal phase ceases to take place,
making the system impossible to be gapped at low energies. It is interesting that the
limit λ → 0 reaches smoothly a finite constant value of M/b. However, this is not
easy to analyze, as the gravitational backreaction on the geometry has to be arbitrar-
ily big in order to compensate for the scalar field’s energy density, which scales as
λ−1.

The argument using the infrared degrees of freedom strengthens our conclu-
sions. In fact, it can be seen that, as we increase λ, the infrared degrees of freedom
of the critical solution become eventually less than those of the trivial one. In this
case the phase transition ceases to take place, as the gapped phase would have too
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FIGURE 5.4: Phase transition as a function of the model’s parameters:
(left) critical M/b as a function of λ, (right) infrared degrees of freedom
as a function of λ. Divergences in the M/b values and crossing in the
counting of degrees of freedom signal the impossibility for the phase
transition to take place. They are emphasized by a dotted vertical line

and coincide between the two methods.
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many degrees of freedom to be reached from the critical point and we would be left
with a system that only presents a topological phase. Furthermore, the limiting λ
values coincide between the two computations within numerical precision.

Looking now at Figure 5.5, we notice two things. First of all, we get a similar
steep curve to the one in the left panel of Figure 5.4 when we approach a critical
lower value for m2 that is closer to zero as we increase the charge. This again signals
the disappearance of a trivial phase. However, the limit m2 = 0 is never reached.
In such a limit, the dimensionless coupling M = limr→∞ φ would act as an effective
mass for the gauge field AM through the quadratic gauge coupling, giving mA =
q2M2. This behavior receives the name of holographic Stückelberg mechanism [97,
32, 68, 90]. The other interesting behavior, which can be seen in the inset of Figure
5.5 (A), is that the lower bound (M/b)c > 0 does not get crossed in any case. Thus,
the topological solution always exists.

This is confirmed by the counting of degrees of freedom, which crosses the ones
from the trivial phase at the same values of m2 where (M/b)c diverges. If, on the
other hand we had lost the topological phase, we would have seen a crossing of the
horizontal line NIR/NUV = 1. Interestingly, the limit m2 → −4 does not present
any particular problem. This conclusion is however not complete, as we describe
only dual operators with dimensions 2 ≤ ∆Φ ≤ 4. Operators of dimensions 1 ≤
∆Φ ≤ 2 can be described using the alternative quantization scheme for big enough
negative masses (−4 ≤ m2 ≤ −3 for a scalar field in five dimensions). In this case
we would identify the leading contribution at the conformal boundary as the one
point function of the operator dual to Φ instead of its coupling.

As a final remark we notice that the system seems to display an odd behavior
in the case in which q2 < 1. Two critical solutions with different infrared degrees
of freedom can be found. However, the system admits no solution in between the
two critical solutions, as can be seen both from numerics and from the counting
of degrees of freedom. This unphysical situation may be the consequence of some
fundamental bound on gravitational systems, with profound consequences on the
allowed dual operator’s charges. We leave this problem for future studies.

5.4 Axial conductivity and infrared screening

The holographic model of Section 5.2 has a nonzero transversal conductivity in the
topologically nontrivial phase

J i = εijkσH
j Ek , (5.17)

where σH
i is the electric anomalous Hall conductivity. From a quantum field the-

oretical point this is a consequence of the anomaly giving rise to a coupling in the
effective action of the form

W[V, A, b] = W[V, A, 0] +
N f

AN2
c

24π2

∫
d4xεµνρσbµ

(
3VνFρσ + AνF5

ρσ

)
, (5.18)

where the parameter bµ is the effective infrared value of the axial gauge field [62]. In
holography this result can be extracted in a rather straightforward way from the five
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dimensional Maxwell-Chern-Simons equations of motion (5.4), as we have already
advanced in (5.9). When expressed in terms of the membrane current Ja

(m), the µ

components of (5.4) read

d
dr

Ja
(m) +

√
−g∇bFba + 8κ

√
−gεabcrd∂b (AcFrd) = 0 .

If one turns on a boundary electric field with no time or spatial dimension, we can
find the conservation of the current zero mode. Upon radial integration between the
boundary and the horizons, the one-point function of the current can be expressed
in terms of the value at the horizon of the membrane current, which represents the
low energy degrees of freedom of the theory. It can be obtained from the Bianchi
identity εµνρστ∂ρFστ = 0, taking µ, ν to be two of the spatial directions, that the
electric field does not get renormalized

d
dr

F̃0i =
d
dr

Ẽi = 0 .

Therefore, as we also used in Section 3.4, the Frµ term in the membrane current
can be expressed at the horizon as a function of the electric field through the in-
falling boundary conditions, following [82]. This term gives rise to a longitudinal
conductivity, which vanishes at zero temperature and will be omitted for simplicity.
Finally, explicit evaluation of the Chern-Simons part of (5.6) on the horizon gives,
for the transversal part 〈

J i
〉
= 8κεijk Aj(rH)Ẽk.

We can identify Aj(rH) with the effective infrared coupling bi and obtain the result
in agreement with (5.17).

In the following we focus on computing the Hall conductivity for the anomalous
axial current J µ

5 . The calculation in this case has to be done resorting to numerical
methods, because of the coupling to the scalar field φ. However, as we will see
towards the end of the section, we would expect the structure of the anomalies to
completely determine the form of such a coefficient because of the relation (5.18).
This is, in fact, possible. Properly taking into account the RG flow to low energies
allows us to successfully match the holographic computation to the weak coupling
results. These axial transport properties are of high physical interest, as they can
appear in condensed matter studies. Axial vector fields arise at an effective level due
to lattice strain [39, 122, 63]. This computation also describes a topological signature
of anomalous U(1)3 theories in the presence of charged matter. This can then be
used to directly detect the family of phase transitions presented in Section 5.3 even
if only the anomalous symmetry is present.

5.4.1 Axial Hall conductivity

The axial Hall conductivity cannot be computed easily by solving the RG flow of
the current because of the symmetry breaking of the scalar field. We therefore resort
to the Kubo formulae introduced in Section 2.3. In what follows, σjk is related to
the anomalous Hall conductivity through σH

i = 1
2 εi

jkσjk. The expressions for the
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conductivities are

σik = lim
ω→0

1
iω
〈JiJk〉 (ω,~k = 0),

σ5
ik = lim

ω→0

1
iω
〈J 5

i J 5
k 〉 (ω,~k = 0).

In holography one can obtain the retarded Green’s function by studying the fluctua-
tions around the background for the gauge fields dual to the currents and imposing
infalling boundary conditions. The Hall conductivity is the off-diagonal part of the
above equation so, for the vector conductivity, we need to turn on fluctuations on
the x- and y-directions of the vector gauge field i.e. δVx/y = vx/y(r)e−iωt. The equa-
tions of motion for these fluctuations, both for finite and zero temperature, are

v′′x +
(

h′

2h
+

u′

u

)
v′x +

ω2

u2 vx +
8iωκAz′

u
√

h
vy = 0 ,

v′′y +

(
h′

2h
+

u′

u

)
v′y +

ω2

u2 vy −
8iωκAz′

u
√

h
vx = 0 .

On the contrary, the axial gauge field fluctuations (δAx/y = ax/y(r)e−iωt) will also
produce fluctuations on the metric (δgxz = gxx hx

ze−iωt and δgyz = gyy hy
ze−iωt).

For finite temperature, the complete set of coupled equations of motion reads

0 =a′′x +
(

h′

2h
+

u′

u

)
a′x +

ω2

u2 ax +
8iωκA′z

u
√

h
ay −

2q2φ2

u
ax −

f A′z
h

hx ′
z ,

0 =a′′y +

(
h′

2h
+

u′

u

)
a′y +

ω2

u2 ay −
8iωκA′z

u
√

h
ax −

2q2φ2

u
ay −

f A′z
h

hy′
z ,

0 =hx ′′
z +

(
2 f ′

f
+

u′

u
− h′

2h

)
hx ′

z +

(
f ′′

f
− u′′

u
+

f ′h′

2 f h
− u′h′

2uh

)
hx

z +
ω2

u2 hx
z

+
A′z
f

a′x +
2q2Azφ2

f u
ax ,

0 =hy′′
z +

(
2 f ′

f
+

u′

u
− h′

2h

)
hy′

z +

(
f ′′

f
− u′′

u
+

f ′h′

2 f h
− u′h′

2uh

)
hy

z +
ω2

u2 hy
z

+
A′z
f

a′y +
2q2Azφ2

f u
ay .

The zero temperature case follows from this one taking f to be equal to u. Besides
the coupling to the gravity sector, the main difference between both sets of equations
is that in the axial gauge field case we cannot take the equation of motion to be a total
derivative, in the same way it already happens for the background. On the contrary,
a term involving the scalar field appears, giving a non-trivial RG flow along the
bulk which will take a major role in the understanding of the results obtained for
the conductivity.

The coupling to the gravity sector cannot be avoided. We can make both equa-
tions for the vector field decouple from each other with a particular set of basis i.e.
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v± = vx ± ivy. However, with an analogous basis one can only reduce the set of
four equations of the axial field to two sets of two equations each. Therefore, the lin-
ear response coefficients relating the non-normalizable mode with the normalizable
mode will have to be obtained taking care of holographic operator mixing [93]. We
will try to briefly explain the method followed. From now on, we focus on the axial
gauge field sector.

We start by expanding the action to second order in perturbations of the fields.
Then, we Fourier transform this quantity and take only positive momenta. At this
stage we multiply the fields by the proper power of r, to make their leading term
in the near-boundary asymptotics constant. Finally, having the action expressed in
this way, we impose the equations of motion and get the on-shell action, which will
have the following form:

S =
∫

dk>
[
2AI JΦI

−kΦ′ J−k + BI JΦI
−kΦJ

k

]rb

rh
=
∫

dk>
[

ϕI
−kFI J(k, r)ϕJ

k

]rb

rh
,

where ΦI
k is the field mode associated to momentum k and ϕI

k is its value at a cut-off
close to the boundary that we will call rΛ. The remaining key ingredient is to use the
bulk-to-boundary propagator (BBP) to connect the first form of the on-shell action
with the second one, by expressing the bulk fields ΦI

k(r) in terms of their value at
the cut-off ϕI

k:
ΦI

k(r) = FI
J(k, r)ϕJ

k,

ΦI
−k(r) = FI

J(−k, r)ϕJ
−k = ϕJ

−kF†
J

I
(k, r).

With all this, we can then take

F (k, r) = 2F† AF′ + F†BF,

which will give us minus the retarded Green’s function in the limit where the cut-off
is shifted to the boundary

GR
I J(k) = − lim

r→∞
FI J(k, r).

The remaining piece of the method is the construction of the BBP. When one
solves asymptotically the equations of motion near the horizon, it can be seen that
each field is defined up to an unspecified integration constant. We can take these
values for the different fields to form a vector and use a basis of this vector space.
The normalization of this basis doesn’t matter because we will end up normalizing
the BBP to be the unit matrix at the cut-off. Therefore, for simplicity we will take
the linearly independent combinations of the integration constants to be sets of ones
with a minus one that is in a different position for each solution. For each of the ele-
ments of this basis, we will integrate numerically the fields to the UV and construct
a solution matrix H(k, r) where the rows represent each fluctuation and the columns
represent each of the different solutions

H I
J(k, r) = ΦI

(J)(k, z).
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Finally, the BBP can be obtained as:

F(k, r) = H(k, r) · H(k, rΛ)
−1.

Now we have explained the method, we will include the field vector and the
A and B matrices in the second-order on-shell action for finite temperature. Zero
temperature case would be obtained substituting f by u. In our case, we don’t need
to take into account the power of r on the leading term of the asymptotic expansion,
since ax/y have a constant leading term and, although the leading term of the metric
perturbations is of order r2, the variables hx

z and hy
z also have a constant leading

term.

Φ =


ax
hx

z
ay
hy

z

 ,

A =


−
√

h f
2 0 0 0

0 − f 3

4
√

h
0 0

0 0 −
√

h f
2 0

0 0 0 − f 3

4
√

h

 ,

B =


0 f 2 A′z√

h
−8iωκAz

3 0

0 −3 f 2 f ′

2
√

h
0 0

8iωκAz
3 0 0 f 2 A′z√

h

0 0 0 −3 f 2 f ′

2
√

h

 .

The application of this methodology requires the construction of a solution for
the background fields and the study on top of them of solutions to the equations
of motion of the fluctuations. The background fields are obtained following the
method explained in Section 5.3, where the IR solutions of both phases and of the
critical point are integrated numerically to the UV. Then, we look for the asymptotic
solutions of the fluctuations near the horizon and impose regularity and infalling
boundary conditions, which could alternatively be seen as regularity on Eddington-
Finkelstein coordinates. Thus, we have an analytical form for the boundary condi-
tions at the horizon that we use for the numerical integration of the fluctuations. It
depends only on the holographic coordinate r, on the frequency ω and on the inte-
gration constants to which we made reference above, which will be either ones or
minus ones. The numerical solutions of the fluctuations are then plugged into the
H matrices, the background fields are included in the A and B matrices and all this
allows us to get the Green’s function.

We can safely take b to be the relevant physical energy scale throughout our
computation. Therefore the only dimensionless parameter in the problem is M/b
for zero temperature and both M/b and T/b for the finite temperature case, as well



5.4. Axial conductivity and infrared screening 109

as the frequency ω/b for the perturbations. When taking the small frequency limit
we need to take care of the region in which we will integrate our equations of mo-
tion. In particular, we need to take the frequency to be smaller than the distance
r at which we took the IR limit of the integration region. The system is also very
sensitive to the maximum r at which we integrate, since the metric fluctuations give
notable numerical errors for large integration regions. Therefore, since the solutions
we obtain for these fields have the form of a domain wall and the final value is al-
ready reached at a quite low value of r we looked at the value of the holographic
coordinate at which the boundary value of the fluctuations was saturated and take
this as our UV result.

5.4.2 Current renormalization.

As shown in [58, 159, 62], the anomalous Hall effect can be seen at weak coupling
to stem from an anomalous contribution in the low energy effective action given
by the infrared coupling to the axial current bIR

µ Jµ
5 , where we use the suffix IR to

denote couplings of the effective low energy description of the system, in contrast
to “bare” couplings in the UV description. In our language, this current insertion
can be reexpressed as an extra contribution to the effective action given by

δW[V, A] =
NA

f N2
c

24π2

∫
d4xεµνρσbIR

µ

(
3VνFρσ + AνF5

ρσ

)
,

such that functional differentiation gives a closed expression for both the anomalous
axial and vector conductivities in the presence of an (axial) electric field Ei

(5):

~J =
NA

f N2
c

2π2
~bIR × ~E .

~J5 =
NA

f N2
c

6π2
~bIR × ~E5 .

We can read from these expressions the axial and vector transverse conductivities

σA =
NA

f N2
c

6π2 bIR, σV =
NA

f N2
c

2π2 bIR ,

from which we can predict that the ratio between the axial transverse conductivity
σA and the vector one σV is

σA

σV
=

1
3

.

This ratio should be fixed completely by the structure of the anomalies of the theory
and not receive any further low energy corrections, even though the low energy ef-
fective action is hard to determine precisely as the system is gapless. Nevertheless,
if we naively compute this quantity from holography, we find a rather different an-
swer (see Figure 5.7 and 5.8). The reason why this happens is that the external fields
in the infrared will in general couple with a different strength than they do in the
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b

FIGURE 5.6: Diagrams corresponding to the leading corrections to the
two-point functions 〈J J〉 and 〈J5 J5〉. These will be the most important
contributions to vector (left) and axial (right) conductivities in the in-
frared effective theory. Red dots denote the renormalized coupling of
the axial operators∼

√
ZA. It can be noted how the first diagram scales

as
√

ZA, while the other one scales as
√

Z3
A. These versions of the dia-

grams were created using TikZ-Feynman [48].

ultraviolet. Thus, their infrared coupling will also appear in the DC conductivities,
as they are a response of the low energy physics.

This can be thought of as a field renormalization effect due to the fact that we
have sourced a charged operator in the UV theory, which is described by the scalar
field Φ. It is useful to introduce a renormalization constant

√
ZA such that:√

ZAbµ = bIR
µ .

The coupling gets renormalized as we flow to the IR effective theory in the Wilso-
nian sense. In this case the important contributions at weak coupling come from
the diagrams in Figure 5.6, where red dots account for the renormalized couplings.
Thus we will take all the axial fields to be renormalized through

√
ZA in the infrared,

so that the effective action reads:

δW[V, A] =
NA

f N2
c

24π2

∫
d4xεµνρσbµ

(
3Z1/2

A VνFρσ + ZA
3/2AνF5

ρσ

)
,

which implies a ratio between the transverse conductivities

σA

σV
=

1
3

ZA =
1
3

(
bIR

b

)2

.

In holography we have shown that the infrared effective coupling is reproduced by
the horizon value of the background axial field, so that bIR

b = Az(0)
b . We then expect:

σA

σV
=

1
3

(
Az(rH)

b

)2

, (5.19)

while we can recover the right 1/3 coefficient if we express the quantity as a function
of the “screened” infrared fields AIR

M =
√

ZA AM.
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FIGURE 5.7: Normalized transversal axial conductivity for zero tem-
perature. The line denotes the original result for the vector conductiv-
ity, dots denote numerical data for the axial conductivity and dashed

lines denote the prediction (5.19).

We can now compare our prediction with the numerical results in Figures 5.7
and 5.8. We notice the remarkable fit of the prediction to the data, which still holds
in the finite temperature regime, with the transition smoothed out to a crossover.
Through this interpretation we can then recover holographically both the 1/3 co-
efficient, coming from the UV anomaly structure of the theory, as well as the right
dependence on the infrared renormalized couplings. Thus, our study displays both
the high and low energy character of this phenomenon, as should be expected from
its relation to the anomalies of the theory.

5.5 Discussion

In Section 5.3 we have studied the dependence of the quantum phase transition of
the holographic Weyl semimetal on the parameters of the scalar potential. We have
found that generically it persists but that the trivial phase becomes unaccessible
for large quartic scalar self coupling or close to the marginality bound on the dual
operator. From the point of view of bulk physics, those limits are related to a scalar
potential that does not have a non-trivial vacuum that spontaneously breaks axial
gauge symmetry.

In Section 5.4 we have computed the axial Hall conductivity and found that after
taking a non-trivial renormalization of the axial gauge field into account it is pre-
cisely 1/3 of the vector Hall conductivity. This is indeed what can be expected from
general arguments based on the algebraic structure of the axial anomaly. This re-
sult is of interest for condensed matter systems. While on a fundamental level axial
gauge fields are not present in nature they can appear as effects of strain in Weyl
semimetals [39, 63, 122].
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FIGURE 5.8: Normalized transversal axial conductivity for finite tem-
perature. The computation is done for different temperatures to prove

the state independence of the result.
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Chapter 6

Out of equilibrium anomalous
transport

We have only studied anomalous transport in equilibrium so far. However, some
of the systems in which these transport phenomena are expected to play a signifi-
cant role, like the quark gluon plasma produced in heavy ion collisions, are highly
out of equilibrium. Therefore, it is very natural to extend our discussion on anoma-
lous transport phenomena to out of equilibrium setups. In this chapter, we compute
anomalous transport phenomena sourced by small vector and axial magnetic fields
in out of equilibrium systems. We use generalized Vaidya-like metrics that include
momentum relaxation to make sudden changes in the thermodynamic variables of
the background and then we analyze the response induced by those changes. As a
result, we find that the chiral magnetic effect shows large equilibration times that
depend on the properties of the quench and we extract some general conclusions
about the consequences this might have for the phenomenology of heavy ion col-
lisons.

This chapter is based on [51] and it is organized as follows: in Section 6.1, we dis-
cuss our motivation for the study of the chiral magnetic effect out of equilibrium; in
Section 6.2 we introduce the holographic model; in Section 6.3 we present the AdS
Vaidya-like solutions with momentum relaxation; in Section 6.4 the linear response
equations are set up; in Section 6.5 we do a preliminary analysis based on hydrody-
namics which serves to establish some intuition on the out of equilibrium evolution;
the core of the chapter is Section 6.6, where we compute the anomalous response
far from equilibrium and we concentrate on the response of the vector current in a
background of axial charge and vector magnetic field, and the response of the axial
and energy currents due to axial charge and axial magnetic field; in Section 6.7 we
analyze the relevant quasinormal mode spectrum and compare to the direct numer-
ical solutions of the time evolution, and finally, in Section 6.8 we discuss the results
obtained.

6.1 Motivation

An important aspect of anomalous transport is that in a subtle way it is always
related to some non-equilibrium physics. At the theoretical level, the anomaly in-
duced contribution in a gauge current like the electric current has to vanish in strict
equilibrium. This result is known as Bloch theorem and it stems from the fact that
the contribution to the action of a nonvanishing current that couples to a gauge field
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would depend on the gauge choice. In particular, a discussion in relation to the chi-
ral magnetic effect (CME) has been given in [154]. A careful examination of the CME
shows that it indeed vanishes in equilibrium due to a topological contribution from
a counterterm that arises in the definition of the electric current [67]. In contrast, if
a current is related to an anomalous global symmetry, it does not necessarily have a
vanishing expectation value.

The reader might wonder if the motivation for studying anomalous transport
out of equilibrium is only theoretical. However, the nonequilibrium behavior is also
essential in experimental situations in which the CME arises, like Weyl semimet-
als [109] or the quark gluon plasma produced in heavy ion collisions. In Weyl
semimetals out of equilibrium dynamics arise due to the application of an electric
field parallel to the magnetic field, which induces the celebrated negative magneto-
resistivity [129]. On the other hand, in heavy ion collisions the chiral imbalance is
induced in the early far from equilibrium stages by the gluonic contribution to the
axial anomaly, as discussed in [96].

So far, most of the theoretical investigations of anomaly induced transport, in-
cluding the ones in the previous chapters, have concentrated on equilibrium or near-
equilibrium situations which can be described by hydrodynamics [130]. However,
it is clear that a much better understanding of anomaly induced transport out of
equilibrium is needed. We are in the position to do it with the help of holography:
besides being very useful to investigate transport in strongly coupled systems, it
allows to study the out of equilibrium evolution of those systems by means of nu-
merical relativity in AdS spaces [34].

Some of the simplest time dependent gravity solutions are Vaidya metrics, which
are generated by in-falling incoherent null dust and can be obtained as analytic so-
lutions of Einstein’s equations for very simple energy-momentum and charge distri-
butions. In this chapter, we use asymptotically anti de-Sitter charged Vaidya metrics
to simulate the out of equilibrium evolution. On top of this background, we add a
small magnetic field and calculate the linear response in the vector, axial and energy
currents due to the axial anomaly.

The response in the energy current can be known a priori because it must be
equal to the conserved momentum density. Since no additional momentum is in-
jected into the system, its value does not change. However, this behavior can be
altered if momentum ceases to be conserved. Therefore, we introduce a Vaidya-
like background solution that also includes momentum relaxation through the same
mechanism of Chapter 4. The existence of this generalization of Vaidya metrics has
been noted before in the case of four dimensional asymptotically AdS Vaidya met-
rics in [152, 16]. It must be understood physically as some sort of homogeneous
distribution of heavy impurities that destroy momentum.

While we emphasize that our setup represents far from equilibrium physics it is
still useful to compare to hydrodynamics to gain some intuition. In general, trans-
port can have some convective component due to the overall flow of the fluid, but
this flow is impeded by the impurities and thus has to vanish when the external
perturbations are switched off and the system approaches a new equilibrium. As a
result, the response in the energy-momentum tensor and current is given as the sum
of convective and anomaly induced parts. Momentum relaxation will destroy the
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convective part and only the anomalous contribution is left. The latter is dissipa-
tionless and thus it cannot be affected by the impurities, as was shown in Chapter 4
for equilibrium in holography and in [132] for an effective hydrodynamics setup.
However, it is still interesting to analyze the behavior in holographic far from equi-
librium evolution.

In holography out of equilibrium anomaly induced transport has been studied
before [110, 8, 106]. However, all those approaches are different to ours in some
aspect. For example, in [110], the authors studied a free falling charged shell of
matter in AdS. While this is similar to the Vaidya approach, their computation of the
CME response used a quasi-static approximation whereas we directly solve for the
full time dependence. In [8], the effects of parallel magnetic and electric fields were
studied, in order to simulate the negative magneto-resistivity out of equilibrium.
Finally, in [106] the work revolved around the out of equilibrium behavior of the
effects induced by the gravitational anomaly. Therefore, the work of this chapter is
a new study that complements the already available ones.

6.2 The model

We use the following holographic action

S =
∫

d5x
√
−g
[

1
16πG

(
R +

12
L2

)
− 1

2
(∂X)2 − 1

4
F2 − 1

4
F2

5

+
κ

3
εµνρστ Aµ

(
3FνρFστ + F5

νρF5
στ

) ]
+ SGH + Sn f .

The model is essentially the one from (5.3), from which it inherits a vector U(1)
symmetry and an axial U(1) symmetry which suffers from both VVA and AAA
anomalies. However, it is also supplemented with the scalar kinetic term from (4.1)
in order to have momentum relaxation. Besides that, we add by hand a null-fluid
action Sn f to the model, which will allow us to obtain a Vaidya-like background
solution, and the Gibbons Hawking term SGH from (3.11). From now on, we fix
Newton’s constant G and the AdS length scale L as 16πG = L = 1.

The equations of motion for the model are

Y I
(n f ) =

1√−g
∂µ

(√
−g ∂µX I

)
,

Jµ

(n f ) =∇νFνµ + 2κεµνρστFνρF5
στ ,

Jµ

5(n f ) =∇νFνµ
5 + κεµνρστ

(
FνρFστ + F5

νρF5
στ

)
,

T(n f )
µν =Gµν −

6
L2 gµν −

1
2

∂µX I∂νX I +
1
4

∂ρX I∂ρX I gµν

− 1
2

FµρFν
ρ +

1
8

F2gµν −
1
2

F5
µρF5

ν
ρ
+

1
8

F2
5 gµν ,

where the sources in the left-hand side of the equations stand for the variation of
the null-fluid action with respect to the scalar, the two different gauge fields and the
metric, respectively.
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From the quantum field theory point of view, the definitions of the scalar opera-
tors, consistent currents and energy-momentum tensor are

Y I = lim
r̂→∞

√
−γ ∂r̂X I ,

Ji = lim
r̂→∞

√
−γ

[
Fir̂ + 4κεijkl AjFkl

]
, (6.1)

Ji
5 = lim

r̂→∞

√
−γ

[
Fir̂

5 +
4κ

3
εijkl AjF5

kl

]
, (6.2)

Tij = lim
r̂→∞

2
√
−γ

[
−Kij + Kγij

]
, (6.3)

where we are implicitly using the Fefferman-Graham coordinates ds2 = dr̂2 +
γijdxidxj. Please notice that we define the currents with the appropriate induced
metric, contrary to the definitions in Chapters 3 and 4. The difference stems from
the fact that in those chapters the currents were defined as fields whose fluxes over
the membranes gave the appropriate field theory one-point functions, while here the
currents are directly defined as QFT observables. The currents satisfy the following
holographic Ward identities

∂i Ji =0 ,

∂i Ji
5 =− κ

√
−γεijkl

(
FijFkl +

1
3

F5
ijF

5
kl

)
,

∂jT ji =Fij Jj + Fij
5 J5

j −Y I∂iXI − Ai∂j J
j
5 .

6.3 Background construction

Our motivation for this work is studying the behavior out of equilibrium of anoma-
lous transport with a small magnetic field and momentum relaxation. Therefore, our
background shall represent a time-evolving homogeneous and isotropic charged
state in a theory that breaks translation symmetry. The magnetic field will be later
included as a perturbation on top of this background.

The simplest setup that serves our purpose consists of a black brane with time-
dependent blackening factor, which in Eddington-Finkelstein coordinates has the
form

ds2 = − f (v, r)dv2 + 2dvdr + r2d~x2 ,

and a linear spatial profile for the scalars, associating each one to a certain boundary
coordinate

X1 = kx , X2 = ky , X3 = kz .

As the scalars couple only through derivatives, the field equations and solutions are
still formally translation invariant.

We also want our background to be charged, in order to have nonzero chemical
potential. As there are no magnetic or electric fields in the background, and we
choose the gauge to be Vr = Ar = 0, the Chern-Simons terms in the equations of
motion will have no contribution at the level of the background. Since these are the
terms that mix both gauge fields, we can thus focus on only one of the gauge fields
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for the construction of the background. We stick to the vector field-strength F to
avoid unnecessary cluttering of the notation, but the exact same discussion would
apply to the axial gauge field sector.

If we impose that the expectation value of the charge density 〈Jv〉 is equal to the
charge q, we can fix the field strength to be

Frv =
q
r3 .

This field strength corresponds to an external source given by

Jv
(ext) =

q̇
r3 ,

where the dot stands for derivatives with respect to v.
The blackening factor f can be obtained as solution of two different time-

independent differential equations that arise as components of the Einstein’s equa-
tions. One of them is second order and the other one is first order, but compatibility
of both solutions imposes the extra integration constant from the second order one
to vanish. We fix the other integration constant by comparing it to the standard form
of the mass term in uncharged Vaidya metrics, finally giving

f (v, r) = r2
(

1− k2

4r2 −
2m(v)

r4 +
q(v)2

12r6

)
.

This corresponds to an external source given by

T(ext)
vv =

3ṁ
r3 −

qq̇
4r5 .

One could wonder why the mass and charge are allowed to vary with time but the
momentum relaxation coefficient is not. It is important to note in this regard that
their origin is very different. As it was discussed in the first paragraph of this sec-
tion, momentum relaxation is a feature of the theory while the charge and the mass,
necessary to have a black brane, are properties of the state. In fact, their appear-
ance in the context of holography is very different. While the momentum relaxation
coefficient is fixed when sourcing the scalars, the mass and the charge appear as
integration constants in the solution of the differential equations.

The thermodynamics of the system are defined by the chemical potential and the
temperature, which we compute as the difference between the boundary value and
the horizon value of the zeroth component of the gauge field and the Hawking’s
temperature of the black brane, respectively. Their values are

µ =
q

2r2
H

, T =
1

4π

(
k2

2rH
+

8m
r3

H
− q2

2r5
H

)
, (6.4)

where rH stands for the position of the apparent horizon. We do not consider the
event horizon since its location could be changed by events that happen long af-
ter the end of our numerical simulations. Please note again that all this discussion
would be the same in the presence of axial charge exchanging q by q5, or adding
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both contributions if both charges were present.
One obvious concern may arise. While chemical potential and temperature can-

not be defined in out of equilibrium setups, definitions (6.4) in this Vaidya back-
ground are valid at all times and react instantaneously to the changes in mass and
charge. We would like to make two comments on this. On one hand, although one
could feel tempted to take this expressions as true also out of equilibrium, it is im-
portant to understand that they are ill-defined in such regimes and we will only use
them as a near equilibrium approximation to detect true out of equilibrium behavior.
On the other hand, we want to look at the out of equilibrium behavior of anomalous
transport. We use this Vaidya background in order to simplify the computations.
The fact that the background seems to react to the changes instantaneously doesn’t
alter the fact that the computed one point functions present clear out of equilibrium
behavior. We would not expect notable deviations in the qualitative picture if the
procedure involved backgrounds that are generated by numerical integration, as it
was done in [106].

From now on, we will change our radial coordinate to be

u =
1
r

,

and we denote in the rest of the chapter the derivatives with respect to u by primes.
We use this coordinate in order to simplify the numerical procedure. Please do
not confuse it with the coordinate û used in Chapter 4. Both radial coordinates are
related according to û = u2.

6.4 Linear response computations

We are going to probe the out of equilibrium behavior of the system by switching
on a small constant magnetic field, either vector or axial, and the minimal set of
fluctuations required by consistency of the equations of motion at linear order in
the magnetic field. In order to carefully perform the perturbative computation, we
include an infinitesimal coefficient ε whose powers will account for the order in the
expansion and we will drop all powers from the second one on.

Without loss of generality, we set our magnetic fields along the z-axis, such that
Fxy = εB or F5

xy = εB5 in each case. The fluctuations that will be switched on are
Vz = εV, Az = εA, gvz = εh/u2 and X3 = kz + εZ, grouped in different subsets
depending on the particular case, as will become evident below.

It is straightforward to check that the four different cases with vector or axial
charge and vector or axial magnetic field reduce to two different sets of equations.
The first set exists for the two cases with vector magnetic field and the second set



6.4. Linear response computations 119

appears for the two cases with axial magnetic field, and they read

B : 0 = dV′ − 1
2u

dV +
u f
4

V′ − 4κBq5u2 , (6.5)

B5 : 0 = dA′ − 1
2u

dA +
u f
4

A′ − 4κB5q5u2 +
q5u
2

H , (6.6)

0 = dh′ +
5u f + u2 f ′

2
H − q5u3dA− kdZ + k2h , (6.7)

0 = dZ′ − 3
2u

dZ +
3u f

4
Z′ +

3k
2u

h− k
2

H , (6.8)

0 =

(
H
u3

)′
− q5A′ +

k
u3 Z′ . (6.9)

where H = h′ and d stands for directional derivatives along the outgoing null
geodesics

d = ∂v −
u2 f

2
∂u .

The other equations in each of the sets of equations are obtained by q5 ↔ q and
A↔ V. More on this will be commented below.

Equation (6.9) involves no time derivative and thus it can be understood as a con-
straint that has to be fulfilled at all times. This form of (6.7) is obtained after using the
constraint to exchange time derivatives by the new operator d. It is straight-forward
to see that the momentum relaxation coefficient acts simultaneously as a coupling
between the scalar and the metric perturbation and a mass for the metric. If there
were no momentum relaxation, the scalar would decouple from the system of equa-
tions, as it will also become obvious from the quasi-normal modes. Please notice
that, although not explicitly, momentum relaxation is also relevant in the equations
of the gauge fields through the blackening factors.

It is mandatory to check the compatibility of the equations of motion and the
constraint for the case with axial magnetic field. It can be seen that

− q̇5A′ = d(eq.6.9)− ∂u

(
(eq.6.7)

u3

)
− ∂u

(
u2 f

2

)
(eq.6.9)− 2k

u3 (eq.6.8) .

Therefore, the constraint and the equations of motion are compatible only in the case
when the axial charge does not vary with time. This is not a feature of momentum
relaxation, since it is true even for the momentum preserving case, k = 0.

The definition of the directional derivatives along the outgoing geodesics gives
us a time evolution equation for the different perturbations by solving for the v-
derivative of each field. The use of this directional derivatives is according to the
well-known method of characteristics, in which one uses information about the tra-
jectories along which the information of the solution is transported to simplify the
form of the equations to be solved. In the case with B5, the constraint could in prin-
ciple be used as the equation for h, but we got better accuracy by using the same
procedure for A, h and Z and then the constraint can be used as a test that the time
evolution was correct.

So far we have only discussed two of the four possible situations. The case with
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q and B can be obtained from the case with q5 and B by exchanging V by A and q5
by q in (6.5). The case with q and B5 can be obtained by exchanging A by V and q5
by q in (6.6)-(6.9). Thus, the out of equilibrium behavior is grouped according to the
magnetic field being vector or axial and we only need to make the computations for
the two cases considered above.

However, this is rather peculiar, because according to the type of anomaly the
classification is different: the case with q5 and B5 stems from the U(1)3

A while the
other three come from the U(1)AU(1)2

V . We can better understand this by looking at
the expressions these effects have in equilibrium in terms of the anomaly coefficients

~Ja = dabc
µb

4π2
~Bc ,

~Jε = dabc
µaµb
8π2

~Bc ,

where a, b, c = V, 5 and ~Jε is the energy current. It can be seen, for example, for
a single Dirac fermion (dVV5 = dV5V = d5VV = d555 = 2) that, while a vector
magnetic field never produces an energy current unless both chemical potentials are
nonzero, the axial magnetic field produces it as long as one of the chemical potentials
is present.

We need to solve the two different systems numerically. In order to do that, we
need boundary conditions, which we obtain from the asymptotic solutions near the
boundary of AdS, and also initial conditions, which we obtain from the fact that the
system is in equilibrium at the beginning.

We used a fourth order Runge-Kutta method to solve the equations both in the
time and radial directions. The radial derivatives of the fields were approximated
using finite differences. In particular, we used fourth order centered finite differ-
ences, except in the first two points near the boundary and the last two points be-
yond the horizon, where we used second order finite differences, in the appropriate
combination of centered, forward or backward.

We used an initial spatial grid of 1000 (vector current) or 10000 (axial and energy
current) equally distributed points between u = 0 and u = 1. This grid is supple-
mented with 10 extra points inside the horizon. Along the time evolution the spatial
integration range is cut at each step to 10 points inside the apparent black hole hori-
zon. The time step was taken to be at least one order of magnitude smaller than the
radial step in order to guarantee stability of the algorithm.

We have seen that the computations were very sensitive to the boundary data
and treating the first points right was the most important part of the numerical pro-
cedure. This is to be expected since the boundary of AdS is a regular singular point.
In order to circumvent the associated complications we explicitly imposed in our
equations the limit when u goes to zero, using in some cases L’Hôpital’s rule with
the asymptotic expansion, as we will see below.

We didn’t want the operators to be sourced, so we fixed the non-normalizable
modes of all the different fields to zero. The first terms of the rest of the expansion,
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from the normalizable mode on, read

V =V2u2 + V̇2u3 +O(u4) ,

A =A2u2 + Ȧ2u3 +O(u4) ,

h =h4u4 − 4kZ4

5
u5 +O(u6) ,

Z =Z4u4 +
5Ż4 − kh4

5
u5 +O(u6) ,

where all the coefficients were functions of time only and h4 had to satisfy

ḣ4 = −kZ4 .

This constraint is clearly related to the conservation of T0i, which is broken for k 6= 0.
We can now substitute these asymptotic solutions in the definitions of the cur-

rents ((6.1), (6.2) and (6.3)) to obtain the responses parallel to the magnetic fields,
which read

〈Jz〉 = 2V2 , (6.10)
〈Jz

5〉 = 2A2 , (6.11)

〈T0z〉 = 4h4 . (6.12)

Therefore, obtaining our results boils down to extracting the normalizable modes.
In order to do that we perform a least squares fit according to the series expansion
and read from the normalizable modes of the fields the one-point functions of the
gauge and energy currents. We also use the vanishing of the coefficients of previous
powers as a check for the accuracy of the method.

As we advanced above, we also used these series expansions in the equations
of motion, substituting in V, dV, A, dA, h, dh, Z and dZ, to obtain the form of the
equations in the first point of the grid. After applying L’Hôpital’s rule to take the
limit u→ 0, it can be seen that the radial equations reduce at that point to

lim
u→0

(eq.6.5) = 0 = dV′ + V2 ,

lim
u→0

(eq.6.6) = 0 = dA′ + A2 ,

lim
u→0

(eq.6.7) = 0 = dh′ ,

lim
u→0

(eq.6.8) = 0 = dZ′ .

In order to proceed with the integration algorithm, we used in these equations the
V2 and A2 that had been obtained in the fit from the previous time step. For the rest
of the points in the grid, we didn’t need to use any information from the fit, only the
numerical results of the fields and their derivatives.

Finally, in order to obtain the initial conditions, we assumed that the system
started in equilibrium and obtained the equilibrium solutions for the appropriate
values of m, q5 and k. These equilibrium solutions could be found analytically solv-
ing the static version of the equations of motion, where all the time derivatives were
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dropped. Their expressions are very lengthy and cumbersome. Since we don’t con-
sider them to be particularly informative, we have decided not to include them here.
Our late time state will also be an equilibrium configuration and it can be checked
that our late time solutions approach the appropriate solutions of the static equa-
tions.

6.5 Comparing to hydrodynamics

In order to detect true out of equilibrium phenomena, we can compare our results
to near equilibrium ones obtained from hydrodynamics. We start by writing down
the constitutive relations for the different currents

Jµ =ρuµ + σBµ + σ5Bµ
5 ,

Jµ
5 =ρ5uµ + σ̃Bµ + σ̃5Bµ

5 , (6.13)

Tµν =(ε + p)uµuν + pηµν + ξu(µBν) + ξ5u(µBν)
5 , (6.14)

where parentheses on the indexes stand for symmetrization A(µBν) = AµBν + AνBµ.
Please note that the standard symmetrization also involves a combinatorial factor in
the denominator, but we don’t include it because our purpose is just obtaining more
compact expressions.

Typically, relativistic hydrodynamics has an ambiguity on the choice of frame,
which in holography presents itself as a choice of boundary conditions. In the cases
with axial magnetic field and momentum relaxing parameter k different from zero,
regularity conditions at the horizon impose one more condition on the independent
modes of the series expansion: the metric perturbation has to be zero at the horizon,
exactly as we already saw in Chapter 4. Therefore, it can be said that momentum
relaxation chooses a preferred frame and that this frame is the disorder rest frame
(the “no-drag” frame of [132]). For convenience, we also impose this condition in
the rest of the cases, where we have freedom to choose the frame.

Once we choose the frame, we stick to it for the whole computation. In and near
equilibrium, the transport coefficients in this frame are given by

σ = 8κµ5 , σ5 = 8κµ ,
σ̃ = 8κµ , σ̃5 = 8κµ5 ,

ξ = 4κµµ5 , ξ5 = 4κµ2
5 .

Any deviation from these expressions in the one-point functions of the quantum
currents, (6.10), (6.11) and (6.12), will be taken as a sign of out of equilibrium physics.
Please notice the sign of the transport coefficients here is the opposite to the one from
Section 2.2.3. We have taken the opposite sign convention for the magnetic field.

In the cases with axial magnetic field we will be looking both at the axial cur-
rent and the energy current. In relativistic hydrodynamics, the energy current T0i is
equal to the momentum density Pi = Ti0. The latter is usually a conserved quan-
tity except in the case with momentum relaxation. Therefore, the response in the
energy current is bound to be trivial without momentum relaxation. The chemi-
cal potentials change of course but the different anomaly induced energy current is



6.6. Results 123

compensated by a convective part due to flow in (6.14). This convective component
is subject to dissipation in the case with momentum relaxation. We can not com-
pute the exact value of the fluid velocity, because we only have access to the one
point functions of the different currents but not to the anomalous and convective
contributions separately.

However, we can compute what the flow would be near equilibrium from the
point of view of hydrodynamics with momentum conservation. Since the one point
function of the 0i-components of the energy momentum tensor does not change, it
always has its initial value. This means, according to the constitutive relation in
(6.14) that

〈T0z〉 = 4κ(µin
5 )2B5 = (ε + p)vz + 4κµ2

5B5 ,

where the superscript in means it is the initial value of the axial chemical potential.
We can solve for the fluid velocity

vz =
4κB5

ε + p

[
(µin

5 )2 − µ2
5

]
.

Once we have computed the fluid velocity, we can use the constitutive relation of the
axial current (6.13) to see what the value of the one point function will be according
to hydrodynamics. It gives

〈Jz
5〉 = ρ5vz + 8κµ5B5 = 8κµ5B5 +

4κB5ρ5

ε + p

[
(µin

5 )2 − µ2
5

]
.

At this point we use again the constitutive relations and the holographic dictionary
with the background metric and gauge field to obtain the transport coefficients

ε = 〈T00〉 = 6m ,

p = 〈Tii〉 = 2m ,

ρ5 = 〈J0〉 = q5 ,

and substitute to obtain the equilibrium value of the axial current considering flow
with momentum conservation

〈Jz
5〉 = 8κµ5B5 +

κB5q5

2m

[
(µin

5 )2 − µ2
5

]
.

We use these hydrodynamic expressions for the currents as benchmarks for near
equilibrium evolution in the following (see Figures 6.2, 6.4 and 6.6) where µ5 is
defined as in (6.4).

6.6 Results

In all the cases studied, we performed a quench in the mass of the form

m = m0 +
m f −m0

2

(
1 + tanh

(v
τ

))
. (6.15)
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We chose the masses in order to fix initial and final horizon positions to uinitial
H = 1.0

and ufinal
H = 0.8, respectively, so the exact values depend on q5 and k for each run.

All dimensionful quantities quoted from now on should be understood as expressed
in units set by the value of the initial horizon uinitial

H .
The condition that the charge had to remain constant only appeared for the case

with axial magnetic field, but we fixed its value to q5 = 1.0 for all the cases. The
benefit of this is that all the runs have the same initial and final chemical potential
and, therefore, they can be compared. However, the initial and final temperatures
will not be the same for the different cases when we compare runs with different
values of k. The specific value of the charge has no special meaning and only affects
the results by a normalization. However, we used this value in order for the flow to
have a sufficiently large value that can be clearly seen in the results.

6.6.1 Momentum conservation

The first analysis we decided to make was reminiscent of some of the results in
[106]. We wanted to see the impact that the time span of the quench τ had on the
equilibration process on both cases without momentum relaxation, by looking at the
results for several different values of this parameter.

In Figure 6.1 we show the results for the case with vector magnetic field. It can
be seen there are two different regimes. The first one is characterized by overshoot-
ing before the equilibration finishes. We call them fast quenches. If the quench is
fast enough it also shows what we call delay. By delay we mean that the response
in the current builds up mainly after the time dependent perturbation (6.15) has al-
ready finished. We will quantify this delay more precisely later. The other regime,
slow quenches, show smooth monotonic behavior and have no delay. In the limit of
very large τ it approaches the near equilibrium approximation based on (6.4). The
transition between both regimes appears at around τ ≈ 1. We note that this is sig-
nificantly simpler than the behavior observed in [106] in the case of the gravitational
anomaly induced CME, where three different regimes of fast, intermediate and slow
quenches could be distinguished.

In Figure 6.2 we show the results for the case with axial magnetic field. Both
regimes can be again observed in this case and we can see that the equilibration
times are essentially the same ones. However, the rest of the behavior is different
due to the appearance of non vanishing flow, as discussed above. The final equi-
librium value is somewhat larger than what could be expected from applying the
CME formula alone. We attribute this to the convective flow component present in
the final state as outlined in the section 6.5. The fluid velocity in the final state can
be computed from eq. (6.14) by demanding that the final and initial energy currents
(momentum density) are the same. Once this flow component is taken into account
the axial current in the final state matches the expectation from hydrodynamics per-
fectly (6.13) as can be seen from the black continuous line in Figure 6.2.

In the case of fast quenches, the overshooting can be checked to never cross
below the value the current would have if only the anomalous contribution was
present.
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FIGURE 6.1: Out of equilibrium electromagnetic current for different
values of the time span of the quench with no momentum relaxation.
The black dashed line is the near equilibrium approximation we use as

a reference to signal out of equilibrium behavior.
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FIGURE 6.2: Out of equilibrium axial current for different values of the
time span of the quench. The black line is the near equilibrium approx-

imation we use as a reference to signal out of equilibrium behavior.
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FIGURE 6.3: Out of equilibrium electromagnetic current for different
values of the momentum relaxation parameter k. The black dashed line
is the near equilibrium approximation we use as a reference to signal

out of equilibrium behavior.

6.6.2 Momentum relaxation

We now look at the results with momentum relaxation. In order to do that, we
compare the quenches for several different values of k, always keeping τ = 0.05. We
start by looking at the case with vector magnetic field. We see again in Figure 6.3
the appearance of two different regimes for the current, although now the transition
happens for k . 2.

For the case with axial magnetic field, we obtain Figure 6.4 and 6.5. In the cur-
rent, it can be observed that there are now two equilibration processes, with differ-
ent time scales, and their interaction gives a richer structure. One of them is already
present for k = 0 and is produced by the change in the mass. The other one, only
present for k 6= 0 is precisely related to the disappearance of flow due to momentum
relaxation. For small values of k, like k = 1.0 in the plots, this second process is so
slow that the current almost equilibrates to the value with full flow before slowly
decreasing towards the result with no flow. For bigger values of k, though, the mo-
mentum relaxation is faster and the two processes cannot be seen as independent,
although now the whole process is much longer than for the case without momen-
tum relaxation.

The plot for the energy current shows a much simpler structure. For no momen-
tum relaxation, the energy current stays constant as it is equal to the momentum
density, which is a conserved current. For k 6= 0 it interpolates between the initial
and final equilibrium values of the anomalous contribution, and the process is faster
for bigger k’s. However, there is a point, around k = 2.5 where this trend changes
and the process starts being slower for bigger k. As we will see this is in agreement
with the quasi-normal mode structure of the system.

Finally, in order to better understand the structure of the cases with axial mag-
netic field and momentum relaxation, we now plot the results for different values
of τ and a fixed value of k = 1 in Figures 6.6 and 6.7. It can be seen that, as in
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FIGURE 6.4: Out of equilibrium axial current for different values of the
momentum relaxation parameter k. The black line is the near equilib-
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FIGURE 6.6: Out of equilibrium axial current for different values of the
time span of the quench with momentum relaxation parameter k = 1.
The black dashed line is the near equilibrium approximation we use as

a reference to signal out of equilibrium behavior.

all previous cases, the results are closer to the near equilibrium approximation as τ
becomes larger. However, the structure of the time evolution of the axial current is
richer. As τ becomes smaller, it can be seen that momentum relaxation is not dom-
inant enough to fully suppress the appearance of flow. Therefore, the response first
tends to equilibrate to the value it would have if k = 0, only to subsequently de-
viate from that value and end up reaching the final equilibrium value through the
disappearance of flow.

6.6.3 Delay

One interesting feature in the results obtained is what we call delay. It can be de-
fined as the time lapsed after the quench has finished and before the response in the
different currents starts to build up. It appears for fast quenches in both the vector
and axial currents. However, we will concentrate on the vector case because it is
the one that could potentially have interesting phenomenological implications for
heavy ion collisions, as we will comment on below.

In particular, we define our delay in the following way. We considered the
quench to be finished when the value of 8κµB, with µ obtained from (6.4), deviates
less than 0.1% from the final equilibrium value. In an analogous way, we considered
the buildup in the current to start when its value deviates more than 0.1% from the
initial value. The delay ∆ is equal to the difference in v between those two instants.

We expect the delay to depend on the momentum relaxation coefficient k and the
time length of the quench τ. The results are presented in Figure 6.8. In the first set of
points, we show the dependence on τ for fixed k = 0. In the second set of points, we
show the dependence on k for fixed τ = 0.05. It can be seen that the delay becomes
bigger for bigger k. However, it becomes smaller for bigger τ. In particular, it can
become negative for big τ (roughly around 0.1 for the case with k = 0), which means
that there is no delay and the current starts to build up before the quench is finished.
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FIGURE 6.7: Out of equilibrium energy current for different values of
the time span of the quench with momentum relaxation parameter k =
1. The black dashed line is the near equilibrium approximation we use

as a reference to signal out of equilibrium behavior.

Thanks to the logarithmic scale, it can be seen that for very fast quenches at fixed k
the value gets to a plateau and it has a well-defined finite limit for τ → 0.

This could have interesting implications for the search of anomalous transport
in heavy ion collisions. Our results suggest that the response in the current starts
to build up some time after the end of the equilibration process for sufficiently fast
quenches. Indeed, equilibration or hydrodynamization is supposed to be fast in
heavy ion collisions. At the same time the life-time of the magnetic field is finite. It
is also known that the life time of the magnetic field is shorter for higher energy col-
lisions. While it is sometimes assumed that the net effect of stronger magnetic field
and shorter lifetime compensate each other our results might point into a different
direction. If the life time of the magnetic field is short the delay might mean that no
CME current can actually be built up before the magnetic field decays. This could
in principle allow the case that the CME signal is suppressed at high energies at the
LHC even if it is observable at the lower RHIC energies. Indeed, the current results
from experimental searches for CME signals at RHIC and LHC allow precisely such
an interpretation [157].

The present model is certainly too simplistic to allow application to a more re-
alistic situation. Our results call however for further detailed studies with more
phenomenological input, such as finite lifetime of the magnetic field.

6.7 Quasinormal Modes

Since the equations (6.5)-(6.9) are linear in the fields one might expect that the time
evolution can be reasonably well described in terms of quasinormal modes. How-
ever, such an analysis is complicated due to the explicit time dependence of the
blackening factor. A complete quasinormal mode analyses would therefore have
to include also the modes stemming from the non-linear metric equations. Instead
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FIGURE 6.8: Delay presented as a function of the length of the quench
τ for the case with k = 0, and as a function of the momentum relaxation

parameter k for the case with τ = 0.05.

we will study a somewhat simpler problem. We consider the final equilibrium state
and ask how fast a generic perturbation of that state decays. The equations for the
perturbations are the same as the equations (6.5)-(6.9) without the terms with the
magnetic field. The equations for the quasinormal modes follow then by writing

d = −iω− u2 f
2

∂u .

The resulting (system of) equations are solved imposing regularity of the solutions
on the horizon and vanishing non-normalizable mode on the boundary. In the case
of the system of equations (6.6)-(6.9) one needs to construct three linearly indepen-
dent solutions. The constraint allows however only for two independent solutions.
A trivial third solution can be found by choosing h = −iω and Z = k.

The proper boundary conditions on the horizon for the gauge fields and the
scalar field are that they take finite but non-vanishing values whereas the metric
perturbation h has to vanish on the horizon. With this boundary conditions the so-
lutions can be found by numerical integration. In the case of the coupled system of
equations the quasinormal modes are found by setting the determinant of the ma-
trix spanned by the three linearly independent solutions to zero at the boundary [5,
93].

We limit ourselves to the dominant mode with largest imaginary part for both
cases. The real and imaginary part of the first quasinormal mode of the final equilib-
rium state are shown as functions of k in Figure 6.9 for the case with vector magnetic
field and in Figure 6.10 for the case with axial magnetic field. It can help us under-
stand some of the features of the linear response results. In particular in what refers
to the time of final equilibration of the currents, since the background will be equi-
librated to this final equilibrium state before the current equilibrates.
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FIGURE 6.9: First quasinormal mode in the final state for the case with
vector magnetic field.

For the case with vector magnetic field, the real part decreases while the imag-
inary part stays the same until the mode becomes purely imaginary slightly below
k = 2.5. At precisely that point and after increasing a little bit, the absolute value of
the imaginary part decreases quite fast. This is in agreement with the equilibration
times of Figure 6.3. In that plot the final equilibration seems to happen roughly at
the same point for k below 2.4 while for the curves above this value of the momen-
tum relaxation parameter k the equilibration time becomes longer and longer. Since
the quasinormal modes come in pairs with opposite sign real part, there are two
modes colliding on the imaginary axes. The second mode then moves down the
imaginary axes until it pairs up with another pure imaginary mode. In general, a
quite complicated pattern of modes moving on and off the imaginary axes develops
for higher k values. Since our interest is in the dominating mode we have not further
investigated this.

For the case with axial magnetic field, the real part of the dominating mode is
always zero and therefore the mode is purely imaginary. One way of understanding
this mode is that it is connected to the diffusive mode at k = 0. Since the diffusive
mode is purely imaginary also this mode has vanishing real part. The absolute value
of the imaginary part first increases from zero and, after peaking roughly around
k = 2.5, it decreases again to approach zero towards extremality, which is slightly
above k = 3.5. This again shows good qualitative agreement with the energy current
results of Figure 6.5. We can see there that the curves approach the final value faster
as k grows but after k = 2.4 this trend changes and, in fact, the case with k = 2.6
equilibrates later.

6.8 Discussion

We have studied out of equilibrium chiral magnetic effect in a holographic setup
based on Vaidya-like solutions. An essential and new ingredient was the inclusion
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FIGURE 6.10: First quasinormal mode in the final state for the case with
axial magnetic field.

of momentum relaxation. Without it the response in the energy momentum tensor
would have been trivial.

An interesting feature is that, although the metric and gauge field backgrounds
show formally an instantaneous equilibration, the anomaly induced response shows
a late equilibration. That proves that far from equilibrium linear response takes
place even in Vaidya metrics. In particular, the response is delayed for sufficiently
fast quenches. This means that the current needs some time to build up and it even
stays at its original equilibrium value for a rather long time. This is qualitatively
similar to what has been observed in the previous study [106] based on gravita-
tional anomaly induced chiral transport. Therefore, one might speculate that it is a
universal feature of strong coupling out of equilibrium dynamics, or even anoma-
lous transport. If so, it could hold some important lesson for the observation of the
CME in heavy ion collisions at RHIC and LHC. While thermalization (or hydrody-
namization) is in general believed to be very fast, this might not necessarily mean
that the anomaly induced charge separation sets in at the same timescale. There
might be significant delay and, since the life time of the magnetic field is smaller at
the LHC, this could mean that the chances for observing CME signals at RHIC are
larger than those at LHC. One important direction for future research is therefore
to develop better holographic out of equilibrium models of anomalous transport
taking into account the finite lifetime of the magnetic field.

An interesting side result of our study is that the Vaidya metric allows for
straightforward inclusion of momentum relaxation with massless scalar fields in
five dimensions. A curious feature is that the response in the non-conserved energy
current builds up faster for some intermediate value of the momentum relaxation
parameter k ≈ 2.5 than for smaller or larger values. This seems to be in agreement
with the quasinormal mode spectrum. The value of the dominating mode first de-
creases, finds a minimum at around k = 2.5 and then starts to increase again. This
indicates that for values k > 2.5 the system relaxes slower to equilibrium and we
can indeed see this also in the data for the time evolution of the energy current.
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Chapter 7

Conclusions

We are finally approaching the end of this thesis. In the previous chapters, different
works studying anomalous transport though holography have been presented. We
have broaden our understanding of anomaly induced transport by shedding some
light on particular aspects of it. We will now use this final chapter to discuss the
results obtained in this thesis and their meaning, and we will also comment on some
of the open questions and the paths that one might want to explore in the future.

In Chapter 3, we have exploited the existence of gravitational conserved charges
and the possibility to find them using Wald’s procedure in order to compute the
field theory observables in terms of quantities evaluated at the horizon. According
to the holographic RG flow, this must be interpreted as a signal that the anoma-
lous response in the charge and energy currents is determined from the low energy
physics of the theory. Although some hints about the use of that construction al-
ready existed in the literature, as we discuss at the end of Section 3.1, we managed
to synthesize those approaches and apply them in the presence of pure gauge and
mixed gauge-gravitational anomalies to charge and energy currents.

In Chapter 4, we have found that anomalous transport does not depend in equi-
librium on the inclusion of momentum relaxation and disorder in the charged sector.
In order to do that, we extended the models already proposed by [14, 59] to a five-
dimensional gravitational theory in AdS. An interesting aspect of these results is
that they serve as a corollary of Chapter 3, since we study a theory in which the new
contributions to the stress tensor proposed in that chapter are nonvanishing. Along
the way, we have also computed the electric DC response. The results are very sim-
ilar to the ones they found for four dimensions. The response can become zero or
even negative for some values of the momentum relaxation parameter.

In Chapter 5, we have analyzed the holographic model of Weyl semimetals that
was proposed by our research group some months before the beginning of the PhD.
This model is inspired by a field theory model and its main feature is a quantum
phase transition between a Weyl semimetal phase and a trivial semimetal phase.
In the work included in this thesis, we have explored the parameter space of the
model and we have found that such a phase transition is universal for a large range
of bulk mass and quartic coupling. Besides that, we have extended the computa-
tion of the anomalous Hall effect to the axial Hall effect. The expected result from
the algebraic structure of the two different anomalies involved could only be recov-
ered after considering a nontrivial renormalization of the external axial fields in the
relevant diagrams.

In Chapter 6, we have extended the study of anomalous transport to out of equi-
librium setups introducing time dependence through a generalization of Vaidya
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metrics with momentum relaxation. We have found that the response takes some
time to build up and the relevant time scales depend on the velocity of the quench
and the momentum relaxation parameter. We propose this as an explanation of why
the experimental results of RHIC seem to be more compatible with the chiral mag-
netic effect than those of LHC. In this picture, the anomalous response would take
some time to build up and for very energetic collisions it might be the case that the
magnetic field is already switched off by the time the response could be relevant.

All these projects and results leave some space for future work. One of the first
questions that might arise from Chapter 3 is what is the meaning of the extrinsic
curvature for the dual field theory. This object is proportional to the metric in the
boundary and is usually responsible for introducing temperature in the horizon,
but we have seen it plays a less obvious role in the rest of the bulk. Therefore,
one might wonder what is its dual at intermediate energy scales. Furthermore, it
introduces a new operator in the diffeomorphism Ward identity that only vanishes
at the boundary. What is the meaning of this new operator? The answer is not
evident but we consider this to be a very interesting question.

Another question that arises from the definition of the membrane currents from
Chapter 3 is if these definitions are also valid in out of equilibrium situations. It is
necessary to include a time-like Killing vector to obtain the diffeomorphism Komar
charges that allow to find the radial conservation equations. However, such a Killing
vector bounds the result to equilibrium. Therefore, it is not clear what the new terms
in the definition of the currents mean for non equilibrium. Analyzing this in detail
might also give some hints about the role of the extrinsic curvature for the dual field
theory. Of course, the study must be systematic and it should be extended to all the
rest of the coefficients. We could check to what extent the behavior seen in Chapter 6
is universal or if, on the contrary, it is specific to the chiral magnetic effect.

In Chapters 4 and 6, we have introduced systems in which momentum is not
conserved. While this behavior has no influence on anomalous transport in equilib-
rium, we have shown that it does have an implication out of equilibrium. However,
one question that arises is what would be the effect on anomalous transport of a
mechanism that broke energy conservation. Furthermore, would it affect it only out
of equilibrium or also in equilibrium? Thus, we consider the search for a mechanism
to break energy relaxation in holography very interesting.

In Chapter 6, we have obtained results that we try to use in order to gain some
intuition about the experimental results of quark-gluon plasma in heavy ion col-
lisions. However, it is difficult to know how well we can model the quark-gluon
plasma with holography. We are actually working on gravitational theories that are
at best dual to super Yang-Mills, not to QCD. Thus, more work should be done on
trying to understand how valuable these holographic computations really are for the
phenomenology of heavy ion collisions. Furthermore, our modeling of the quark-
gluon plasma using holography should be improved by choosing realistic values of
the physical parameters and introducing magnetic fields with a finite lifetime.

Anisotropy has proved to introduce quite exotic behavior in several setups, like
the holographic Weyl semimetal analyzed in Chapter 5. In particular, in this model
anisotropy breaks the well-known lower bound on the viscosity to entropy ratio
[104] and it also breaks a bound on the butterfly effect velocity of quantum chaos
[15]. Therefore, one might wonder if anisotropy can also have some surprising effect
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out of equilibrium for anomalous transport.
We conclude the thesis with the suggestion of these future projects. The field of

anomalous transport has been prolific in the last years, but many things remain to
be done. We should not forget that much of the interest of these transport phenom-
ena stems from their hybrid nature: they allow us to study exciting experimental
systems and, at the same time, explore some deep physical concepts. Therefore, this
has been one of the main leitmotifs of this thesis. To perform theoretical work that
helps us grasp the subtleties of anomalous transport and thus contribute to a better
understanding of the experimental systems in which it appears. We hope the thesis
has been able to achieve this goal.
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Conclusiones

Estamos alcanzando el final de la tesis. En los capítulos previos hemos presentado
distintos trabajos en los que se utiliza la holografía para estudiar transporte anó-
malo. Hemos ampliado nuestro entendimiento del transporte inducido por anoma-
lías a través de la elucidación de aspectos particulares de él. Vamos a utilizar este
capítulo final para discutir los resultados obtenidos en esta tesis y su significado, así
como para plantear algunas de las preguntas que surgen y caminos que se podrían
explorar en el futuro.

En el Capítulo 3, hemos utilizado la existencia de cargas conservadas gravita-
cionales y la posibilidad de encontrarlas usando el procedimiento de Wald para cal-
cular los observables de teoría de campos en términos de cantidades evaluadas en el
horizonte. De acuerdo al flujo del grupo de renormalización holográfico, esto debe
de ser interpretado como una señal de que la física a bajas energías de la teoría es la
encargada de determinar la respuesta anómala de las corrientes de carga y energía.
Aunque algunas pistas de que tal construcción se podía utilizar con este objetivo
ya existían en la literatura, como discutimos al final de la Sección 3.1, hemos sido
capaces de unir los distintos cabos sueltos y aplicarlos en presencia de anomalías
quirales puras y mixtas al cálculo de corrientes de carga y energía.

En el Capítulo 4, hemos hallado que el transporte anómalo no depende en equi-
librio de la rotura de la conservación del momento o de la inclusión de desorden en
el sector cargado. Con este propósito, extendimos los modelos propuestos por [14,
59] a una teoría gravitatoria de cinco dimensiones en AdS. Un aspecto interesante
de este resultado es que sirve de colorario al Capítulo 3, ya que estudiamos una
teoría en la que las nuevas contribuciones al tensor energía-momento propuestas
en aquel capítulo son no nulas. Además, hemos calculado la respuesta eléctrica de
corriente continua. Los resultados son muy similares a los de cuatro dimensiones.
La respuesta es cero o negativa para ciertos valores del parámetro de relajación del
momento.

En el Capítulo 5, hemos analizado un modelo holográfico de semimetales de
Weyl que fue propuesto por nuestro grupo de investigación unos meses antes del
inicio de este doctorado. Dicho modelo está inspirado en uno de teoría de cam-
pos y su principal ingrediente es una transición de fase cuántica entre una fase de
semimetal de Weyl y otra fase trivial. En el trabajo incluido en esta tesis hemos ex-
plorado el espacio de parámetros del modelo y hemos encontrado que la transición
de fase es universal para un gran rango de la masa del bulk y del acoplo cuártico.
Además, hemos extendido el cálculo del efecto Hall anómalo al efecto Hall axial. Se
puede ver que el resultado que cabría esperar a partir de la estructura algebraica de
las dos anomalías se recupera una vez consideramos una renormalización no trivial
de los campos axiales externos en los diagramas relevantes.

En el Capítulo 6, hemos extendido el estudio de transporte anómalo a sistemas
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fuera del equilibrio introduciendo dependencia temporal gracias a una generaliza-
ción de las métricas de Vaidya que tiene relajación de momento. Hemos obtenido
que la respuesta empieza a aparecer después de un cierto tiempo y que las escalas
de tiempo relevantes dependen de la velocidad del quench y del parámetro de rela-
jación de momento. Proponemos este fenómeno como una explicación de por qué
los resultados experimentales de RHIC parecen más compatibles con la aparición
del efecto quiral magnético que los resultados del LHC. Según nuestro argumento,
la respuesta anómala tardaría un tiempo en aparecer y para colisiones muy energéti-
cas podría darse el caso de que el campo magnético fuese despreciable para el mo-
mento en el cual la respuesta se hiciese relevante.

Todos estos proyectos y resultados dejan espacio para trabajo futuro. Una de
las primeras preguntas que surgen del Capítulo 3 es cuál es el significado de la
curvatura extrínseca para la teoría de campos dual. Este objeto es proporcional a la
métrica en el borde y habitualmente introduce la temperatura en el horizonte, pero
su rol en el resto del bulk no está claro. Por lo tanto, cabe la duda sobre el papel
que juega a escalas de energías intermedias. Más aún, introduce un nuevo operador
en la identidad de Ward de difeomorfismos que solo se anula en el borde. ¿Qué
significa este operador? La respuesta no es evidente pero consideramos que se trata
de una pregunta interesante.

Otra duda que surge de la definición de corrientes de membrana del Capítulo 3
es si estas definiciones siguen siendo válidas en situaciones fuera del equilibrio. Se
necesita un vector de Killing temporal para obtener las cargas de Komar asociadas a
difeomorfismos que permitan encontrar las ecuaciones de conservación radial. Sin
embargo, un vector de Killing de esta forma restringe el resultado al equilibrio. Por
tanto, no está claro el significado fuera del equilibrio de los nuevos términos en las
definiciones de las corrientes. Un análisis detallado podría aportar además algu-
nas pistas sobre el papel de la curvatura extrínseca para la teoría de campos dual.
Por supuesto, el estudio debería ser sistemático y debería ser extendido a todos
los demás coeficientes. De esta manera, podríamos comprobar hasta qué punto el
comportamiento del Capítulo 6 es universal o, por el contrario, específico del efecto
quiral magnético.

En los Capítulos 4 y 6 hemos introducido sistemas en los que el momento no es
conservado. Mientras que este comportamiento no tiene influencia en el transporte
anómalo en el equilibrio, hemos mostrado que sí que tiene consecuencias en la re-
spuesta fuera del equilibrio. Sin embargo, cabe pensar qué efecto podría tener sobre
el transporte anómalo un mecanismo que rompiese la conservación de la energía
y si afectaría solo fuera del equilibrio o también en equilibrio. Por tanto, consi-
deramos que sería muy interesante buscar la manera de introducir la rotura de la
conservación de la energía en holografía.

En el Capítulo 6, hemos obtenido resultados que intentamos utilizar para ga-
nar intuición sobre los resultados experimentales del plasma de quarks y gluones
en colisiones de iones pesados. Sin embargo, es difícil saber cómo de bien pode-
mos modelizar este plasma con la holografía. Trabajamos en teorías gravitatorias
que en el mejor de los casos son duales a super Yang-Mills, y no a QCD. Por consi-
guiente, es importante continuar el trabajo para elucidar cómo de valiosos son estos
cálculos holográficos para la fenomenología de las colisiones de iones pesados. Más
aún, nuestro modelizado holográfico del plasma de quarks y gluones debería ser
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mejorado escogiendo valores realistas para los parámetros físicos e introduciendo
campos magnéticos con vida finita.

Se sabe que la anisotropía es la responsable de introducir comportamientos exóti-
cos en varios sistemas, como el semimetal de Weyl holográfico analizado en el Capí-
tulo 5. En particular, en este modelo la anisotropía rompe la famosa cota del ratio
de viscosidad frente a entropía [104] y la cota de la velocidad del efecto mariposa de
caos cuántico [15]. Por tanto, tiene sentido preguntarse también si la anisotropía po-
dría tener algún efecto sorprendente en el transporte anómalo fuera del equilibrio.

Concluimos esta tesis con la sugerencia de estos proyectos futuros. El campo
del transporte anómalo ha sido prolífico en los últimos años, pero todavía quedan
muchas cosas por hacer. No debemos olvidar, además, que gran parte del interés
de estos fenómenos de transporte se debe a su naturaleza híbrida: nos permiten es-
tudiar excitantes sistemas experimentales y, al mismo tiempo, explorar conceptos
físicos muy profundos. Por lo tanto, este ha sido uno de los principales leitmotiv
de esta tesis. Realizar un trabajo teórico que nos ayude a entender las sutilezas del
transporte anómalo y así contribuir a una mejor comprensión de los sistemas expe-
rimentales en los que aparece. Esperamos que la tesis haya sido capaz de cumplir
con este objetivo.
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