High-Energy Scattering in QCD: Putting Together All the Main IngREDIENTS

José Daniel Madrigal Martínez ${ }^{\dagger}$ IPhT CEA-Saclay universite ${ }^{\bullet}$ PARIS-SACLAY
 Seminar at IFT UAM/CSIC
 2 November 2015

\dagger Based on work in collaboration with E. Iancu, A.H. Mueller, G. Soyez and D.N. Triantafyllopoulos [PLB744 (2015) 293, PLB750 (2015) 643 and work in progress]

High-Energy Scattering in QCD

Looking Inside the Nucleons

- Only 5% of the mass of the universe is visible, but 99% of this visible matter is described by QCD. This vast bulk of visible matter therefore comprises nontrivial emergent phenomena to be understood in terms of the rich dynamics of the QCD vacuum and the interactions of quarks and gluons.
- Subtle interplay between soft and hard dynamics makes high energy evolution very interesting.

The Case of Deep-Inelastic Scattering

$$
Q^{2}=-q^{2} ; \quad x_{\mathrm{Bj}} \simeq \frac{Q^{2}}{\hat{s}}=\frac{Q^{2}}{2 p^{-} q^{+}}
$$

Two important limits:
$Q^{2}, \hat{s} \rightarrow \infty ; \quad x_{\mathrm{Bj}}$ fixed (Bjorken)
Q^{2} fixed, $\hat{s} \rightarrow \infty ; \quad x_{\mathrm{Bj}} \rightarrow 0$ (Regge)

Gluon Bremsstrahlung and DGLAP Evolution

$$
Q^{2} \frac{\partial f_{i}\left(x, Q^{2}\right)}{\partial Q^{2}}=\frac{\alpha_{s}}{2 \pi} \int_{x}^{1} \frac{\mathrm{~d} z}{z} P_{j i}\left(\frac{x}{z}\right) f_{j}\left(\frac{x}{z}, Q^{2}\right)
$$

[Gribov \& Lipatov '72; Dolkhitezer ' 77 ; Altarelli \& Parisi $\left.{ }^{\prime} 77\right]$ Effectively resums ladder diagrams enhanced by transverse logs

$$
\begin{gathered}
Q_{0}^{2} \ll \boldsymbol{k}_{1}^{2} \ll \boldsymbol{k}_{2}^{2} \ll \boldsymbol{k}_{3}^{2} \ll \cdots \\
k_{i}^{+} \simeq k_{j}^{+} \Longrightarrow k_{1}^{-} \ll k_{2}^{-} \ll k_{3}^{-} \ll \cdots
\end{gathered}
$$

Large Energy Logs Enter the Game

Mild power rise of total hadronic cross-section in semi-asymptotic regime
[Donnachie \& Landshoff '90]

$$
\sim \text { means as s }
$$

$$
\begin{array}{r}
K(t) \sim g^{2} \int \frac{d^{2} \mathbf{k}_{\perp}}{\left(\mathbf{k}_{\perp}^{2}+m^{2}\right)\left(\left(\mathbf{k}_{\perp}+\mathbf{q}_{\perp}\right)^{2}+m^{2}\right)} \\
A(s, t)=\sum_{n=1}^{\infty} A^{(n)} \sim \sum_{n=1}^{\infty} \frac{g^{2}}{s} \frac{(K(t) \ln s)^{n-1}}{(n-1)!} \simeq \frac{g^{-}}{s} \frac{g^{2}}{s} e^{K(t) \ln s} \simeq g^{2} s^{\alpha(t)}
\end{array}
$$

High-Energy Evolution: the Russian Approach

Corrections to Born Scattering

- Virtual (8_{a} Projected)

- Real (Lipatov's Vertex)

$$
\begin{aligned}
& \simeq \operatorname{Born} \times \omega\left(\boldsymbol{q}^{2}\right) \ln \frac{s}{s_{0}} \\
& \omega\left(\boldsymbol{q}^{2}\right)=-\frac{g^{2} N_{c}}{8 \pi^{2}} \ln \frac{\boldsymbol{q}^{2}}{\mu^{2}}
\end{aligned}
$$

Lipatov's Ansatz
[Lipatov'76]
$\int d \Pi \Gamma \Gamma^{*} \sim \ln \frac{s}{s_{0}}$
IR singularities cancel

High-Energy Factorization

$A_{2 \rightarrow 2+n}^{\mathrm{MRK}}=A_{2 \rightarrow 2+n}^{\mathrm{tree}} \prod_{i=1}^{n+1} s_{i}^{\omega\left(t_{i}\right)}, \quad A_{2 \rightarrow 2+n}^{\mathrm{tree}}=2 g s T_{A^{\prime} A}^{c_{1}}$
$\times \Gamma_{1} \frac{1}{t_{1}} g T_{c_{2} c_{1}}^{d_{1}} \Gamma_{2,1}^{1} \frac{1}{t_{2}} \cdots g T_{c_{n+1} c_{n}}^{d_{n}} \Gamma_{n+1, n}^{n} \frac{1}{t_{n+1}} g T_{B^{\prime} B}^{c_{n+1}} \Gamma_{2}$

The BFKL Equation

$$
\begin{aligned}
& k_{n}, x \text { g } \mathcal{F}\left(x, Q^{2}\right)=\mathcal{F}^{(0)}\left(x, Q^{2}\right)+\int \frac{\mathrm{d} z}{z} \int \mathrm{~d} \boldsymbol{k}^{2} \mathcal{K}_{\mathrm{BFKL}}\left(Q^{2}, \boldsymbol{k}^{2}\right) \mathcal{F}\left(\frac{x}{z}, \boldsymbol{k}^{2}\right) \\
& g\left(x, Q^{2}\right) \equiv \int \frac{\mathrm{d}^{2} k}{\pi k^{2}} \Theta\left(Q^{2}-k^{2}\right) \mathcal{F}\left(x, k^{2}\right) ; \\
& \mathcal{K}_{\text {BFKL }}=\bar{\alpha}_{s}\left[\frac{1}{(Q-k)^{2}}-\delta\left(Q^{2}-k^{2}\right) \int^{k} \frac{\mathrm{~d}^{2} q}{\pi q^{2}}\right] \\
& \text { [Fadin, Kuraev \& Lipatov '75,76,77; Lipatov' 76; Balitsky \& Lipatov '78] } \\
& q^{+}>k_{1}^{+} \gg k_{2}^{+} \gg k_{3}^{+} \gg \cdots \\
& Q_{0}^{2} \simeq \boldsymbol{k}_{1}^{2} \simeq \boldsymbol{k}_{2}^{2} \simeq \boldsymbol{k}_{3}^{2} \simeq \cdots
\end{aligned}
$$

- Multi-Regge-kinematics not satisfied in all regions of transverse integration
- Pay attention to evolution variable! $Y=\ln \left(\frac{k^{+}}{q^{+}}\right)=\ln \left(\frac{x_{0}}{x_{\mathrm{Bj}}} \frac{Q^{2}}{Q_{0}^{2}}\right)$

The Interplay Between DGLAP and BFKL Evolutions

Connections Between Collinear and Regge-Limit Expansions

Powers resummed up to $n^{\text {th }}$ perturbative order byLO DGLAP

- One can use one expansion to predict the leading log terms in the other expansion in a certain limit:
- BFKL \rightarrow DGLAP
[Jaroszewicz'82; Catani, Fiorani \& Marchesini'90]
- DGLAP \rightarrow BFKL
[Salam'98; Altarelli, Ball \& Forte'00; Kotikov \& Lipatov'03; Balitsky, Kazakov \& Sobko'13]ç
- This connection has also been extended to strong coupling:
[Kotikov, Lipatov, Rej, Staudacher \& Velizhanin'07; Hatta, Iancu \& Mueller'07; Staśto'07; Kotikov \& Lipatov'13]

Mind the Anomalous Dimension

It is convenient to diagonalize the evolution equation via Mellin transform $\left(\rho=\ln \frac{Q^{2}}{Q_{0}^{2}}\right)$

$$
\begin{gathered}
\mathcal{F}(\rho, Y)=\int \frac{\mathrm{d} \omega}{2 \pi \mathrm{i}} \mathrm{e}^{\omega Y} \int \frac{\mathrm{~d} \gamma}{2 \pi \mathrm{i}} \mathrm{e}^{-\rho \gamma} \hat{\mathcal{F}}(\gamma, \omega) \\
\hat{\mathcal{F}}(\gamma, \omega)=\frac{\hat{\mathcal{F}}^{0}(\gamma)}{\omega-\bar{\alpha}_{s} \chi(\gamma)}, \quad \chi(\gamma)=2 \psi(1)-\psi(\gamma)-\psi(1-\gamma)
\end{gathered}
$$

$$
\begin{gathered}
\gamma_{\omega}=\lambda+0 \lambda^{2}+0 \lambda^{3}+2 \zeta_{3} \lambda^{4}+\mathcal{O}\left(\lambda^{6}\right) \\
\lambda=\frac{\alpha_{s} N_{c}}{\pi \omega}
\end{gathered}
$$

[Jaroszewicz'82]

The Kinematic Map of QCD

Why All the Fuss About Small-x

Connection with

Regge Theory

Disentangling High-Energy Dynamics at LHC

LHC Forward Physics

Editors: N. Cartiglia, C. Royon
The LHC Forward Physies Working Group

${ }^{1}$ Comant Chim Nownul Chivrini y

Towards Saturation: Eikonal Scattering and the Dipole Picture

- At very high energies the scattering of a fast projectile is given by the eikonal approximation: it amounts to picking up a phase given by the Wilson line $\boldsymbol{U}_{\boldsymbol{x}}=\mathcal{P} \exp \left[\mathrm{i} g \int \mathrm{~d} \boldsymbol{x}^{+} \boldsymbol{A}_{a}^{-}\left(\boldsymbol{x}^{+}, \boldsymbol{x}\right) \boldsymbol{T}^{a}\right]$

- Mixed representation $\left\{x_{\perp}, k^{+}\right\}$well-suited for high-energy scattering (diagonalizes shockwave interaction)

Dipole Factorization
[Nikolaev \& Zakharov '91; Mueller '94]

The Balitsky-Kovchegov Equation

Balitsky-Kovchegov (BK) equation
$\partial_{Y} T_{x y}=-\frac{\bar{\alpha}_{s}}{2 \pi} \int_{z} \mathcal{M}_{x y z}\left[T_{x z}+T_{z y}-T_{x y}-T_{x z} T_{z y}\right] ;$
$\mathcal{M}_{x y z}=\frac{(\boldsymbol{x}-\boldsymbol{y})^{2}}{(\boldsymbol{x}-\boldsymbol{z})^{2}(\boldsymbol{z}-\boldsymbol{y})^{2}}$
[Balitsky '96; Kovchegov '98]

- Tames the Growth: Saturation
- Generates dynamical perturbative scale Q_{s}
- Geometric Scaling

Beyond BK

Balitsky-Kovchegov equation also emerges as mean-field-approximation of JIMWLK formalism

For a gluon crossing a shockwave target, the background field propagator is essentially a Wilson line

$$
U_{x}^{\dagger}=\mathcal{P} \exp \left[\mathrm{i} g \int \mathrm{~d} x^{+} A_{a}^{-}\left(x^{+}, x\right) T^{a}\right]
$$

and then $\left(\int \mathrm{d} p^{+} / p^{+} \rightarrow \ln (1 / x)\right)$

$$
\Delta H=\ln \frac{1}{r} H_{\text {JIMWLK }}
$$

$$
H_{\text {JIMWLK }}=\frac{1}{(2 \pi)^{3}} \int \mathcal{K}_{x y z}\left(U_{x}^{\dagger}-U_{z}^{\dagger}\right)^{a b}\left(U_{y}^{\dagger}-U_{z}^{\dagger}\right)^{a c} R_{x}^{b} R_{y}^{c}
$$

$$
\begin{aligned}
& R_{u}^{a} U_{x}^{R \dagger}=\mathrm{i} g \delta_{u x} U_{x}^{R \dagger} T_{R}^{a} \\
& \mathcal{K}_{x y z}=\mathcal{K}_{x z}^{i} \mathcal{K}_{y z}^{i} \\
& \int \frac{\mathrm{~d}^{2} \boldsymbol{k}}{(2 \pi)^{2}} \mathrm{e}^{\mathrm{i} \boldsymbol{k} \cdot(\boldsymbol{x}-\boldsymbol{z})} \underbrace{\stackrel{\leftrightarrow}{\beta_{2}}}_{=2 g t^{a} \frac{\epsilon_{\lambda} \cdot k}{k^{2}}}=\frac{\mathrm{i} g}{\pi} t^{a} \varepsilon_{\lambda}^{i} \underbrace{\frac{(\boldsymbol{x}-\boldsymbol{z})^{i}}{(\boldsymbol{x}-\boldsymbol{z})^{2}}}_{\equiv \mathcal{K}_{\boldsymbol{x z}}^{i}}
\end{aligned}
$$

[Jalilian-Marian, Kovner, McLerran \& Weigert '97; Iancu, Leonidov \& McLerran '01]
Actually, BK and JIMWLK predictions for dipole scattering amplitude turn out to be very similar [Kuokkanen, Rummukainen \& Weigert '08]

The Issue with NLO Corrections

- Tour-de-force computations of NLO corrections to BFKL [Fadin \& Lipatov '98; Camici \& Ciafaloni '98], BK [Balitsky \& Chirilli '08] and JIMWLK [Balitsky \& Chirilli ' ${ }^{13}$; Kovner, Lublinsky \& Mulian ' 14] equations. NLO accuracy indispensible for sensible phenomenology.
- Large size of the NLO corrections found in BFKL equation, that would deprive it of its predictive power and lead to instabilities [Ross '98].

The Issue with NLO Corrections

- Tour-de-force computations of NLO corrections to BFKL [Fadin \& Lipatov '98; Camici \& Ciafaloni '98], BK [Balitsky \& Chirilli '08] and JIMWLK [Balitsky \& Chirilli ' ${ }^{13}$; Kovner, Lublinsky \& Mulian ' ${ }^{14]}$ equations. NLO accuracy indispensible for sensible phenomenology.
- Large size of the NLO corrections found in BFKL equation, that would deprive it of its predictive power and lead to instabilities [Ross '98].
- No reason to expect lack-of-convergence problems to be attenuated by non-linear terms in BK-JIMWLK equation [Triantafyllopoulos '03; Avsar,

The Issue with NLO Corrections

- Tour-de-force computations of NLO corrections to BFKL [Fadin \& Lipatov '98; Camici \& Ciafaloni '98], BK [Balitsky \& Chirilli '08] and JIMWLK [Balitsky \& Chirilli ' ${ }^{13}$; Kovner, Lublinsky \& Mulian ${ }^{14]}$ equations. NLO accuracy indispensible for sensible phenomenology.
- Large size of the NLO corrections found in BFKL equation, that would deprive it of its predictive power and lead to instabilities [Ross '98].
- No reason to expect lack-of-convergence problems to be attenuated by non-linear terms in BK-JIMWLK equation [Triantafyllopoulos '03; Avsar, Staśto, Triantafyllopoulos \& Zaslavsky '11].
- Origin of large NLO corrections identified to come from large transverse logarithms. Several procedures devised for all-order resummation of large logs and stabilization of the kernel [Salam '98. Ciafaloni, Colferai, Salam \& Stasto ²3; Sabio Vera '05].

The Issue with NLO Corrections

- Tour-de-force computations of NLO corrections to BFKL [Fadin \& Lipatov '98; Camici \& Ciafaloni '98], BK [Balitsky \& Chirilli ' ${ }^{\circ} 8$] and JIMWLK [Balitsky \& Chirilli ' ${ }^{13}$; Kovner, Lublinsky \& Mulian ${ }^{14]}$ equations. NLO accuracy indispensible for sensible phenomenology.
- Large size of the NLO corrections found in BFKL equation, that would deprive it of its predictive power and lead to instabilities [Ross '98].
- No reason to expect lack-of-convergence problems to be attenuated by non-linear terms in BK-JIMWLK equation [Triantafyllopoulos '03; Avsar, Staśto, Triantafyllopoulos \& Zaslavsky '11].
- Origin of large NLO corrections identified to come from large transverse logarithms. Several procedures devised for all-order resummation of large logs and stabilization of the kernel [Salam '98; Ciafaloni, Colferai, Salam \& Staśto '03; Sabio Vera '05].

Double Transverse Logs in BK

(a) $\gamma=0.6$

(b) $\gamma=0.8$

Large corrections and instabilities in NLO BK traced back to double transverse logs [Lappi \& Mantysäari ' 15]:

$$
\begin{aligned}
\frac{d}{d \eta} \operatorname{Tr}\left\{\hat{U}_{x} \hat{O}_{y}^{\dagger}\right\}= & \frac{\alpha_{s}}{2 \pi^{2}} \int d^{2} z \frac{(x-y)^{2}}{X^{2} Y^{2}}\left\{1+\frac{\alpha_{s}}{4 \pi}\left[b \ln (x-y)^{2} \mu^{2}-b \frac{X^{2}-Y^{2}}{(x-y)^{2}} \ln \frac{X^{2}}{Y^{2}}+\left(\frac{67}{9}-\frac{\pi^{2}}{3}\right) N_{c}-\frac{10}{9} n_{f}\right.\right. \\
& \left.-2 N_{c} \ln \frac{X^{2}}{(x-y)^{2}} \ln \frac{Y^{2}}{(x-y)^{2}}\right]\left[\operatorname{lr}\left\{\operatorname{Tr}\left\{\hat{U}_{x} \hat{U}_{z}^{\dagger}\right\} \operatorname{Tr}\left\{\hat{U}_{z} \hat{U}_{y}^{\dagger}\right\}-N_{c} \operatorname{Tr}\left\{\hat{U}_{x} \hat{U}_{y}^{\dagger}\right\}\right]\right. \\
& +\frac{\alpha_{s}^{2}}{16 \pi^{4}} \int d^{2} z d^{2} z^{\prime}\left[\left(-\frac{4}{\left(z-z^{\prime}\right)^{4}}+\left\{2 \frac{X^{2} Y^{\prime 2}+X^{\prime 2} Y^{2}-4(x-y)^{2}\left(z-z^{\prime}\right)^{2}}{\left(z-z^{\prime}\right)^{4}\left[X^{2} Y^{\prime 2}-X^{2} Y^{2}\right]}+\frac{(x-y)^{4}}{X^{2} Y^{\prime 2}-X^{\prime 2} Y^{2}}\right.\right.\right. \\
& \left.\left.\times\left[\frac{1}{X^{2} Y^{\prime 2}}+\frac{1}{Y^{2} X^{\prime 2}}\right]+\frac{(x-y)^{2}}{\left(z-z^{\prime}\right)^{2}}\left[\frac{1}{X^{2} Y^{\prime 2}}-\frac{1}{X^{\prime 2} Y^{2}}\right]\right] \ln \frac{X^{2} Y^{\prime 2}}{X^{2} Y^{2}}\right)\left[\operatorname{Tr}\left\{\hat{U}_{x} \hat{U}_{z}^{\dagger}\right\} \operatorname{Tr}\left\{\hat{U}_{z} \hat{U}_{z^{\prime}}^{\dagger}\right\} \operatorname{Tr}\left\{\hat{U}_{z^{\prime}} \hat{U}_{y}^{\dagger}\right\}\right. \\
& \left.-\operatorname{Tr}\left\{\hat{U}_{x} \hat{U}_{z}^{\dagger} \hat{U}_{z^{\prime}} U_{y}^{\dagger} \hat{U}_{z} \hat{U}_{\left.z^{\prime}\right\}}^{\dagger}\right\}-\left(z^{\prime} \rightarrow z\right)\right]+\left\{\frac{(x-y)^{2}}{\left(z-z^{\prime}\right)^{2}}\left[\frac{1}{X^{2} Y^{\prime 2}}+\frac{1}{Y^{2} X^{\prime 2}}\right]-\frac{(x-y)^{4}}{X^{2} Y^{2} X^{\prime 2} Y^{2}}\right] \ln \frac{X^{2} Y^{\prime 2}}{X^{2} Y^{2}} \\
& \times \operatorname{Tr}\left\{\hat{U}_{x} \hat{U}_{z}^{\dagger}\right\} \operatorname{Tr}\left\{\hat{U}_{z} \hat{U}_{z^{\prime}}^{\dagger}\right\} \operatorname{Tr}\left\{\hat{U}_{z^{2}}^{\dagger} \hat{U}_{y}^{\dagger}\right\}+4 n_{f}\left\{\frac{4}{\left(z-z^{\prime}\right)^{4}}-2 \frac{X^{\prime 2} Y^{2}+Y^{\prime 2} X^{2}-(x-y)^{2}\left(z-z^{\prime}\right)^{2}}{\left(z-z^{\prime}\right)^{4}\left(X^{2} Y^{\prime 2}-X^{2} Y^{2}\right)} \ln \frac{X^{2} Y^{\prime 2}}{X^{2} Y^{2}}\right\}
\end{aligned}
$$

The Goals of Our Work

(1) Identify the diagrammatic origin of double logarithmic corrections and its relation to the 'kinematic constraint'
[Ciafaloni '88; Andersson, Gustafson \& Samuelsson '96; Kwieciński, Martin \& Sutton '96; Beuf '14].
(2) Implement directly the collinear resummation in coordinate space, as required by non-linear structure of BK equation.

The Goals of Our Work

(1) Identify the diagrammatic origin of double logarithmic corrections and its relation to the 'kinematic constraint'
[Ciafaloni '88; Andersson, Gustafson \& Samuelsson '96; Kwieciński, Martin \& Sutton '96; Beuf '14].
(2) Implement directly the collinear resummation in coordinate space, as required by non-linear structure of BK equation.
(3) Express the resummed evolution equation in terms of a local (energy-independent) kernel, as compared to non-local in rapidity proposals [Motyka \& Stasto '09; Beuf '14]

The Goals of Our Work

(1) Identify the diagrammatic origin of double logarithmic corrections and its relation to the 'kinematic constraint'
[Ciafaloni '88; Andersson, Gustafson \& Samuelsson '96; Kwieciński, Martin \& Sutton '96; Beuf '14].
(2) Implement directly the collinear resummation in coordinate space, as required by non-linear structure of BK equation.
(3) Express the resummed evolution equation in terms of a local (energy-independent) kernel, as compared to non-local in rapidity proposals [Motyka \& Staśso '09; Beuf '14]
(4) Show the relevance of our collinear resummation for BK equation studying its numerical solution and precision fits to DIS data.

The Goals of Our Work

(1) Identify the diagrammatic origin of double logarithmic corrections and its relation to the 'kinematic constraint'
[Ciafaloni '88; Andersson, Gustafson \& Samuelsson '96; Kwieciński, Martin \& Sutton '96; Beuf '14].
(2) Implement directly the collinear resummation in coordinate space, as required by non-linear structure of BK equation.
(3) Express the resummed evolution equation in terms of a local (energy-independent) kernel, as compared to non-local in rapidity proposals [Motyka \& Staśso '09; Beuf '14]
4) Show the relevance of our collinear resummation for BK equation studying its numerical solution and precision fits to DIS data.

The Origin of Double Logs

(Naive) DLA Limit of the BFKL Equation

BFKL Equation $(T=1-S, T \ll 1)$

$$
\partial_{Y} T_{\boldsymbol{x} \boldsymbol{y}}(Y)=\frac{\bar{\alpha}_{s}}{2 \pi} \int \mathrm{~d}^{2} \boldsymbol{z} \mathcal{M}_{\boldsymbol{x} \boldsymbol{y} \boldsymbol{z}}\left[T_{\boldsymbol{x} \boldsymbol{z}}(Y)+T_{\boldsymbol{z} \boldsymbol{y}}(Y)-T_{\boldsymbol{x} \boldsymbol{y}}(Y)\right]
$$

\boldsymbol{z}-integration becomes logarithmic when daughter dipoles are much larger than the original one $(|\boldsymbol{x}-\boldsymbol{z}| \simeq|\boldsymbol{z}-\boldsymbol{y}| \gg r \equiv|\boldsymbol{x}-\boldsymbol{y}|)$
$\mathcal{M}_{\boldsymbol{x} \boldsymbol{y} \boldsymbol{z}} \simeq r^{2} /(\boldsymbol{x}-\boldsymbol{z})^{4}$ and $T_{\boldsymbol{x} \boldsymbol{z}} \simeq T_{\boldsymbol{z} \boldsymbol{y}} \propto \boldsymbol{z}^{2} ;$ negligible virtual term.
Writing $T_{\boldsymbol{x} \boldsymbol{y}}(Y) \equiv r^{2} Q_{0}^{2} \mathcal{A}_{\boldsymbol{x} \boldsymbol{y}} \rightarrow r^{2} Q_{0}^{2} \mathcal{A}\left(Y, r^{2}\right)$

$$
\mathcal{A}\left(Y, r^{2}\right)=\mathcal{A}\left(0, r^{2}\right)+\bar{\alpha}_{s} \int_{0}^{Y} \mathrm{~d} Y_{1} \int_{r^{2}}^{1 / Q_{0}^{2}} \frac{\mathrm{~d} z^{2}}{z^{2}} \mathcal{A}\left(Y_{1}, z^{2}\right)
$$

(NAIVE) DLA EQUATIon (resums powers of $\bar{\alpha}_{s} Y \rho, \rho \equiv \ln \left[1 / r^{2} Q_{0}^{2}\right]$ to all orders)

$$
\mathcal{A}(Y, \rho)=I_{0}\left(2 \sqrt{\bar{\alpha}_{s} Y \rho}\right)
$$

Computation of Time-Ordered Diagrams

- Lifetime of gluon fluctuation $\tau_{p} \equiv 2 p^{+} / \boldsymbol{p}^{2}=1 / p^{-}$
- Eikonal approximation $p^{+} \gg k^{+}$

$$
\begin{aligned}
- & \frac{g^{4} N_{c}^{2}}{(2 \pi)^{2}} \int_{\boldsymbol{u} \boldsymbol{z}} S_{\boldsymbol{x} \boldsymbol{u}} S_{\boldsymbol{u} \boldsymbol{z}} S_{\boldsymbol{z} \boldsymbol{y}} \\
& \times \int_{\boldsymbol{p} \tilde{\boldsymbol{p}} \boldsymbol{k} \tilde{\boldsymbol{k}}} \mathrm{e}^{\mathrm{i} \boldsymbol{p} \cdot(\boldsymbol{u}-\boldsymbol{x})} \mathrm{e}^{\mathrm{i} \tilde{\boldsymbol{p}} \cdot(\boldsymbol{x}-\boldsymbol{u})} \mathrm{e}^{\mathrm{i} \boldsymbol{k} \cdot(\boldsymbol{z}-\boldsymbol{y})} \mathrm{e}^{\mathrm{i} \tilde{\boldsymbol{k}} \cdot(\boldsymbol{u}-\boldsymbol{z})} \frac{\boldsymbol{p} \cdot \tilde{\boldsymbol{p}}}{\boldsymbol{p}^{2} \tilde{\boldsymbol{p}}^{2}} \frac{\boldsymbol{k} \cdot \tilde{\boldsymbol{k}}}{\boldsymbol{k}^{2} \tilde{\boldsymbol{k}}^{2}} \\
& \times \int_{q_{0}^{+}}^{q^{+}} \frac{\mathrm{d} k^{+}}{k^{+}} \int_{k^{+}}^{q^{+}} \frac{\mathrm{d} p^{+}}{p^{+}} \frac{p^{+}}{p^{+}+k^{+} \frac{\boldsymbol{p}^{2}}{\boldsymbol{k}^{2}}} \frac{p^{+}}{p^{+}+k^{+} \frac{(\tilde{\boldsymbol{p}}-\tilde{\boldsymbol{\tilde { k }}}}{\tilde{\boldsymbol{k}}^{2}}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{p^{+}}{p^{+}+k^{+} \frac{\boldsymbol{p}^{2}}{k^{2}}}= \\
& \simeq \begin{cases}\tau_{p}+\tau_{k} \\
\Theta\left(\tau_{p}-\tau_{k}\right) & \text { in BFKL DLA }\end{cases}
\end{aligned}
$$

Real-Real Contribution

$$
\begin{aligned}
& \left(\frac{\bar{\alpha}_{s}}{2 \pi}\right)^{2} \int_{q_{0}^{+}}^{q^{+}} \frac{\mathrm{d} k^{+}}{k^{+}} \int_{k^{+}}^{q^{+}} \frac{\mathrm{d} p^{+}}{p^{+}} \int_{\boldsymbol{u} \boldsymbol{z}} \mathcal{M}_{\boldsymbol{x} \boldsymbol{y} \boldsymbol{u}}\left[\mathcal{M}_{\boldsymbol{u} \boldsymbol{y} \boldsymbol{z}} S_{\boldsymbol{x} \boldsymbol{u}} S_{\boldsymbol{u} \boldsymbol{z}} S_{\boldsymbol{z} \boldsymbol{y}}+\mathcal{M}_{\boldsymbol{x} \boldsymbol{u} \boldsymbol{z}} S_{\boldsymbol{x} \boldsymbol{z}} S_{\boldsymbol{z} \boldsymbol{u}} S_{\boldsymbol{u} \boldsymbol{y}}\right] \\
& \times \Theta\left(p^{+} \bar{u}^{2}-k^{+} \bar{z}^{2}\right), \quad \bar{u}=\max (|\boldsymbol{u}-\boldsymbol{x}|,|\boldsymbol{u}-\boldsymbol{y}|) ; \bar{z}=\max (|\boldsymbol{z}-\boldsymbol{x}|,|\boldsymbol{z}-\boldsymbol{y}|)
\end{aligned}
$$

Virtual-Real Contribution

$$
-\left(\frac{\bar{\alpha}_{s}}{2 \pi}\right)^{2} \int_{q_{0}^{+}}^{q^{+}} \frac{\mathrm{d} k^{+}}{k^{+}} \int_{k^{+}}^{q^{+}} \frac{\mathrm{d} p^{+}}{p^{+}} \int_{\boldsymbol{u} \boldsymbol{z}} \mathcal{M}_{\boldsymbol{x} \boldsymbol{y} \boldsymbol{u}} \mathcal{M}_{\boldsymbol{x} \boldsymbol{y} \boldsymbol{z}} S_{\boldsymbol{x} \boldsymbol{z}} S_{\boldsymbol{z} \boldsymbol{y}} \Theta\left(p^{+} \bar{u}^{2}-k^{+} \bar{z}^{2}\right)
$$

To DLA accuracy $\mathcal{M}_{u y z} \mathcal{M}_{x y u} \simeq \frac{r^{2}}{\bar{u}^{2} \bar{z}^{4}}$ and $1-S_{x u} S_{u z} S_{z y} \simeq T_{u z}+T_{z y} \simeq 2 T\left(\bar{z}^{2}\right)$ and we generate logarithmic phase space

$$
\begin{aligned}
\int_{r^{2}}^{\bar{z}^{2}} \frac{\mathrm{~d} \bar{u}^{2}}{\bar{u}^{2}} \int_{k^{+} \frac{\bar{z}^{2}}{\bar{u}^{2}}}^{q^{+}} \frac{\mathrm{d} p^{+}}{p^{+}} & =\int_{r^{2}}^{\bar{z}^{2}} \frac{\mathrm{~d} \bar{u}^{2}}{\bar{u}^{2}}\left(\ln \frac{q^{+}}{k^{+}}-\ln \frac{\bar{z}^{2}}{\bar{u}^{2}}\right)=Y \rho-\frac{\rho^{2}}{2} \\
Y & =\ln \frac{q^{+}}{k^{+}} ; \quad \rho=\ln \frac{\bar{z}^{2}}{r^{2}}
\end{aligned}
$$

Cancellation of Anti-Time Ordered Diagrams in DLA

Anti-time ordered graphs, involving factors $\frac{p^{-}}{p^{-+}+k^{-}} \simeq \Theta\left(\tau_{k}-\tau_{p}\right)$ are also potentially enhanced by double transverse logs

$$
\int_{r^{2}}^{\bar{z}^{2}} \frac{\mathrm{~d} \bar{u}^{2}}{\bar{u}^{2}} \int_{k^{+} \frac{\bar{z}^{2}}{\bar{u}^{2}}}^{q^{+}} \frac{\mathrm{d} p^{+}}{p^{+}}=\int_{r^{2}}^{\bar{z}^{2}} \frac{\mathrm{~d} \bar{u}^{2}}{\bar{u}^{2}} \ln \frac{\bar{z}^{2}}{\bar{u}^{2}}=\frac{\rho^{2}}{2}
$$

However, double logs cancel in the sum of all ATO diagrams. This also explains the peculiar way double logs arise in [Balitsky \& Chirili ' ${ }^{\circ} 8$].

DLA Evolution for the Scattering Amplitude and the Lifetime Ordering Constraint

We conclude that perturbative corrections enhanced by double logarithms $Y \rho$ or ρ^{2} can be resummed to all orders by solving a modified DLA equation involving manifest time-ordering

$$
\mathcal{A}\left(q^{+}, r^{2}\right)=\mathcal{A}\left(0, r^{2}\right)+\bar{\alpha}_{s} \int_{r^{2}}^{1 / Q_{0}^{2}} \frac{\mathrm{~d} z^{2}}{z^{2}} \int_{q_{0}^{+}}^{q^{+} \frac{r^{2}}{z^{2}}} \frac{\mathrm{~d} k^{+}}{k^{+}} \mathcal{A}\left(k^{+}, z^{2}\right)
$$

As it stands, this equation is non-local in rapidity

$$
\partial_{Y} \mathcal{A}(Y, \rho)=\bar{\alpha}_{s} \int_{0}^{\rho} \mathrm{d} \rho_{1} \mathcal{A}\left(Y-\rho+\rho_{1}, \rho\right)
$$

The Resummed BK Equation

Towards a Resummed Rapidity-Independent Kernel

- By direct iteration of the modified DLA equation, we get

$$
\begin{aligned}
\mathcal{A}(Y, \rho) & =\int_{0}^{\rho} \mathrm{d} \rho_{1} f\left(Y, \rho-\rho_{1}\right) \mathcal{A}\left(0, \rho_{1}\right) \\
f(Y, \rho) & =\delta(\rho)+\Theta(Y-\rho) \\
& =\underbrace{\sum_{k=1}^{\infty} \frac{\bar{\alpha}_{s}^{k}(Y-\rho)^{k} \rho^{k-1}}{k!(k-1)!}}_{\sqrt{\frac{\bar{\alpha}_{s}(Y-\rho)}{\rho}} I_{1}\left(2 \sqrt{\bar{\alpha}_{s}(Y-\rho) \rho}\right)}
\end{aligned}
$$

- This can be written in integral representation:
$f(Y, \rho)=\Theta(Y-\rho) \tilde{f}(Y, \rho) ;$

$$
\tilde{f}(Y, \rho)=\int_{\frac{1}{2}-i \infty}^{\frac{1}{2}+i \infty} \frac{\mathrm{~d} \xi}{2 \pi i} \exp \left[\frac{\bar{\alpha}_{s}}{1-\xi}(Y-\rho)+(1-\xi) \rho\right]
$$

The Local Kernel in DLA Approximation

A change of variables brings this as usual Mellin representation

$$
\begin{gathered}
\tilde{f}(Y, \rho)=\int_{\mathcal{C}} \frac{\mathrm{d} \gamma}{2 \pi i} J(\gamma) \exp \left[\bar{\alpha}_{s} \chi_{\mathrm{DLA}}(\gamma) Y+(1-\gamma) \rho\right] \\
\bar{\alpha}_{s} \chi_{\mathrm{DLA}}(\gamma)=\frac{1}{2}\left[-(1-\gamma)+\sqrt{(1-\gamma)^{2}+4 \bar{\alpha}_{s}}\right]=\frac{\bar{\alpha}_{s}}{(1-\gamma)}-\frac{\bar{\alpha}_{s}^{2}}{(1-\gamma)^{3}}+\cdots \\
J(\gamma)=1-\bar{\alpha}_{s} \chi_{\mathrm{DLA}}^{\prime}(\gamma)=1-\frac{\bar{\alpha}_{s}}{(1-\gamma)^{2}}+\cdots
\end{gathered}
$$

Mellin representation and exponentiation in Y ensures the existence of an evolution equation for f (and thus for \mathcal{A}) with an energy- independent kernel $\mathcal{K}_{\text {DLA }}(\rho)$ defined as inverse Mellin of $\chi_{\mathrm{DLA}}(\gamma)$

$$
\begin{gathered}
\tilde{\mathcal{A}}(Y, \rho)=\tilde{\mathcal{A}}(0, \rho)+\bar{\alpha}_{s} \int_{0}^{Y} \mathrm{~d} Y_{1} \int_{0}^{\rho} \mathrm{d} \rho_{1} \mathcal{K}_{\mathrm{DLA}}\left(\rho-\rho_{1}\right) \tilde{\mathcal{A}}\left(Y_{1}, \rho_{1}\right), \quad Y>\rho \\
\\
\mathcal{K}_{\mathrm{DLA}}(\rho)=\frac{J_{1}\left(2 \sqrt{\bar{\alpha}_{s} \rho^{2}}\right)}{\sqrt{\bar{\alpha}_{s} \rho^{2}}}=1-\frac{\bar{\alpha}_{s} \rho^{2}}{2}+\frac{\left(\bar{\alpha}_{s} \rho^{2}\right)^{2}}{12}+\cdots
\end{gathered}
$$

Coincides with momentum-space kernel proposed by [Sabio Vera '05]; compare with non-local approaches in [Salam '98; Motyka \& Staśto '09; Beuf '14].

The Change in the Initial Condition: Impact Factor Resummation

Jacobian of Mellin transform induces also resummation in the initial condition (\sim impact factor):

$$
\begin{gathered}
\tilde{\mathcal{A}}(0, \rho)=\int_{0}^{\rho} \mathrm{d} \rho_{1} \tilde{f}\left(0, \rho-\rho_{1}\right) \mathcal{A}\left(0, \rho_{1}\right) \\
\tilde{f}(0, \rho)=\delta(\rho)-\sqrt{\bar{\alpha}_{s}} J_{1}\left(2 \sqrt{\bar{\alpha}_{s} \rho^{2}}\right)
\end{gathered}
$$

$[\tilde{\mathcal{A}}(Y, \rho)$ coincides with physical amplitude $\mathcal{A}(Y, \rho)$ for $Y>\rho]$

$$
\tilde{\mathcal{A}}(0, \rho)= \begin{cases}\frac{1}{2}\left[1+\mathrm{J}_{0}(\bar{\rho})\right] & \text { for } \mathcal{A}(0, \rho)=1 \\ \frac{\rho}{2}\left[1+\mathrm{J}_{0}(\bar{\rho})+\frac{\pi}{2} \mathbf{H}_{0}(\bar{\rho}) \mathrm{J}_{1}(\bar{\rho})-\frac{\pi}{2} \mathbf{H}_{1}(\bar{\rho}) \mathrm{J}_{0}(\bar{\rho})\right] & \text { for } \quad \mathcal{A}(0, \rho)=\rho\end{cases}
$$

Resummed BFKL/BK Evolution

$$
\begin{aligned}
\frac{\partial \tilde{T}_{x y}}{\partial Y} & =\int \frac{\mathrm{d}^{2} \boldsymbol{z}}{2 \pi} \bar{\alpha}_{s}\left(r_{\min }\right) \frac{(x-y)^{2}}{(\boldsymbol{x}-\boldsymbol{z})^{2}\left(\boldsymbol{z - y) ^ { 2 }}\right.}\left(\tilde{T}_{x z}+\tilde{T}_{z y}-\tilde{T}_{x y}-\tilde{T}_{x z} \tilde{T}_{z y}\right) \\
& \times\left[\frac{(x-y)^{2}}{\min \left\{(\boldsymbol{x}-\boldsymbol{z})^{2},(\boldsymbol{y}-\boldsymbol{z})^{2}\right\}}\right]^{ \pm \bar{\alpha}_{s} A_{1}} \mathcal{K}_{\text {DLA }}\left(\bar{\rho}_{x y z}\right)
\end{aligned}
$$

[Iancu, JDM, Mueller, Soyez \& Triantafyllopoulos '15]

- Written in terms of a rapidity-independent kernel
$\mathcal{K}_{\text {DLA }}(\bar{\rho}(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})) \equiv \frac{J_{1}\left(2 \sqrt{\bar{\alpha}_{s} \overline{\bar{x}}_{x y z}^{2}}\right)}{\sqrt{\bar{\alpha}_{s} \bar{\rho}_{x y z}^{x}}}$, as compared to previous strategies [Motyka \& Stasto ' 09 ; Beuf ${ }^{\prime} 14$] (see also [Sabio Vera ${ }^{\circ} 05$]).
- Nontrivial resummation involved for the initial condition as well.

Numerical Solution of Resummed BK

Initial condition of MV type $\mathcal{A}(0, \rho)=1$
Reduction of phase-space coming from time-ordering and giving rise to collinear double logs leads to a considerable reduction in the speed of the evolution

For $\rho>Y$, expected physical behavior $T \propto \mathrm{e}^{-\rho}$

Impact on Phenomenology: Rapidity Dependence of the Saturation Momentum

The growth of the saturation scale with Y is considerably reduced by the resummation: for sufficiently large Y, the saturation exponent $\lambda_{s} \equiv \frac{\mathrm{~d} \rho_{s}}{\mathrm{~d} Y}$ smaller by factor 2 compared to LO BFKL (asymptotically, $\left.\lambda_{s} \sim 0,55\right)$.

Including Single Transverse Logarithms

Taking collinear limit $1 / Q_{s} \gg|\boldsymbol{z}-\boldsymbol{x}| \simeq|\boldsymbol{z}-\boldsymbol{y}| \simeq|\boldsymbol{z}-\boldsymbol{u}| \gg|\boldsymbol{u}-\boldsymbol{x}|$ $\simeq|\boldsymbol{u}-\boldsymbol{y}| \gg r \equiv|\boldsymbol{x}-\boldsymbol{y}|$ of NLO BK evolution, one gets

$$
\frac{d T(r)}{d Y}=\bar{\alpha}_{s} \int_{r^{2}}^{1 / Q_{s}^{2}} \mathrm{~d} z^{2} \frac{r^{2}}{z^{4}}\left(1-\frac{1}{2} \bar{\alpha}_{s} \ln ^{2} \frac{z^{2}}{r^{2}}-\frac{11}{12} \bar{\alpha}_{s} \ln \frac{z^{2}}{r^{2}}\right) T(z)
$$

Coefficient $A_{1}=11 / 12$ of the single \log related to DGLAP anomalous dimension: $\gamma(\omega)=\frac{1}{\omega}-A_{1}+\mathcal{O}\left(\omega, \frac{N_{f}}{N_{c}^{3}}\right)$
Can be taken into account to all orders by shifting the anomalous dimension of the resummed kernel.

The Running Coupling Prescription

Running coupling log is resummed by making $\bar{\alpha}_{s} \rightarrow \bar{\alpha}_{s}\left(r^{2}\right)$

Different prescriptions:

- Smallest Dipole:
$\bar{\alpha}_{\text {min }}=\bar{\alpha}_{s}\left(r_{\text {min }}\right), \quad r_{\text {min }}=\min \{|\boldsymbol{x}-\boldsymbol{y}|,|\boldsymbol{x}-\boldsymbol{z}|,|\boldsymbol{y}-\boldsymbol{z}|\}$
- FAC: $\bar{\alpha}_{\mathrm{fac}}=\left[\frac{1}{\bar{\alpha}_{s}(|\boldsymbol{x}-\boldsymbol{y}|)}+\frac{(\boldsymbol{x}-\boldsymbol{z})^{2}-(\boldsymbol{y}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{y})^{2}} \frac{\bar{\alpha}_{s}(|\boldsymbol{x}-\boldsymbol{z}|)-\bar{\alpha}_{s}(|\boldsymbol{y}-\boldsymbol{z}|)}{\bar{\alpha}_{s}(|\boldsymbol{x}-\boldsymbol{z}|) \bar{\alpha}_{s}(|\boldsymbol{y}-\boldsymbol{z}|)}\right]$
- Balitsky: $\bar{\alpha}_{\text {Bal }}=$
$\bar{\alpha}_{s}(|\boldsymbol{x}-\boldsymbol{y}|)\left[1+\frac{\bar{\alpha}_{s}(|\boldsymbol{x}-\boldsymbol{z}|)-\bar{\alpha}_{s}(|\boldsymbol{y}-\boldsymbol{z}|)}{\bar{\alpha}_{s}(|\boldsymbol{x}-\boldsymbol{z}|) \bar{\alpha}_{s}(|\boldsymbol{y}-\boldsymbol{z}|)} \frac{\bar{\alpha}_{s}(|\boldsymbol{x}-\boldsymbol{z}|)(\boldsymbol{y}-\boldsymbol{z})^{2}-\bar{\alpha}_{s}(|\boldsymbol{y}-\boldsymbol{z}|)(\boldsymbol{x}-\boldsymbol{z})^{2}}{(\boldsymbol{x}-\boldsymbol{z})^{2}}\right]$

Fits to HERA Data

Market of Initial Conditions

We get successful fits with two kinds of initial conditions:
is Golec-Biernat-Wüsthoff (GBW)

$$
T\left(r, Y_{0}\right)=\left\{1-\exp \left[-\left(\frac{r^{2} Q_{0}^{2}}{4}\right)^{p}\right]\right\}^{1 / p}
$$

is Running Coupling McLerran-Venugopalan (rcMV)

$$
T\left(r, Y_{0}\right)=\left\{1-\exp \left[-\left(\frac{r^{2} Q_{0}^{2}}{4} \bar{\alpha}_{s}(r)\left[1+\ln \left(\frac{\bar{\alpha}_{s, \text { sat }}}{\bar{\alpha}_{s}(r)}\right)\right]\right)^{p}\right]\right\}^{1 / p}
$$

The running of the coupling is given by $\alpha_{s}(r)=\frac{1}{b_{N_{f}} \ln \left[4 C_{\alpha}^{2} /\left(r^{2} \Lambda_{N_{f}}^{2}\right)\right]}$

From Dipole Amplitude to Cross Section: Parameters in the Fit

$$
\begin{aligned}
& \sigma_{L, T}^{\gamma^{*} p}\left(Q^{2}, x\right)=2 \pi R_{p}^{2} \sum_{f} \int \mathrm{~d}^{2} \boldsymbol{r} \int_{0}^{1} \mathrm{~d} z\left|\Psi_{L, T}^{(f)}\left(\boldsymbol{r}, z ; Q^{2}\right)\right|^{2} T\left(\boldsymbol{r}, \ln 1 / \tilde{x}_{f}\right) \\
& \sigma_{\mathrm{red}}=\frac{Q^{2}}{4 \pi^{2} \alpha_{\mathrm{em}}}\left[\sigma_{T}^{\gamma^{*} p}+\frac{2(1-y)}{1+(1-y)^{2}} \sigma_{L}^{\gamma^{*} p}\right] \\
& \tilde{x}_{f}=x\left(1+4 m_{f}^{2} / Q^{2}\right) \quad\left(\text { we take } \tilde{x}_{c}<0,01\right) ; \quad F_{L}=\frac{Q^{2}}{4 \pi^{2} \alpha_{\mathrm{em}}} \sigma_{L}^{\gamma^{*} p}
\end{aligned}
$$

- 3 light quarks and charm all treated on the same footing (good fits for $m_{u, d, s}=50-140 \mathrm{MeV}$ and $m_{c}=1,3-1,4 \mathrm{GeV}$)

Just 4 free parameters:

- R_{p} : proton radius
- Q_{0} : target's inverse transverse size
$\square p$: steepness of the amplitude towards saturation
- C_{α} : fudge factor in the running coupling

How the Fits Look Like

How the Fits Look Like

How the Fits Look Like

init	RC	sing.	χ^{2} per data point			parameters			
cdt.	schm	logs	$\sigma_{\text {red }}$	$\sigma_{\text {red }}^{c c}$	F_{L}	$R_{p}[\mathrm{fm}]$	$Q_{0}[\mathrm{GeV}]$	C_{α}	p
GBW	small	yes	1.135	0.552	0.596	0.699	0.428	2.358	2.802
GBW	fac	yes	1.262	0.626	0.602	0.671	0.460	0.479	1.148
rcMV	small	yes	1.126	0.565	0.592	0.707	0.633	2.586	0.807
rcMV	fac	yes	1.228	0.647	0.594	0.677	0.621	0.504	0.541
GBW	small	no	1.121	0.597	0.597	0.716	0.414	6.428	4.000
GBW	fac	no	1.164	0.609	0.594	0.697	0.429	1.195	4.000
rcMV	small	no	1.093	0.539	0.594	0.718	0.647	7.012	1.061
rcMV	fac	no	1.132	0.550	0.591	0.699	0.604	1.295	0.820

init	RC	sing.	$\chi^{2} /$ npts for $Q_{\text {max }}^{2}$			
cdt.	schm	logs	50	100	200	400
GBW	small	yes	1.135	1.172	1.355	1.537
GBW	fac	yes	1.262	1.360	1.654	1.899
rcMV	small	yes	1.126	1.170	1.182	1.197
rcMV	fac	yes	1.228	1.304	1.377	1.421
GBW	small	no	1.121	1.131	1.317	1.487
GBW	fac	no	1.164	1.203	1.421	1.622
rcMV	small	no	1.093	1.116	1.106	1.109
rcMV	fac	no	1.131	1.181	1.171	1.171

What the Fit Tells Us

- Very good quality fits for the most recent HERA data (H1+ZEUS combined analysis) for $\sigma_{\text {red }}^{\gamma^{*} p}: \chi^{2}$ per point $\sim 1.1-1.2$
■ Very discriminatory

Favors $\because \because$ Disfavors

rcMV initial condition $(\mathrm{pQCD}+$ saturation)	fixed-coupling MV and GBW $\left(\right.$ at high $\left.\mathrm{Q}^{2}\right)$ initial conditions
physical prescriptions for running (FAC, smallest dipole)	Balitsky prescription for RC
physical values of fit parameters	anomalous dimension >1

Conclusions and Outlook

Summary

- In the LHC, very low values of x will be probed in $p p, p A$ and $A A$ collisions, providing a great opportunity to understand the high-energy dynamics of strong interactions.
- Our study assembles for the first time all the important contributions to high-energy QCD evolution: rapidity/energy logs, collinear double and single logs, running coupling and saturation

Summary

- In the LHC, very low values of x will be probed in $p p, p A$ and $A A$ collisions, providing a great opportunity to understand the high-energy dynamics of strong interactions.
- Our study assembles for the first time all the important contributions to high-energy QCD evolution: rapidity/energy logs, collinear double and single logs, running coupling and saturation
- We identified the diagrammatic origin of double transverse logs and show how to resum them into a local kernel

Summary

- In the LHC, very low values of x will be probed in $p p, p A$ and $A A$ collisions, providing a great opportunity to understand the high-energy dynamics of strong interactions.
- Our study assembles for the first time all the important contributions to high-energy QCD evolution: rapidity/energy logs, collinear double and single logs, running coupling and saturation
- We identified the diagrammatic origin of double transverse logs and show how to resum them into a local kernel
- We provided very solid and discriminatory fits to high-precision DIS data

Summary

- In the LHC, very low values of x will be probed in $p p, p A$ and $A A$ collisions, providing a great opportunity to understand the high-energy dynamics of strong interactions.
- Our study assembles for the first time all the important contributions to high-energy QCD evolution: rapidity/energy logs, collinear double and single logs, running coupling and saturation
- We identified the diagrammatic origin of double transverse logs and show how to resum them into a local kernel
- We provided very solid and discriminatory fits to high-precision DIS data

What Next?

(1) Double Logs in an Arbitrary Frame: Symmetric $\gamma^{*} \gamma^{*}$ Scattering
(2) Introduce Energy-Momentum Conservation $(\gamma(\omega=1)=0)$
(3) Resummation of Impact Factor in k_{\perp} Factorization
(4) Collinear Resummation in Inclusive Forward Hadron Production
[Staśto, Xiao \& Zaslavsky'13; Altinoluk, Armesto, Beuf, Kovner \& Lublinsky'14]
© Adding Pure NLO Terms in BK Equation
© Performing Full Matching with DGLAP
(0) Use of the Extracted Dipole Amplitude in Processes Like: particle multiplicity in hadronic collisions, the diffractive structure functions, the elastic production of vector mesons, or the forward particle production in heavy-ion collisions

Back-Up Slides

Collinear Resummation à la Salam

Double Mellin Representation for BFKL Green's function

$$
\begin{gathered}
G\left(k, k_{0}, Y\right)=\frac{1}{k^{2}} \int_{a-i \infty}^{a+i \infty} \frac{\mathrm{~d} \omega}{2 \pi i} \int_{\frac{1}{2}-i \infty}^{\frac{1}{2}+i \infty} \frac{\mathrm{~d} \gamma}{2 \pi i}\left(\frac{s}{k k_{0}}\right)^{\omega} \mathrm{e}^{\gamma \rho} \frac{1}{\omega-\kappa(\omega, \gamma)}, \\
\rho=\ln \left(k^{2} / k_{0}^{2}\right) ; \quad \kappa(\omega, \gamma)=\bar{\alpha}_{s} \chi(\gamma)+\bar{\alpha}_{s}^{2} \chi_{1}(\omega, \gamma)+\cdots
\end{gathered}
$$

Matching with DGLAP through identification of relevant evolution variable for $k^{2}>k_{0}^{2}$ and viceversa: ω-shift

$$
\begin{aligned}
G\left(k, k_{0}, Y\right) & =\frac{1}{k^{2}} \int_{a-i \infty}^{a+i \infty} \frac{\mathrm{~d} \omega}{2 \pi i} \int_{\frac{1}{2}-i \infty}^{\frac{1}{2}+i \infty} \frac{\mathrm{~d} \gamma}{2 \pi i}\left(\frac{s}{k^{2}}\right)^{\omega} \mathrm{e}^{(\gamma+\omega / 2) \rho} \frac{1}{\omega-\kappa(\gamma, \omega)} \\
& =\frac{1}{k_{0}^{2}} \int_{a-i \infty}^{a+i \infty} \frac{\mathrm{~d} \omega}{2 \pi i} \int_{\frac{1}{2}-i \infty}^{\frac{1}{2}+i \infty} \frac{\mathrm{~d} \gamma}{2 \pi i}\left(\frac{s}{k_{0}^{2}}\right)^{\omega} \mathrm{e}^{(1-\gamma+\omega / 2)(-\rho)} \frac{1}{\omega-\kappa(\omega, \gamma)}
\end{aligned}
$$

Dipole Scattering Amplitude

Glauber-Mueller Formula for Dipole S-Matrix

$$
S(r, Y)=\exp \left[-\frac{r^{2} Q_{s}^{2}(Y)}{4}\right]
$$

($T(r) \sim 1$ for $r \gg \frac{1}{Q_{s}}$ (black disk limit); $T(r) \sim 0$ for $r \ll \frac{1}{Q_{s}}$ (color transparency)

GBW Model for Dipole Cross Section

$$
\sigma^{\mathrm{dip}}=\sigma_{0}\left[1-\exp \left(-\frac{r^{2} Q_{s}^{2}(x)}{4}\right)\right] ; \quad Q_{s}^{2}(x)=Q_{0}^{2}\left(\frac{x_{0}}{x}\right)^{\lambda}
$$

AAMQS Parametrization

$$
T(r, b)=1-\exp \left[-\frac{\left(r^{2} Q_{s 0}^{2}(b)\right)^{\gamma}}{4} \ln \left(\frac{1}{\Lambda r}+e\right)\right]
$$

Saturation Momentum

Gribov-Levin-Ryskin Estimate

$$
Q_{s} \sim \alpha_{s}^{2} \Lambda_{\mathrm{QCD}}\left(\frac{1}{x}\right)^{\alpha_{P}-1}
$$

DLA Estimate of Rapidity Dependence of Dipole Scattering
Amplitude $\left(r \ll 1 / Q_{s 0}\right)$

$$
T(r, Y) \sim\left(r Q_{s 0}\right)^{2}\left(\bar{\alpha}_{s} Y\right)^{1 / 4} \rho^{-3 / 4} \exp \left[2 \sqrt{2 \bar{\alpha}_{s} Y \rho}\right]
$$

BFKL Green's Function, Dipole Amplitude and Unintegrated Gluon Distribution

$$
\begin{aligned}
T_{\boldsymbol{r}_{1} \boldsymbol{r}_{2}}^{Y} & =\int \mathrm{d}^{2} \boldsymbol{r}_{1}^{\prime} \mathrm{d}^{2} \boldsymbol{r}_{2}^{\prime} \tilde{\mathcal{G}}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2} ; \boldsymbol{r}_{1}^{\prime}, \boldsymbol{r}_{2}^{\prime} ; Y\right) \mathrm{e}^{-\mathrm{i} \boldsymbol{q} \cdot \frac{\left(\boldsymbol{r}_{1}^{\prime}+\boldsymbol{r}_{2}^{\prime}\right)}{2}} \\
& =\int \frac{\mathrm{d}^{2} \boldsymbol{k}}{(2 \pi)^{2}}\left(1-\mathrm{e}^{\mathrm{i} \boldsymbol{k} \cdot \boldsymbol{r}_{01}}\right) \tilde{T}^{Y}(\boldsymbol{k}) \quad(\boldsymbol{q}=0) \\
\alpha_{s}\left(k^{2}\right) \phi(k, Y) & =\frac{N_{c} S_{\perp}}{(2 \pi)^{3}} k^{2} \tilde{T}^{Y}(\boldsymbol{k}) \\
\tilde{\mathcal{G}}\left(\boldsymbol{r}_{1}, \boldsymbol{r}_{2} ; \boldsymbol{r}_{1}^{\prime}, \boldsymbol{r}_{2}^{\prime} ; Y\right) & =\int \mathrm{d}^{2} \boldsymbol{k} \mathrm{~d}^{2} \boldsymbol{k}^{\prime} \mathrm{e}^{\mathrm{i} \boldsymbol{k} \cdot \boldsymbol{r}_{12}} \mathrm{e}^{\mathrm{i} \boldsymbol{k} \cdot\left(\boldsymbol{r}_{12}-\boldsymbol{r}_{1^{\prime} 2^{\prime}}\right)} \\
& \times\left(1-\mathrm{e}^{-\mathrm{i}(\boldsymbol{k}+\boldsymbol{q} / 2) \cdot \boldsymbol{r}_{12}}\right)\left(1-\mathrm{e}^{\mathrm{i}(-\boldsymbol{k}+\boldsymbol{q} / 2) \cdot \boldsymbol{r}_{12}}\right) \\
& \times G\left(\boldsymbol{k}+\boldsymbol{q} / 2,-\boldsymbol{k}+\boldsymbol{q} / 2 ; \boldsymbol{k}^{\prime}+\boldsymbol{q} / 2,-\boldsymbol{k}^{\prime}+\boldsymbol{q} / 2 ; Y\right) \\
& \times\left(1-\mathrm{e}^{\mathrm{i}(\boldsymbol{k}+\boldsymbol{q} / 2) \cdot \boldsymbol{r}_{1^{\prime} 2^{\prime}}}\right)\left(1-\mathrm{e}^{-\mathrm{i}(-\boldsymbol{k}+\boldsymbol{q} / 2) \cdot \boldsymbol{r}_{1^{\prime} 2^{\prime}}}\right)
\end{aligned}
$$

Completing DLA to BFKL/BK Evolution

We can now easily promote our local DLA equation to easily include NLL BFKL/BK:
(1) $\tilde{T}(Y, \rho)=\mathrm{e}^{-\rho} \tilde{\mathcal{A}}(\mathrm{Y}, \rho)$
(2) Return to transverse coordinates: $\rho=\ln \left(1 / r^{2} Q_{0}^{2}\right) ; \rho-\rho_{1}=$ $\ln \left(z^{2} / r^{2}\right) ; \tilde{T}(Y, \rho)=\tilde{T}_{\boldsymbol{x} \boldsymbol{y}}(Y) ; 2 \tilde{T}\left(Y, z^{2}\right) \rightarrow \tilde{T}_{\boldsymbol{x} z}(Y)+\tilde{T}_{z y}(Y)$
(3) Restore full dipole kernel $\frac{r^{2}}{z^{4}} \mathrm{~d} z^{2} \rightarrow \frac{1}{\pi} \mathcal{M}_{\boldsymbol{x} \boldsymbol{y} \boldsymbol{z}} \mathrm{d}^{2} \boldsymbol{z}$
(4) Introduce the virtual term and temove IR and UV cutoffs in the \boldsymbol{z} integration
(5) Replace the argument of $\mathcal{K}_{\text {DLA }}$ by $\ln \frac{z^{2}}{r^{2}} \rightarrow \sqrt{L_{\boldsymbol{x} \boldsymbol{z r}} L_{\boldsymbol{y} \boldsymbol{z r}}}$, with $L_{\boldsymbol{x} \boldsymbol{z r}} \equiv \ln \left[(\boldsymbol{x}-\boldsymbol{z})^{2} /(\boldsymbol{x}-\boldsymbol{y})^{2}\right]$

