
Introduction Double Logs Resummed BK HERA Fits Conclusions Back-Up Slides

High-Energy Scattering in QCD:
Putting Together All the Main

Ingredients
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Looking Inside the Nucleons
n Only 5 % of the mass of the universe is visible, but 99 % of this visible

matter is described by QCD. This vast bulk of visible matter therefore
comprises nontrivial emergent phenomena to be understood in terms
of the rich dynamics of the QCD vacuum and the interactions of
quarks and gluons.

n Subtle interplay between soft and hard dynamics makes high energy
evolution very interesting.

2 François Gelis

between the quarks and the gluons (see the figure 1), should in principle also be

applicable to heavy ion collisions. However, since the strong interaction coupling

constant becomes large at low momentum, it is not obvious a priori that heavy ion

collisions can be studied by weak coupling techniques. This is certainly possible for

the rare large-momentum processes that take place in these collisions, but quite

questionable for the bulk of the particle production processes. Moreover, since the

system produced in such a collision expands rapidly along the collision axis (see

the figure 2), its characteristic momentum scales (e.g. its temperature if it reaches

thermal equilibrium) decrease with time. Therefore, there will always be a time
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Fig. 2. Successive stages of a high energy heavy ion collision, and the most widely used approaches

to describe each stage.

beyond which the coupling is strong and weak coupling approaches are useless.

This is obviously the case near the phase transition that sees the quarks and gluons

recombine in order to form hadrons. In the best of cases, we can only hope for a

weak coupling treatment of the early stages of these collisions (say up to a couple

of fm/c after the collision).

Fig. 3. Parton content of a nucleon or nucleus at low energy. Left: cartoon of a nucleus at low

energy and its valence quarks. Right: the thick lines represent the valence quarks, and the wavy
lines are gluons. Virtual quark-antiquark pairs are not represented.

When applying QCD to the study of hadronic collisions, an essential ingredi-

ent is the quark and gluon content of the hadrons that are being collided, since

the elementary degrees of freedom in QCD are partons rather than hadrons. On the

Color Glass Condensate and Glasma 3

surface, a nucleon is made of three valence quarks, bound by gluons. However, these

quarks can also temporarily fluctuate into states that have additional gluons and

quark-antiquark pairs (see the figure 3). These fluctuations are short lived, with a

lifetime that is inversely proportional to their energy. The largest possible lifetime

of these fluctuations is comparable to the nucleon size, and they can be arbitrarily

short lived. However, in a given reaction that probes the nucleon, there is always a

characteristic time scale set by the resolution power of the probe (for instance by

the frequency of the virtual photon that probes the nucleon in Deep Inelastic Scat-

tering). Only the fluctuations that are longer lived than the resolution in time of the

probe can actually be seen in the process. The shorter lived fluctuations are present,

but do not influence the reaction. In collisions involving a low energy nucleon, only

its valence quarks and a few of these fluctuations are visible. Moreover, in a low

energy nucleon, there will typically be interactions between its constituents during

the collision with the probe, thus making low energy reactions very complicated.

Fig. 4. Parton content of a nucleon or nucleus at high energy, as seen in the laboratory frame.
Left: boosted nucleus and its gluonic content. Right: fluctuations inside a boosted nucleon.

However, this picture is dramatically modified when the reaction involves a high

energy nucleon, due to relativistic kinematics (see the figure 4). Firstly, the geometry

of the nucleon changes due to Lorentz contraction: at very high energy, the nucleon

appears essentially two-dimensional in the laboratory framea. Simultaneously, all

the internal timescales of the nucleon –in particular the lifetimes of the fluctuations

and the duration of the interactions among the constituents– are multiplied by

the same Lorentz factor. The first consequence of this time dilation is that the

partons are now unlikely to interact precisely during the time interval probed in

the reaction: the constituents of a high energy nucleon appear to be free during

the collision. Secondly, since the lifetimes of the fluctuations are also dilated, more

fluctuations are now visible by the probe: the number of gluons seen in a reaction

increases with the energy of the collision. This increase with energy of the number of

gluons in a nucleon has been observed experimentally in Deep Inelastic Scattering

(DIS), for instance at HERA. This is shown in the figure 5 for a proton. Note that

in this plot, high energy corresponds to small values of the longitudinal momentum

fraction x carried by the parton, x ≡ pz/
√
s. The other important feature of the

aThe Lorentz gamma factor is γ ∼ 100 at RHIC and γ ∼ 1000 in heavy ion collisions at the LHC.
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Introduction Double Logs Resummed BK HERA Fits Conclusions Back-Up Slides

The Case of Deep-Inelastic Scattering
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Gluon Bremsstrahlung and DGLAP Evolution

p
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[Gribov & Lipatov ’72; Dokshitzer ’77; Altarelli & Parisi ’77]

Effectively resums ladder diagrams enhanced
by transverse logs

Q2
0 � k2

1 � k2
2 � k2

3 � · · ·
k+
i ' k+

j =⇒ k−1 � k−2 � k−3 � · · ·
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Large Energy Logs Enter the Game
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−1 ρ, ω, f2 · · ·

Mild power rise of total
hadronic cross-section in
semi-asymptotic regime
[Donnachie & Landshoff ’90]

A(1) ∼ g2

s

∼ means as s→∞

A(2) ∼ g2

s K(t) ln s
A(n) ∼ g2

s
(K(t) ln s)n−1
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∫
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∑∞
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g2

s
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(n−1)! ' g2

s e
K(t) ln s ' g2sα(t)

Collinear Resummation in High-Energy Evolution IFT UAM/CSIC Madrid José Daniel Madrigal
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High-Energy Evolution: the Russian Approach
Corrections to Born Scattering

• Virtual (8a Projected)
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p2

• Real (Lipatov’s Vertex)

= +
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+ + +
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∫
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IR singularities cancel

High-Energy Factorization
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Lipatov’s Ansatz
[Lipatov’76]

· · ·

· · ·
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−i
k2i
→ −i
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(
− si
k2i

)α(−k2i )

Bootstrap

Consistency
with Unitarity

The ansatz
satisfies

Leading ln s terms
captured by strong
ordering in rapidity
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The BFKL Equation

...
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2
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KBFKL = ᾱs

[
1

(Q− k)2
− δ(Q2 − k

2
)

∫ k d2q

πq2

]
[Fadin, Kuraev & Lipatov ’75,76,77; Lipatov’76; Balitsky & Lipatov ’78]

q+ > k+
1 � k+

2 � k+
3 � · · ·

Q2
0 ' k2

1 ' k2
2 ' k2

3 ' · · ·

• Multi-Regge-kinematics not satisfied in all regions of transverse
integration

• Pay attention to evolution variable! Y = ln
(
k+

q+

)
= ln

(
x0

xBj

Q2

Q2
0

)
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The Interplay Between DGLAP and BFKL
Evolutions

0 1 2 n− 1 n
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n

lnj(1/x)
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Powers resummed up to nth perturbative order by

LO DGLAP LO BFKL

Connections Between Collinear
and Regge-Limit Expansions

• One can use one expansion to
predict the leading log terms in
the other expansion in a certain
limit:

n BFKL→DGLAP
[Jaroszewicz’82; Catani, Fiorani &

Marchesini’90]

n DGLAP→BFKL
[Salam’98; Altarelli, Ball & Forte’00;

Kotikov & Lipatov’03; Balitsky,

Kazakov & Sobko’13]ç

• This connection has also been
extended to strong coupling:
[Kotikov, Lipatov, Rej, Staudacher &

Velizhanin’07; Hatta, Iancu &

Mueller’07; Staśto’07; Kotikov &

Lipatov’13]
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Mind the Anomalous Dimension
It is convenient to diagonalize the evolution equation via Mellin

transform (ρ = ln Q2

Q2
0
)

F(ρ, Y ) =

∫
dω

2πi
eωY

∫
dγ

2πi
e−ργF̂(γ, ω)

F̂(γ, ω) =
F̂0(γ)

ω − ᾱsχ(γ)
, χ(γ) = 2ψ(1)− ψ(γ)− ψ(1− γ)
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0
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χ(γ)
1/γ + 1/(1 − γ)

γω = λ+ 0λ2 + 0λ3 + 2ζ3λ
4 +O(λ6),

λ =
αsNc
πω

[Jaroszewicz’82]
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The Kinematic Map of QCD
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Why All the Fuss About Small-x

t

s s� −t
=⇒

Scattering in QCD
High-Energy

Collider
Phenomenology

Applications to
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Disentangling High-Energy Dynamics at LHC

FIGURE 2. (left) Regions in (x,Q2) variables accessible by the different experimental facilities. (right) Production cross section
of gg→ H at LHC, as a function of the value of the αs(MZ) coupling constant, and for various parametrizations of PDFs [6].

these functions as well as the evaluation of shapes of invariant di-lepton or di-jet mass spectra. PDFs are also a critical
ingredient for evaluating backgrounds in searches for new physics (e.g. tt production cross section determination).

PERTURBATIVE QCD MEASUREMENTS AT LHC

Jet and photon production

Proton-proton collisions leading to events with high transverse momentum jets are described by perturbative QCD
(pQCD) through elementary parton-parton scattering. A fundamental quantity that can be measured and predicted
within pQCD is the double-differential inclusive jet cross section as a function of the jet transverse momentum pT
and the absolute jet pseudorapidity |η |. ATLAS and CMS Collaborations have carried out these measurements at 7
and 8 TeV [7]. LHC data span 16 orders of magnitude in cross-section intensity and up to a pT value of ∼ 2 TeV (see
Fig. 3, left). Perturbative QCD is able to describe correctly the data over a wide range of jet transverse momentum
and rapidity and over many orders of magnitude in cross section. Some differences between the predictions employing
various PDF sets and the data are observed, all of which are qualitatively explained by uncertainties in the low pT
region.

The determination of the cross-section for multi-jet production is another important test of pQCD. This measurement
is also sensitive to resonances and new interactions, and can be used in searches for physics beyond the SM. The results
can be also exploited to study the partonic structure of the proton. In particular, the high dijet-mass region can be used
to constrain the PDF of the gluon in the proton at high momentum fraction (Bjorken variable x). Data are compared to
many different PDFs and with different jet sizes. Ratios of cross-sections are also very useful to disentangle several sys-
tematic uncertainties. Moreover, ratio of the observed number of 3-jets to 2-jets (a classical way to determine the strong
coupling costant αs since PEP/PETRA/LEP times) and the 3-jet invariant mass spectrum measurements determine
αs. The most recent CMS result [9] αs(MZ) = 0.1185±0.0019(exp)±0.0028(PDF)±0.0004(NP)±0.0055

0.0022 (scale)
represents an impressive test of pQCD up to the TeV scale (see Fig. 3, right).

The quality of LHC data is such to enter already in the combinations for PDFs determination and this is relevant for
consistency checks and for the evaluation of systematics. Fits performed including LHC data prefer a harder spectrum
for gluons with respect to the one obtained with HERA-only measurements (see Fig. 4).
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Towards Saturation: Eikonal Scattering and the
Dipole Picture

n At very high energies the scattering of a fast projectile is given
by the eikonal approximation: it amounts to picking up a phase
given by the Wilson line Ux = Pexp

[
ig
∫∫∫
dx+A−

a (x+, x)T a
]

∝ Ψ
(0)∗
ij (x,y)Ψ

(0)
kl (x,y)Uik(x)U†lj(y) ∝ |Ψ(0)(x,y)|2Sxy

Dipole Scattering Amplitude

T = 1− S
Sxy = 1

Nc
Tr(UxU

†
y)

n Mixed representation
{x⊥, k+} well-suited for
high-energy scattering
(diagonalizes shockwave
interaction)

124 Dipole approach to high parton density QCD

q

γ∗
x⊥ x⊥

Fig. 4.1. Forward scattering amplitude for DIS on a proton or nuclear target in the rest
frame of the target: the virtual photon splits into a qq̄ pair which then interacts with the
target. The interaction is depicted by the vertical oval. For simplicity the electron that emits
the virtual photon is not shown.

coherence length in the longitudinal plus direction (see Sec. 2.3),

x+ ≈ 2

|q−| = 2q+

Q2
, (4.2)

is much larger than the size of the nucleus. If the virtual photon fluctuates into a quark–
antiquark pair, the typical lifetime of such a qq̄ fluctuation would also be much longer
than the nuclear diameter. Therefore, a DIS process in the nuclear rest frame occurs when
a virtual photon fluctuates into a qq̄ pair (which we will also refer to as a color dipole or
simply a dipole); the qq̄ pair proceeds to interact with the target (Gribov 1970, Bjorken
and Kogut 1973, Frankfurt and Strikman 1988). The forward scattering amplitude for the
process is pictured in Fig. 4.1, with the qq̄ dipole–nucleus interaction represented by the
vertical oval. This is the dipole picture of DIS (Kopeliovich, Lapidus, and Zamolodchikov
1981, Bertsch et al. 1981, Mueller 1990, Nikolaev and Zakharov 1991). Note that while
the topology of the DIS diagram in Fig. 4.1 is the same as for DIS in the IMF, shown in
Fig. 2.2, the time-ordering of the interactions is different in the two figures.

The interaction of a virtual photon with a nucleus can be viewed as a two-stage process:
the virtual photon decays into a colorless dipole consisting of a quark and an antiquark
and the colorless dipole travels through the nucleus. However, this separation between the
time scale for the photon to decay into the qq̄ pair and the interaction time is not the
only advantage of the dipole picture. Another important simplification comes from the fact
that in high energy scattering a colorless dipole, with transverse size x⊥, does not change
its size during the interaction and therefore the S-matrix of the interaction is diagonal
with respect to the transverse dipole size (Zamolodchikov, Kopeliovich, and Lapidus 1981,
Levin and Ryskin 1987, Mueller 1990, Brodsky et al. 1994). Indeed, while the colorless
dipole is traversing the target, the distance x⊥ between the quark and antiquark can only
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Dipole Factorization
[Nikolaev & Zakharov ’91; Mueller ’94]
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Introduction Double Logs Resummed BK HERA Fits Conclusions Back-Up Slides

The Balitsky-Kovchegov Equation

x

y

T
y

z T∂
∂Y

x x

y

z TT
= + +

x

y

z T
T−

Balitsky-Kovchegov (BK) equation

∂Y Txy = − ᾱs2π

∫
z
Mxyz[Txz + Tzy − Txy−TxzTzy];

Mxyz = (x−y)2

(x−z)2(z−y)2

[Balitsky ’96; Kovchegov ’98]

• Tames the Growth:
Saturation

• Generates dynamical
perturbative scale Qs

• Geometric Scaling

Collinear Resummation in High-Energy Evolution IFT UAM/CSIC Madrid José Daniel Madrigal
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Beyond BK
Balitsky-Kovchegov equation also emerges as
mean-field-approximation of JIMWLK formalism

JIMWLK Evolution Multiparticle Production & Rapidity Correlations Conclusions

JIMWLK Hamiltonian

For a gluon crossing a shockwave target, the background
field propagator is essentially a Wilson line

U
†
x = P exp

[
ig
∫

dx+A−a (x+,x)T a
]

and then (
∫

dp+/p+ → ln(1/x))

∆H = ln 1
xHJIMWLK

HJIMWLK = 1
(2π)3

∫
Kxyz(U †x − U †z)ab(U †y − U †z)acRb

xR
c
y

+ + + + + + + · · ·

Ra
uU

R†
x = igδuxU

R†
x T aR

Kxyz = KixzKiyz ︸ ︷︷ ︸
=2gta

ελ·k
k2

∫
d2k
(2π)2e

ik·(x−z) = ig
π t

aεiλ
(x− z)i

(x− z)2︸ ︷︷ ︸
≡Kixz

Particle Production in pA with Rapidity Correlations Diffraction 2014 José Daniel Madrigal

[Jalilian-Marian, Kovner, McLerran & Weigert ’97; Iancu, Leonidov & McLerran ’01]

Actually, BK and JIMWLK predictions for dipole scattering amplitude

turn out to be very similar [Kuokkanen, Rummukainen & Weigert ’08]
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The Issue with NLO Corrections

• Tour-de-force computations of NLO corrections to BFKL [Fadin & Lipatov

’98; Camici & Ciafaloni ’98], BK [Balitsky & Chirilli ’08] and JIMWLK [Balitsky &

Chirilli ’13; Kovner, Lublinsky & Mulian ’14] equations. NLO accuracy
indispensible for sensible phenomenology.

• Large size of the NLO corrections found in BFKL equation, that would
deprive it of its predictive power and lead to instabilities [Ross ’98].

• No reason to expect lack-of-convergence problems to be attenuated by
non-linear terms in BK-JIMWLK equation [Triantafyllopoulos ’03; Avsar,

Staśto, Triantafyllopoulos & Zaslavsky ’11].

• Origin of large NLO corrections identified to come from large
transverse logarithms. Several procedures devised for all-order
resummation of large logs and stabilization of the kernel [Salam ’98;

Ciafaloni, Colferai, Salam & Staśto ’03; Sabio Vera ’05].
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Double Transverse Logs in BK
5
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Figure 5: Evolution speed of the conformal dipole amplitude at initial condition with different values for the anomalous
dimension.
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Figure 6: Evolution speed of the conformal dipole amplitude at y = 5 with different values for the anomalous dimension at the
initial condition.

The change of the saturation scale with energy is quanti-
fied more precisely in Fig. 2 with the evolution speed of
the saturation scale

λ =
d lnQ2

s

dy
, (10)

where the precise definition of Q2
s used here is

N(r2 = 2/Q2
s) = 1− e−1/2. (11)

The NLO corrections can again be seen to significantly
slow down the evolution speed. The conformal and “non-
conformal” dipoles have comparable evolution speeds af-
ter a few evolution steps, and the total evolution speed
decreases slowly as a function of Qs. Note that the small
anomalous dimension in the initial condition makes the
leading order evolution faster than λ ∼ 0.2 . . . 0.3 ob-
tained in leading order fits with γ ∼ 1 [1, 3, 37, 38].
Also the parameter Q2

s,0 that controls the initial satu-

ration scale is not the same as the saturation scale Q2
s

obtained by solving the equation (11), and in this case
Qs,0/ΛQCD ∼ 19 corresponds to having an initial satura-
tion scale Qs/ΛQCD ∼ 40.

One would generally expect N to increase with rapid-
ity, corresponding to the physical picture of more gluons

being emitted when the available phase space increases
with increasing collision energy. This is the behavior
seen in the LO equation. To study when exactly this
happens we show in Fig. 3 the evolution speed (logarith-
mic derivative of the dipole amplitude ∂yN(r)/N(r)) at
y = 0 with different values for the anomalous dimension
γ and initial saturation scale Qs,0 as a function of the
parent dipole size. We see that the scattering amplitude
does indeed increase, but only for a suitable choice of
the initial conditions: small enough γ and large enough
Qs,0. Let us discuss the interpretation of the logarith-
mic derivative plots in more detail. For smaller Qs the
NLO corrections are so large that ∂yN(r)/N(r) is nega-
tive around the “front” r ∼ 1/Qs, which makes the so-
lution progress unphysically in the wrong direction, with
Qs decrasing with rapidity. For larger Qs, the behavior
around r ∼ 1/Qs is less problematic, and we can focus
on the small r tail of the amplitude. Here note that
if ∂yN(r)/N(r) has a constant positive value, the ampli-
tude grows exponentially in rapidity, but retains its shape
as a function of r, resembling the small r behavior of the
leading order evolution equation. This is indeed what
happens for γ = 0.6 and, marginally, for γ = 0.8. For
γ = 1.0, however, we observe a negative, logarithmically

Large corrections and instabilities in NLO BK traced back to double

transverse logs [Lappi & Mantysäari ’15]:

of the solutions of Eq. (4). On the experimental side, the
cross section is proportional to some power of the coupling
constant, so the argument determines how big (or how
small) the cross section is. The typical argument of �s is
the characteristic transverse momenta of the process. For
high enough energies, they are of order of the saturation
scale Qs, which is �2� 3 GeV for the CERN LHC, so
even the difference between ��Qs� and ��2Qs� can make a

substantial impact on the cross section. The precise form of
the argument of �s should come from the solution of the
BK equation with the running-coupling constant, and the
starting point of the analysis of the argument of �s in
Eq. (4) is the calculation of the NLO evolution.

Let us present our result for the NLO evolution of the
color dipole (hereafter, we use notations X 
 x� z, X0 

x� z0, Y 
 y� z, and Y0 
 y� z0),

d
d�

TrfÛxÛ
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y
z gTrfÛzÛ
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Here � is the normalization point in the MS scheme and
b � 11

3 Nc �
2
3nf is the first coefficient of the � function.

The result of this paper is the gluon part of the evolution;
the quark part of Eq. (5) proportional to nf was found
earlier [9,10]. Also, the terms with cubic nonlinearities
were previously found in the large-Nc approximation in
Ref. [11]. The NLO kernel is a sum of the running-
coupling part (proportional to b), the nonconformal
double-log term � ln�x�y�

2

�x�z�2 ln�x�y�
2

�x�z�2 , and the three confor-
mal terms which depend on the two four-point conformal
ratios X2Y02

X02Y2 and �x�y�
2�z�z0�2

X2Y02
. Note that the logarithm of the

second conformal ratio ln�x�y�
2�z�z0�2

X2Y02 is absent.
It should be emphasized that the NLO result itself does

not lead automatically to the argument of the coupling
constant �s in Eq. (4). In order to get this argument one
can use the renormalon-based approach [12]: first get the
quark part of the running-coupling constant coming from
the bubble chain of quark loops and then make a conjecture
that the gluon part of the � function will follow that
pattern. Equation (5) proves this conjecture in the first
nontrivial order: the quark part of the � function 2

3nf
calculated earlier gets promoted to the full b. The analysis
of the argument of the coupling constant was performed in
Refs. [9,10], and we briefly review it in Sec. VII for
completeness. Roughly speaking, the argument of �s is

determined by the size of the smallest dipole min�jx�
yj; jx� zj; jy� zj�.

The paper is organized as follows. In Sec. II we remind
the reader of the derivation of the BK equation in the
leading order in �s. In Secs. III and IV, which are central
to the paper, we calculate the gluon contribution to the
NLO kernel of the small-x evolution of color dipoles: in
Sec. III we calculate the part of the NLO kernel corre-
sponding to one-to-three dipoles transition, and in Sec. IV
we calculate the one-to-two dipoles part. In Sec. V we
assemble the NLO BK kernel, and in Sec. VI we compare
the forward NLO BK kernel to the NLO BFKL results [13].
The results of the analysis of the argument of the coupling
constant are briefly reviewed in Sec. VII. Appendix A is
devoted to the calculation of the UV-divergent part of the
one-to-three dipole kernel, and in Appendix B we discuss
the dependence of the NLO kernel on the cutoff in the
longitudinal momenta.

II. DERIVATION OF THE BK EQUATION

Before discussing the small-x evolution of the color
dipole in the next-to-leading approximation, it is instruc-
tive to recall the derivation of the leading order (BK)
evolution equation. As discussed in the Introduction, the
dependence of the structure functions on xB comes from

IAN BALITSKY AND GIOVANNI A. CHIRILLI PHYSICAL REVIEW D 77, 014019 (2008)

014019-2
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The Goals of Our Work

1 Identify the diagrammatic origin of double logarithmic
corrections and its relation to the ’kinematic constraint’
[Ciafaloni ’88; Andersson, Gustafson & Samuelsson ’96; Kwieciński, Martin & Sutton ’96; Beuf

’14].

2 Implement directly the collinear resummation in coordinate
space, as required by non-linear structure of BK equation.

3 Express the resummed evolution equation in terms of a local
(energy-independent) kernel, as compared to non-local in rapidity
proposals [Motyka & Staśto ’09; Beuf ’14]

4 Show the relevance of our collinear resummation for BK equation
studying its numerical solution and precision fits to DIS data.
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’14].

2 Implement directly the collinear resummation in coordinate
space, as required by non-linear structure of BK equation.

3 Express the resummed evolution equation in terms of a local
(energy-independent) kernel, as compared to non-local in rapidity
proposals [Motyka & Staśto ’09; Beuf ’14]
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Introduction Double Logs Resummed BK HERA Fits Conclusions Back-Up Slides

The Goals of Our Work

1 Identify the diagrammatic origin of double logarithmic
corrections and its relation to the ’kinematic constraint’
[Ciafaloni ’88; Andersson, Gustafson & Samuelsson ’96; Kwieciński, Martin & Sutton ’96; Beuf
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The Origin of Double Logs
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(Naive) DLA Limit of the BFKL Equation

BFKL Equation (T = 1− S, T � 1)

∂Y Txy(Y ) =
ᾱs
2π

∫
d2zMxyz[Txz(Y ) + Tzy(Y )− Txy(Y )]

z-integration becomes logarithmic when daughter dipoles are much larger
than the original one (|x− z| ' |z − y| � r ≡ |x− y|)
Mxyz ' r2/(x − z)4 and Txz ' Tzy ∝ z2; negligible virtual term.

Writing Txy(Y ) ≡ r2Q2
0Axy → r2Q2

0A(Y, r2)

A(Y, r2) = A(0, r2) + ᾱs

∫ Y

0

dY1

∫ 1/Q2
0

r2

dz2

z2
A(Y1, z

2)

(Naive) DLA Equation (resums powers of ᾱsY ρ, ρ ≡ ln[1/r2Q2
0] to all

orders)

A(Y, ρ) = I0(2
√
ᾱsY ρ)
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Computation of Time-Ordered Diagrams
• Lifetime of gluon fluctuation τp ≡ 2p+/p2 = 1/p−

• Eikonal approximation p+ � k+

296 E. Iancu et al. / Physics Letters B 744 (2015) 293–302

Fig. 2. Diagrams with two gluons which are ordered in longitudinal momentum (p+ > k+) and also in lifetime (τp > τk); (a) a real–real graph; (b) a virtual–real graph.

virtual and it is both emitted and reabsorbed prior to the emission 
of the soft gluon, which is real. Beyond LLA, other time orderings 
become important as well and will be later considered (see Fig. 3).

We shall first evaluate the 2-real-gluon graph in Fig. 2a. After 
integrating over all emission times, within the ranges −∞ < t1 <

τ1 < 0 and 0 < τ2 < t2 < ∞, one finds the following contribution 
to the change in dipole S-matrix7 (below, 

∫
u ≡ ∫

d2u and 
∫

p ≡∫ d2 p
(2π)2 )

− g4N2
c

(2π)2

∫
uz

Sxu Suz Sz y

×
∫

p p̃kk̃

eip·(u−x)eip̃·(x−u)eik·(z−y)eik̃·(u−z) p · p̃

p2 p̃2

k · k̃

k2k̃
2

×
q+∫

q+
0

dk+

k+

q+∫
k+

dp+

p+
p+

p+ + k+ p2

k2

p+

p+ + k+ (p̃−k̃)2

k̃
2

. (6)

In the integrals over k+ and p+ , the upper limit q+ is the longitu-
dinal momentum of the quark and antiquark in the original dipole, 
while the lower limit q+

0 = Q 2
0 /2P− is the longitudinal scale at 

which the scattering probes the dipole wavefunction. (P− is the 
target longitudinal momentum, with s = 2q+ P− , while Q 0 is the 
respective transverse scale.) That is, the overall rapidity interval 
available for the evolution of the projectile is Y = ln(q+/q+

0 ). The 
denominators in the second line come from time integrations and 
can be recognized as the usual ‘energy’ (here, in the sense of p−) 
denominators of light-cone perturbation theory. For instance,

p+

p+ + k+ p2

k2

= k−

p− + k− = τp

τp + τk
, (7)

where τp ≡ 2p+/p2 = 1/p− is the lifetime of the hard gluon fluc-
tuation, as determined by the uncertainty principle, and similarly 
for τk . The integral over p+ is logarithmic provided p+ dominates 
both energy denominators, that is, so long as8 p+ > k+(p2/k2), or 
τp > τk . Hence, to leading logarithmic accuracy for the longitudinal 
logarithm, one can replace τp/(τp + τk) � 	(τp − τk).

In the BFKL regime, one assumes that there is no strong hier-
archy between the transverse momenta, |k| ∼ |p|, so the condition 
τp > τk is automatically satisfied when p+ > k+ . In that case, one 
can freely integrate over transverse momenta in expressions like 

7 To keep expressions simple, we use the large-Nc limit at intermediate steps, but 
some of the final results, notably the DLA equation (17), are valid for any Nc .

8 For the purposes of power counting, one can use |k| ∼ |k̃| and |p| ∼ |p̃ − k̃|; 
indeed, the difference between e.g. k and k̃ is due to the scattering off the target, 
which is a comparatively small effect in the high transverse momenta (or small 
dipole sizes) regime of interest.

Eq. (6), to generate the Weizsäcker–Williams propagators of the 
soft gluons, according to∫

d2 p

(2π)2

pi

p2
eip·(x−z) = − i

2π

xi − zi

(x − z)2
. (8)

After also summing over all possible connections for the two emit-
ted gluons, one builds the relevant product of dipole kernels (i.e., 
Mx yuMu yz for the sequence of emissions illustrated in Fig. 2).

However, this is strictly correct only so long as the transverse 
phase-space is by itself not logarithmic, meaning so long as Y � ρ , 
where ρ ≡ ln(Q 2/Q 2

0 ) measures the logarithmic separation in 
transverse scales between the original dipole, with size r ≡ 1/Q , 
and the target, with size 1/Q 0. In the end, the transverse integra-
tions in Eq. (6) are restricted to this range, e.g. Q 2

0 � p2 � Q 2 (see 
below). For sufficiently large values of ρ , one opens the phase-
space for a logarithmic integration over p2, which favors rela-
tively large values |p| � |k|. In this regime, the theta-function 
	(τp −τk) = 	(p+ −k+(p2/k2)) becomes relevant and its effect is 
to reduce the longitudinal phase-space, roughly from Y to Y − ρ .

To the accuracy of interest, i.e. to correctly keep both the cor-
rections of orders ᾱsY and ᾱsρ

2 generated when integrating out 
the hard gluon p+ , the constraint τp > τk can be enforced directly 
in coordinate space, like p+ū2 > k+ z̄2. Here, we have anticipated 
that the corrections of the form ᾱsρ

2 come from emissions which 
are strongly ordered in transverse sizes, such that the daughter 
dipoles are much larger than the parent one. In this regime,

|z − x| � |z − y| � |z − u| � |u − x| � |u − y|
� r = |x − y| , (9)

and ū refers to any of the sizes, |u−x| or |u− y|, of the first pair of 
daughter dipoles, while z̄ similarly refers to the daughter dipoles 
produced by the second splitting. After performing the momen-
tum integrals in Eq. (6), summing over all the possible connections 
for both emitted gluons, and adding the other splitting sequence 
(where the gluon at z is emitted from the dipole (x, u)), one finds 
the following result from the 32 time-ordered graphs with two ‘re-
al’ gluons (at large Nc ):

(
ᾱs

2π

)2
q+∫

q+
0

dk+

k+

q+∫
k+

dp+

p+

∫
uz

	(p+ū2 − k+ z̄2)

× Mx yu
[
Mu yz Sxu Suz Sz y + Mxuz Sxz Szu Su y

]
, (10)

where ū = max (|u − x|, |u − y|) and z̄ = max (|z − x|, |z − y|,
|z − u|). Except for the theta-function enforcing time-ordering, this 
is recognized as the effect of two consecutive steps in the LO BFKL 
evolution.

To this result, one must add contributions coming from virtual 
graphs, evaluated to the same accuracy. The ‘real–virtual’ graphs in 
which the harder gluon (p+) is virtual, whereas the softer one (k+) 
is real, are the only ones that matter for the subsequent discussion 
of DLA. Consider first the 32 such graphs whose topologies (i.e. 
time-orderings) exist already at LLA, namely those where the two 

− g4N2
c

(2π)2

∫
uz

Sxu Suz Sz y

×
∫

pp̃kk̃

eip·(u−x)eip̃·(x−u)eik·(z−y)eik̃·(u−z) p · p̃
p2 p̃2

k · k̃
k2k̃

2

×
q+∫

q+
0

dk+

k+

q+∫
k+

dp+

p+
p+

p+ + k+ p2

k2

p+

p+ + k+ (p̃−k̃)2

k̃
2

.

p+

p+ + k+ p2

k2

=
τp

τp + τk

'
{

1 in BFKL

Θ(τp − τk) in DLA
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Real-Real Contribution

( ᾱs
2π

)2
∫ q+

q+0

dk+

k+

∫ q+

k+

dp+

p+

∫
uz

Mxyu[MuyzSxuSuzSzy +MxuzSxzSzuSuy]

×Θ(p+ū2 − k+z̄2), ū = max(|u− x|, |u− y|); z̄ = max(|z − x|, |z − y|)

Virtual-Real Contribution

−
( ᾱs

2π

)2
∫ q+

q+0

dk+

k+

∫ q+

k+

dp+

p+

∫
uz

MxyuMxyzSxzSzyΘ(p+ū2 − k+z̄2)

To DLA accuracy MuyzMxyu ' r2

ū2z̄4 and 1− SxuSuzSzy ' Tuz + Tzy ' 2T (z̄2)
and we generate logarithmic phase space∫ z̄2

r2

dū2

ū2

∫ q+

k+ z̄2

ū2

dp+

p+
=

∫ z̄2

r2

dū2

ū2

(
ln
q+

k+
− ln

z̄2

ū2

)
= Y ρ− ρ2

2

Y = ln
q+

k+
; ρ = ln

z̄2

r2
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Cancellation of Anti-Time Ordered Diagrams in DLA
Anti-time ordered graphs, involving factors p−

p−+k− ' Θ(τk − τp) are
also potentially enhanced by double transverse logs

∫ z̄2

r2

dū2

ū2

∫ q+

k+ z̄2

ū2

dp+

p+
=

∫ z̄2

r2

dū2

ū2
ln
z̄2

ū2
=
ρ2

2E. Iancu et al. / Physics Letters B 744 (2015) 293–302 297

Fig. 3. Pattern of cancellations (to DLA) in 2-gluon graphs with anti-time-ordering (τp < τk).

gluons have no overlap in time with each other (an example is 
shown in Fig. 2b). They give

−
(

ᾱs

2π

)2
q+∫

q+
0

dk+

k+

q+∫
k+

dp+

p+

∫
uz

Mx yuMx yz Sxz Sz y . (11)

In the BFKL context, this contribution is used to regulate the short-
distance singularities of Eq. (10) as u → x and u → y at a scale set 
by the original dipole size: ū � r. In the present context, it plays a 
similar role (as anticipated in Eq. (9)), except for the fact that only 
the time-ordered piece of (11) is needed for that purpose. That 
is, albeit the virtual graphs included in Eq. (11) do not naturally 
involve any time ordering, it is nevertheless useful to distinguish 
between the respective time-ordered (TO) and anti-time-ordered 
(ATO) contributions, by inserting 1 = 	(τp − τk) + 	(τk − τp) in 
the integrand of Eq. (11). (Here and from now on, τp = p+ū2

and τk = k+ z̄2.) Then the TO piece must be combined with the 
2-real-gluon contribution in Eq. (10), which is itself time-ordered, 
whereas the ATO piece is to be considered together with other 
virtual–real graphs, which are naturally ATO and will be discussed 
below.

From now on, we shall limit ourselves to the strict double–
logarithmic approximation (DLA), where each power of ᾱs is ac-
companied by either Yρ or ρ2. The corresponding contribution of 
Eq. (10) can be isolated by taking the single scattering approxi-
mation and restricting the integrations over u and z according to 
Eq. (9). This allows for simplifications like

Mu yzMx yu � r2

ū2 z̄4
,

1 − Sxu Suz Sz y � Tuz + T z y � 2T (z̄2) . (12)

For subsequent discussions, it is important to stress that, to DLA, it 
is only the last emitted gluon (the one with the largest transverse
size z̄) which contributes to scattering. Then the integrals over p+
and ū are both logarithmic, as anticipated, and can be evaluated as

z̄2∫
r2

dū2

ū2

q+∫
k+ z̄2

ū2

dp+

p+ =
z̄2∫

r2

dū2

ū2

(
ln

q+

k+ − ln
z̄2

ū2

)
= Yρ − ρ2

2
, (13)

where the logarithmic variables Y = ln(q+/k+) and ρ = ln(z̄2/r2)

refer to the phase-space available to the hard gluon p+ . Note that 
we have implicitly assumed above that Y > ρ , so that the integral 

over p+ has indeed support for any ū ≥ r. This can be recog-
nized as the condition for the lifetime τk = k+ z̄2 of the soft gluon 
fluctuation be (much) smaller than the ‘lifetime’ τq = q+r2 of the 
original dipole (the duration of the quantum process which has 
produced that dipole, e.g. the fluctuation of the virtual photon in 
DIS).

To summarize, by integrating out the intermediate gluon p+ , 
one has produced, besides the expected LLA contribution ᾱsYρ , 
also a contribution ᾱsρ

2, which can be interpreted as a NLO cor-
rection to the BFKL kernel for the emission of the soft gluon k+ . 
This correction matches the respective piece (that enhanced by a 
double transverse logarithm) of the full NLO result in Ref. [9]. The 
last remark might suggest that the remaining 2-gluon graphs, that 
have not been considered so far and which correspond to other 
time orderings, do not contribute to order ᾱsρ

2. But this is not 
quite true: contributions of this order arise from all the diagrams 
which are anti-time-ordered (ATO), in the sense that the lifetime 
of the hard gluon is shorter than that of the soft one (to DLA, at 
least). Topologically, the class includes two types of diagrams: (i)
real–virtual graphs where the hard gluon is virtual and overlaps 
in time with the soft gluon which is real (some examples are the 
graphs 1a, 1b, 2a, 3a, 3b, 4a, and 4b in Fig. 3); (ii) real–real 
graphs where the hard gluon is emitted after, and absorbed be-
fore, the soft one (see graph 2b in Fig. 3). To these genuinely ATO 
diagrams, one must add the ATO pieces of the virtual–real graphs 
without overlap in time (see graphs 1c, 1d, 3c, and 3d in Fig. 3, 
which represent the ATO part of graphs like that in Fig. 2b, left 
over from the earlier calculations), to cancel UV divergences and 
introduce an effective short-distance cutoff equal to r (cf. the dis-
cussion after Eq. (11)).

When evaluating graphs of the type (i) and (ii) above men-
tioned, one finds that the time integrations over the overlapping 
region produce a factor like

p−

p− + k− = τk

τp + τk
� 	(τk − τp) , (14)

where the theta-function approximation in the r.h.s. holds in the 
double-logarithmic region. This theta-function cuts off the rapid-
ity phase-space at the scale ρ (with ρ < Y ) and thus produces a 
contribution ∝ ρ2, as anticipated:

z̄2∫
r2

dū2

ū2

k+ z̄2

ū2∫
k+

dp+

p+ =
z̄2∫

r2

dū2

ū2
ln

z̄2

ū2
= ρ2

2
. (15)

However, double logs cancel in the sum of all ATO diagrams. This
also explains the peculiar way double logs arise in [Balitsky & Chirilli ’08].
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DLA Evolution for the Scattering Amplitude and the
Lifetime Ordering Constraint

We conclude that perturbative corrections enhanced by double
logarithms Y ρ or ρ2 can be resummed to all orders by solving a
modified DLA equation involving manifest time-ordering

A(q+, r2) = A(0, r2) + ᾱs

∫ 1/Q2
0

r2

dz2

z2

∫ q+ r2

z2

q+
0

dk+

k+
A(k+, z2)

As it stands, this equation is non-local in rapidity

∂YA(Y, ρ) = ᾱs

∫ ρ

0

dρ1A(Y − ρ+ ρ1, ρ)
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The Resummed BK Equation
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Towards a Resummed Rapidity-Independent Kernel

• By direct iteration of the modified DLA equation, we get

A(Y, ρ) =

∫ ρ

0

dρ1f(Y, ρ− ρ1)A(0, ρ1),

f(Y, ρ) = δ(ρ) + Θ(Y − ρ)

∞∑

k=1

ᾱks (Y − ρ)kρk−1

k!(k − 1)!
︸ ︷︷ ︸

=
√
ᾱs(Y−ρ)

ρ I1(2
√
ᾱs(Y−ρ)ρ)

• This can be written in integral representation:
f(Y, ρ) = Θ(Y − ρ)f̃(Y, ρ);

f̃(Y, ρ) =

∫ 1
2 +i∞

1
2−i∞

dξ

2πi
exp

[
ᾱs

1− ξ (Y − ρ) + (1− ξ)ρ
]
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The Local Kernel in DLA Approximation
A change of variables brings this as usual Mellin representation

f̃(Y, ρ) =

∫
C

dγ

2πi
J(γ) exp[ᾱsχDLA(γ)Y + (1− γ)ρ]

ᾱsχDLA(γ) =
1

2

[
−(1− γ) +

√
(1− γ)2 + 4ᾱs

]
=

ᾱs
(1− γ)

− ᾱ2
s

(1− γ)3
+ · · ·

J(γ) = 1− ᾱsχ′DLA(γ) = 1− ᾱs
(1− γ)2

+ · · ·

Mellin representation and exponentiation in Y ensures the existence of an

evolution equation for f (and thus for A) with an energy- independent

kernel KDLA(ρ) defined as inverse Mellin of χDLA(γ)

Ã(Y, ρ) = Ã(0, ρ) + ᾱs

∫ Y

0

dY1

∫ ρ

0

dρ1KDLA(ρ− ρ1)Ã(Y1, ρ1), Y > ρ

KDLA(ρ) =
J1(2

√
ᾱsρ2)√

ᾱsρ2
= 1− ᾱsρ

2

2
+

(ᾱsρ
2)2

12
+ · · ·

Coincides with momentum-space kernel proposed by [Sabio Vera ’05];
compare with non-local approaches in [Salam ’98; Motyka & Staśto ’09; Beuf ’14].
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The Change in the Initial Condition: Impact Factor
Resummation

Jacobian of Mellin transform induces also resummation in the initial
condition (∼ impact factor):

Ã(0, ρ) =

∫ ρ

0

dρ1f̃(0, ρ− ρ1)A(0, ρ1),

f̃(0, ρ) = δ(ρ)−√ᾱsJ1(2
√
ᾱsρ2).

[Ã(Y, ρ) coincides with physical amplitude A(Y, ρ) for Y > ρ]

(J1 is the Bessel function) and the initial condition f̃(0, ρ) obtained as the limit of Eq. (23) at the
unphysical point Y = 0 :

f̃(0, ρ) = δ(ρ)−√ᾱs J1

(
2
√
ᾱsρ2

)
. (28)

To summarize, the solution to Eq. (26) with the kernel (27) and the initial condition (28) exists
for any positive values Y and ρ. For Y > ρ it reduces, by construction, to the original function
f(Y, ρ) in Eq. (21). The importance of this construction is that it can be immediately generalized
to the evolution of the dipole amplitude, which can be thus rewritten as a local equation in Y .
First, we define the analytic continuation of A(Y, ρ) according to (cf. Eq. (19))

Ã(Y, ρ) ≡
∫ ρ

0
dρ1 f̃(Y, ρ− ρ1)A(0, ρ1). (29)

This new function coincides with the physical amplitude A(Y, ρ) for Y > ρ. For general, positive,
values of Y and ρ, it obeys an equation similar to Eq. (26), that is,

Ã(Y, ρ) = Ã(0, ρ) + ᾱs

∫ Y

0
dY1

∫ ρ

0
dρ1KDLA(ρ− ρ1)Ã(Y1, ρ1) , (30)

with an initial condition Ã(0, ρ) which follows from Eqs. (29) and (28). For illustration, consider
two interesting initial conditions, namely A(0, ρ) = 1, which has the advantage of simplicity,
and A(0, ρ) = ρ, which is the limit of the McLerran-Venugopalan (MV) model for dipole-nucleus
scattering in the single scattering approximation [25]. One easily finds

Ã(0, ρ) =





1

2

[
1 + J0

(
ρ̄
)]

for A(0, ρ) = 1,

ρ

2

[
1 + J0

(
ρ̄
)

+
π

2
H0

(
ρ̄
)
J1

(
ρ̄
)
− π

2
H1

(
ρ̄
)
J0

(
ρ̄
)]

for A(0, ρ) = ρ,
(31)

where we have temporarily used the notation ρ̄ = 2
√
ᾱsρ2 and where Hα is the Struve function.

Eq. (30) is the sought-after local version of the DLA equation for the dipole amplitude: for
Y > ρ, its solution coincides, by construction, with the respective physical amplitude, i.e. with the
solution to the non-local equation (17). Notice that this rewriting of the DLA evolution in local
form is tantamount to a complete reshuffling of the perturbation series: both the kernel in Eq. (30)
and the initial condition in Eq. (31) resum double-collinear terms of the type (ᾱsρ

2)n for any n.
For instance, the very first iteration of this equation generates all the terms linear in ᾱsY , i.e.
the terms of the type ᾱsY ρ(ᾱsρ

2)n with n ≥ 0, that would be produced by iterating the original
equation (17) to all orders. Remarkably, even though both the kernel and the initial condition
exhibit oscillations as functions of ρ, their combined effect within equations like (30) or (26) yields
a solution which is positive definite in the physical region Y > ρ, order by order in ᾱs (e.g., this
produces the perturbative solution (20) for f(Y, ρ)).

As we now explain, it is rather straightforward to promote this local DLA equation into a more
complete equation, which includes the right BFKL and BK physics to NLL accuracy. To that aim,
and starting with Eq. (30), we shall make backwards the steps leading from the LO BFKL equation
(1) to the ‘näıve’ DLA equation (3), that is:

(i) we use the full expression for the dipole scattering amplitude, and more precisely its analytic
continuation T̃ (Y, ρ) ≡ e−ρÃ(Y, ρ) (which coincides with the physical amplitude for Y > ρ);

12
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Resummed BFKL/BK Evolution

∂T̃xy
∂Y

=

∫
d2z

2π
ᾱs(rmin) (x−y)2

(x−z)2(z−y)2 (T̃xz + T̃zy − T̃xy − T̃xzT̃zy)

×
[

(x− y)2

min{(x− z)2, (y − z)2}

]±ᾱsA1

KDLA(ρ̄xyz)

[Iancu, JDM, Mueller, Soyez & Triantafyllopoulos ’15]

n Written in terms of a rapidity-independent kernel

KDLA(ρ̄(x,y, z)) ≡ J1(2
√
ᾱsρ̄2

xyz)√
ᾱsρ̄2

xyz

, as compared to previous

strategies [Motyka & Staśto ’ 09; Beuf ’14] (see also [Sabio Vera ’05]).

n Nontrivial resummation involved for the initial condition as well.
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Numerical Solution of Resummed BK

E. Iancu et al. / Physics Letters B 744 (2015) 293–302 301

Fig. 5. Numerical solutions to the BK equation for the dipole amplitude at strict LO (i.e. Eq. (32) with KDLA → 1), NLO (meaning with kernel KDLA → KNLO), and after 
resummation (i.e. with the full kernel KDLA of Eq. (27)). The long-dashed (black) line in figure (c) indicate the transition between Y < ρ and Y > ρ; short-dashed, colorful, 
lines are the direct result of the numerical simulation, while solid lines have been matched to the expected physical behavior for ρ > Y , i.e. T ∝ e−ρ . (For interpretation of 
the references to color in this figure, the reader is referred to the web version of this article.)

Fig. 6. The rapidity-dependence of the target saturation momentum Q 2
s (Y ) as obtained by numerically solving the BK equation (32) with either the LO (BFKL) kernel, or the 

fully resummed one, and with ᾱs = 0.25. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

A crude estimate of the saturation line13 based on the DLA re-
sult in Eq. (21) yields [38]

ρs(Y ) ≡ ln
Q 2

s (Y )

Q 2
0

� λsY , with λs = 4ᾱs

1 + 4ᾱs
, (33)

which is significantly smaller than the respective LO result (no re-
summation) λBFKL � 4.88ᾱs [35]. This suggests that the reduction 
of the longitudinal phase-space coming from time-ordering and 
giving rise to collinear double logs leads to a considerable reduc-
tion in the speed of the evolution.

This expectation is indeed confirmed by the numerical solutions 
to Eq. (32). In Fig. 5, we show the results for ᾱs = 0.25 and for 
an initial condition of the MV type, with A(0, ρ) = 1 (and hence 
Ã(0, ρ) as given in the first line of Eq. (31)). As before, the results 
with all-order resummation (cf. Fig. 5c) are compared to the re-
spective predictions of LO BFKL (cf. Fig. 5a) and to the ‘NLO’ results 
obtained by using KNLO(ρ) = 1 − ᾱsρ

2/2 (cf. Fig. 5b). The latter are 
highly unstable and physically meaningless — the evolution rapidly 
leads to a negative scattering amplitude — as it could have been 
anticipated in view of the pathological behavior of the correspond-
ing characteristic function χNLO(γ ) in Fig. 4. Similar instabilities 
have been recently observed [28] in numerical simulations of the 
full NLO BK equation and they have been traced back to the large 
double-logarithmic terms ∼ ᾱsρ

2 in the NLO kernel, in agreement 
with our present findings. By contrast, the evolution with the fully 

13 We recall the saturation line ρs(Y ) is defined by the condition that T (Y , ρ) ∼ 1
when ρ = ρs(Y ).

resummed kernel, shown in Fig. 5c, is perfectly smooth. We also 
see in Fig. 5c that the non-physical oscillations at ρ > Y intro-
duced by resummation in the initial condition tend to disappear 
at larger rapidities. Finally, by comparing the LO results in Fig. 5a
to the resummed ones in Fig. 5c, one clearly sees the anticipated 
reduction in the evolution speed.

To more precisely characterize this reduction, we have numer-
ically computed the target saturation momentum Q 2

s (Y ) for both 
the LO BFKL kernel and the fully resummed kernel, with results 
shown in Fig. 6 (for ᾱs = 0.25 once again). Clearly, the growth 
of the saturation scale with Y is considerably reduced by the re-
summation: for sufficiently large Y , the saturation exponent λs ≡
dρs/dY approaches a value which is smaller by, roughly, a factor 
of 2 for the resummed kernel as compared to LO one. Remark-
ably, the asymptotic value which is thus obtained in the presence 
of resummation, namely λs � 0.55, agrees quite well with the re-
spective DLA estimate in Eq. (33). We leave more detailed studies 
to a subsequent publication [38].
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Initial condition of MV type A(0, ρ) = 1

Reduction of phase-space coming from time-ordering and giving rise
to collinear double logs leads to a considerable reduction in the speed
of the evolution

For ρ > Y , expected physical behavior T ∝ e−ρ
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Impact on Phenomenology: Rapidity Dependence of
the Saturation Momentum

E. Iancu et al. / Physics Letters B 744 (2015) 293–302 301

Fig. 5. Numerical solutions to the BK equation for the dipole amplitude at strict LO (i.e. Eq. (32) with KDLA → 1), NLO (meaning with kernel KDLA → KNLO), and after 
resummation (i.e. with the full kernel KDLA of Eq. (27)). The long-dashed (black) line in figure (c) indicate the transition between Y < ρ and Y > ρ; short-dashed, colorful, 
lines are the direct result of the numerical simulation, while solid lines have been matched to the expected physical behavior for ρ > Y , i.e. T ∝ e−ρ . (For interpretation of 
the references to color in this figure, the reader is referred to the web version of this article.)

Fig. 6. The rapidity-dependence of the target saturation momentum Q 2
s (Y ) as obtained by numerically solving the BK equation (32) with either the LO (BFKL) kernel, or the 

fully resummed one, and with ᾱs = 0.25. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

A crude estimate of the saturation line13 based on the DLA re-
sult in Eq. (21) yields [38]

ρs(Y ) ≡ ln
Q 2

s (Y )

Q 2
0

� λsY , with λs = 4ᾱs

1 + 4ᾱs
, (33)

which is significantly smaller than the respective LO result (no re-
summation) λBFKL � 4.88ᾱs [35]. This suggests that the reduction 
of the longitudinal phase-space coming from time-ordering and 
giving rise to collinear double logs leads to a considerable reduc-
tion in the speed of the evolution.

This expectation is indeed confirmed by the numerical solutions 
to Eq. (32). In Fig. 5, we show the results for ᾱs = 0.25 and for 
an initial condition of the MV type, with A(0, ρ) = 1 (and hence 
Ã(0, ρ) as given in the first line of Eq. (31)). As before, the results 
with all-order resummation (cf. Fig. 5c) are compared to the re-
spective predictions of LO BFKL (cf. Fig. 5a) and to the ‘NLO’ results 
obtained by using KNLO(ρ) = 1 − ᾱsρ

2/2 (cf. Fig. 5b). The latter are 
highly unstable and physically meaningless — the evolution rapidly 
leads to a negative scattering amplitude — as it could have been 
anticipated in view of the pathological behavior of the correspond-
ing characteristic function χNLO(γ ) in Fig. 4. Similar instabilities 
have been recently observed [28] in numerical simulations of the 
full NLO BK equation and they have been traced back to the large 
double-logarithmic terms ∼ ᾱsρ

2 in the NLO kernel, in agreement 
with our present findings. By contrast, the evolution with the fully 

13 We recall the saturation line ρs(Y ) is defined by the condition that T (Y , ρ) ∼ 1
when ρ = ρs(Y ).

resummed kernel, shown in Fig. 5c, is perfectly smooth. We also 
see in Fig. 5c that the non-physical oscillations at ρ > Y intro-
duced by resummation in the initial condition tend to disappear 
at larger rapidities. Finally, by comparing the LO results in Fig. 5a
to the resummed ones in Fig. 5c, one clearly sees the anticipated 
reduction in the evolution speed.

To more precisely characterize this reduction, we have numer-
ically computed the target saturation momentum Q 2

s (Y ) for both 
the LO BFKL kernel and the fully resummed kernel, with results 
shown in Fig. 6 (for ᾱs = 0.25 once again). Clearly, the growth 
of the saturation scale with Y is considerably reduced by the re-
summation: for sufficiently large Y , the saturation exponent λs ≡
dρs/dY approaches a value which is smaller by, roughly, a factor 
of 2 for the resummed kernel as compared to LO one. Remark-
ably, the asymptotic value which is thus obtained in the presence 
of resummation, namely λs � 0.55, agrees quite well with the re-
spective DLA estimate in Eq. (33). We leave more detailed studies 
to a subsequent publication [38].
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The growth of the saturation scale with Y is considerably reduced by
the resummation: for sufficiently large Y , the saturation exponent
λs ≡ dρs

dY smaller by factor 2 compared to LO BFKL (asymptotically,
λs ∼ 0,55).
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Including Single Transverse Logarithms

Taking collinear limit 1/Qs � |z − x| ' |z − y| ' |z − u| � |u− x|
' |u− y| � r ≡ |x− y| of NLO BK evolution, one gets

dT (r)

dY
= ᾱs

∫ 1/Q2
s

r2
dz2 r

2

z4

(
1− 1

2
ᾱs ln2 z

2

r2
− 11

12
ᾱs ln

z2

r2

)
T (z)

+ Coefficient A1 = 11/12 of the single log related to DGLAP

anomalous dimension: γ(ω) = 1
ω −A1 +O

(
ω,

Nf
N3
c

)

+ Can be taken into account to all orders by shifting the anomalous
dimension of the resummed kernel.
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The Running Coupling Prescription

Running coupling log is resummed by making ᾱs → ᾱs(r
2)
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Figure 1: Running coupling for various schemes and configurations. (a) As a function of the daughter dipole
size |x − z|, with φ = 0 the angle between the parent dipole x − y and the daughter one x − z. (b) The
same with φ = π/6. (c) As a function of the angle φ for fixed daughter dipole size |x − z| = 1.5. Black
(continuous): The minimal dipole scheme as defined in Eq. (11). Red (dashed): The “fac” scheme as given
in Eq. (12). Blue (dotted): The Balitsky scheme [32]. In all cases the parent dipole size is |x− y| = 1, the
coupling is smoothly frozen at the value 0.7 and ΛQCD = 0.2.

evaluated at ρ =
√
LxzrLyzr, with Lxzr ≡ ln[(x− z)2/r2], and a new factor, which features the exponent

±ᾱsA1 (the positive sign in the exponent is taken when |x−y| < min{|x−z|, |y−z|} and the negative sign
otherwise), which expresses the contribution of the single collinear logarithms.

From the above discussion, is should also be clear that the present resummation of SLTs is only partial:
it refers to the particular class of such corrections which are generated by the first non-singular piece in the
expansion in Eq. (8). The higher terms in this ω–expansion will produce single collinear logarithms too, but
only starting at higher orders in perturbation theory (NNLO or higher). At the level of the BFKL equation,
more complete resummations of the single logarithms have been devised in [52–54], but so far it is not clear
how to extend these resummation schemes to a non-linear evolution equation like BK.

Returning to Eq. (9), the tilde symbol in T̃xy is intended to remind that this is truly a suitable analytic
continuation of the dipole amplitude which coincides with the physical quantity Txy only for ρ < Y . For
ρ > Y , the physical amplitude can be obtained by either solving an equation non-local in Y , or by matching
onto the solution to the DGLAP equation [50]. However, explicit numerical studies at DLA level have shown
that the solution T̃xy to Eq. (9) remains very close to the actual physical amplitude, including for ρ > Y . For
this reason, we shall ignore this subtlety (and the related issue of the resummation in the initial condition)
for the purpose of the fits to be constructed in the next section. We shall return to a more detailed study
of these issues in a forthcoming publication [59].

4. Resumming the running coupling corrections

The last source of potentially large NLO corrections to the BK equation are the running coupling
corrections, i.e. the logarithmic terms proportional to b̄ in the SI term in Eq. (1). Such terms can grow large
when the scales in their arguments are very disparate. More precisely, the first logarithm can be problematic
when r is much smaller or much larger than 1/µ, while the second when the soft gluon at z is collinear to
the quark or the antiquark composing the parent dipole. We need to choose µ in such a way to cancel these
potentially large logarithms, which could otherwise spoil the convergence of the perturbative expansion2. It
is clear that there is not a unique choice, but in QCD one usually expects the hardest scale to determine
the running of the coupling. Indeed, a quick inspection shows that the smallest dipole prescription

ᾱmin = ᾱs(rmin) with rmin = min{|x−y|, |x−z|, |y−z|} (11)

2It is rather important to point out here that µ should cancel only these logarithms and not those discussed earlier which
are of different physical origin. Of course one can proceed to such a choice and cancel all the NLO logarithms, but the result
will be extremely unstable w.r.t. small variations of µ.

7

Different prescriptions:

• Smallest Dipole:
ᾱmin = ᾱs(rmin), rmin = min{|x− y|, |x− z|, |y − z|}

• FAC: ᾱfac =
[

1
ᾱs(|x−y|) + (x−z)2−(y−z)2

(x−y)2
ᾱs(|x−z|)−ᾱs(|y−z|)
ᾱs(|x−z|)ᾱs(|y−z|)

]
• Balitsky: ᾱBal =

ᾱs(|x− y|)
[
1 + ᾱs(|x−z|)−ᾱs(|y−z|)

ᾱs(|x−z|)ᾱs(|y−z|)
ᾱs(|x−z|)(y−z)2−ᾱs(|y−z|)(x−z)2

(x−z)2

]
Collinear Resummation in High-Energy Evolution IFT UAM/CSIC Madrid José Daniel Madrigal
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Fits to HERA Data
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Introduction Double Logs Resummed BK HERA Fits Conclusions Back-Up Slides

Market of Initial Conditions

We get successful fits with two kinds of initial conditions:

P Golec-Biernat–Wüsthoff (GBW)

T (r, Y0) =

{
1− exp

[
−
(
r2Q2

0

4

)p]}1/p

P Running Coupling McLerran–Venugopalan (rcMV)

T (r, Y0) =

{
1− exp

[
−
(
r2Q2

0

4
ᾱs(r)

[
1 + ln

(
ᾱs,sat

ᾱs(r)

)])p]}1/p

The running of the coupling is given by αs(r) = 1
bNf

ln[4C2
α/(r

2Λ2
Nf

)]
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Introduction Double Logs Resummed BK HERA Fits Conclusions Back-Up Slides

From Dipole Amplitude to Cross Section:
Parameters in the Fit

σγ
∗p
L,T (Q2, x) = 2πR2

p

∑
f

∫
d2r

∫ 1

0

dz|Ψ(f)
L,T (r, z;Q2)|2T (r, ln 1/x̃f )

σred =
Q2

4π2αem

[
σγ
∗p
T +

2(1− y)

1 + (1− y)2
σγ
∗p
L

]
x̃f = x(1 + 4m2

f/Q
2) (we take x̃c < 0,01); FL =

Q2

4π2αem
σγ
∗p
L

• 3 light quarks and charm all treated on the same footing (good fits for
mu,d,s = 50− 140 MeV and mc = 1,3− 1,4 GeV)

Just 4 free parameters:

n Rp: proton radius

n Q0: target’s inverse transverse size

n p: steepness of the amplitude towards saturation

n Cα: fudge factor in the running coupling

Collinear Resummation in High-Energy Evolution IFT UAM/CSIC Madrid José Daniel Madrigal
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How the Fits Look Like

The Fit in plots
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How the Fits Look Like
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Figure 2: Description of the HERA data obtained by the fits using the rcMV initial condition. Each box
corresponds to a given value of Q2 as indicated (in GeV2) in the top-right corner. For each fit we plot
the ratio of the prediction to the central experimental value. The (green) band represents the experimental
uncertainty.
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How the Fits Look Like

init RC sing. χ2 per data point parameters
cdt. schm logs σred σcc̄red FL Rp[fm] Q0[GeV] Cα p
GBW small yes 1.135 0.552 0.596 0.699 0.428 2.358 2.802
GBW fac yes 1.262 0.626 0.602 0.671 0.460 0.479 1.148
rcMV small yes 1.126 0.565 0.592 0.707 0.633 2.586 0.807
rcMV fac yes 1.228 0.647 0.594 0.677 0.621 0.504 0.541
GBW small no 1.121 0.597 0.597 0.716 0.414 6.428 4.000
GBW fac no 1.164 0.609 0.594 0.697 0.429 1.195 4.000
rcMV small no 1.093 0.539 0.594 0.718 0.647 7.012 1.061
rcMV fac no 1.132 0.550 0.591 0.699 0.604 1.295 0.820

Table 1: χ2 and values of the fitted parameters entering the description of the HERA data. The fit includes the 252 σred data
points. The quoted χ2 for σcc̄

red and FL are obtained a posteriori.

Running coupling. We consider the two prescriptions given by Eqs. (11) and (12). For the explicit expression
of the strong coupling in coordinate space in terms of r we introduce a fudge factor as in [22], namely

αs(r) =
1

bNf
ln
[
4C2

α/(r
2Λ2

Nf
)
] , (16)

with bNf
= (11Nc − 2Nf)/12π. This fudge factor is also included in the rcMV type initial condition in (15).

The Nf -dependent Landau pole is obtained by imposing αs(M
2
Z) = 0.1185 at the scale of the Z mass [63]

and continuity of αs at the flavour thresholds, using mc = 1.3 GeV and mb = 4.5 GeV. To regularise the
infrared behaviour, we have decided to freeze αs at a value αsat = 1 and we have checked explicitly that
reducing this down to, for example, 0.7 does not affect the fit in any significant manner.

Note that we do not include any form of resummation or matching for ln 1/r2 > Y , as introduced in
[50], in these initial conditions. One of the reasons for not doing so is that the extra factor in the initial
condition can always be reabsorbed in a re-parametrisation. Furthermore, a proper matching at small dipole
sizes, suited for phenomenological studies, would require a careful treatment of the small-dipole region. In
that respect, the resummed BK evolution is expected to perform a better job than a fixed matching with
a fixed asymptotic behaviour. We leave a better treatment, e.g. a genuine matching to DGLAP evolution,
for future work.

Rapidity evolution. Of course this is determined by the resummed BK equation given in (9). Here, we again
consider two separate cases, one in which the evolution resums only the leading double logarithms and one
in which it also includes the single ones.

From the dipole amplitude to observables. Once we have the dipole amplitude for all rapidities and dipole
sizes, we use the standard dipole formalism to obtain the physical observables:

σγ
∗p

L,T(Q2, x) = 2πR2
p

∑

f

∫
d2r

∫ 1

0

dz
∣∣Ψ(f)

L,T(r, z;Q2)
∣∣2 T (ln 1/x̃f , r), (17)

where the transverse and longitudinal virtual photon wavefunctions read

∣∣Ψ(f)
L (r, z;Q2)

∣∣2 = e2
q

αemNc
2π2

4Q2z2(1− z)2K2
0 (rQ̄f ), (18)

∣∣Ψ(f)
T (r, z;Q2)

∣∣2 = e2
q

αemNc
2π2

{[
z2 + (1− z)2

]
Q̄2
fK

2
1 (rQ̄f ) +m2

fK
2
0 (rQ̄f )

}
. (19)

In the above we have introduced the customary notation Q̄2
f = z(1− z)Q2 +m2

f , x̃f = x(1 + 4m2
f/Q

2), and
we have assumed a uniform distribution over a disk of radius Rp in impact parameter space. The sum in (17)

9

init RC sing. χ2/npts for Q2
max

cdt. schm logs 50 100 200 400
GBW small yes 1.135 1.172 1.355 1.537
GBW fac yes 1.262 1.360 1.654 1.899
rcMV small yes 1.126 1.170 1.182 1.197
rcMV fac yes 1.228 1.304 1.377 1.421
GBW small no 1.121 1.131 1.317 1.487
GBW fac no 1.164 1.203 1.421 1.622
rcMV small no 1.093 1.116 1.106 1.109
rcMV fac no 1.131 1.181 1.171 1.171

Table 2: Evolution of the fit quality when including data at larger Q2 (in GeV2).

runs over all quark flavours and we will include the contributions from light quarks with mu,d,s = 100 MeV
as well as from the charm quark with mc = 1.3 GeV. From the longitudinal and transverse cross-sections,
we can deduce the reduced cross-section and the longitudinal structure function as

σred =
Q2

4π2αem

[
σγ

∗p
T +

2(1− y)

1 + (1− y)2
σγ

∗p
L

]
, (20)

FL =
Q2

4π2αem
σγ

∗p
L . (21)

When the quark masses, the value of the strong coupling at the Z mass and its frozen value in the
infrared have been fixed, we are left with 4 free parameters according to our choice of initial condition: Rp
the “proton radius”, Q0 the scale separating the dilute and dense regimes, Cα the fudge factor in the running
coupling in coordinate space, and p which controls the approach to saturation in the initial condition.

We have fitted these parameters to the combined HERA measurements of the reduced photon-proton
cross-section [38]. Since the BK equation is applicable only at small-x, we have limited ourselves to the
region x ≤ 0.01. We note that since Eq. (17) probes dipoles at the rapidity ln 1/x̃f , the exact cut we impose
is x̃c ≤ 0.01 since the most constraining cut comes from the charm, the most massive quark we include in
our model. Accordingly, our initial condition for the BK evolution corresponds to x̃ = 0.01. Furthermore,
since we do not expect the BK equation to capture the full collinear physics, we impose the upper bound
Q2 < Q2

max. By default we will use Q2
max = 50 GeV2 but we will also give results for extensions to larger

Q2. In the default case we have a total of 252 points included in the fit. We have added the statistical and
systematic uncertainties in quadrature.3

The results of our fits for the 23 = 8 cases, depending on the initial condition, the running coupling
prescription and the inclusion or not of single logarithms in the kernel, are presented in Table. 1. The table
includes the parameter values obtained from fitting the σred data and, besides the fit χ2, it also indicates
the χ2 obtained a posteriori for the latest σcc̄red [64] and FL [65] measurements. These results deserve a few
important comments.

(i) In general, the overall quality of the fit is very good, reaching χ2 per point around 1.1-1.2.
(ii) Apart from a few small exceptions (see below), all the parameters take acceptable values of order one.

Note that we have manually bounded p between 0.25 and 4. Whenever it reached the upper limit,
larger values only led to minor improvements in the quality of the fit.

(iii) The two initial conditions give similar results, with a slight advantage for the rcMV option, which is
likely due to the extra parameter. Note that for a standard MV-type of initial condition T (Y0, r) =
{1− exp[−(r2Q2

0/4 [c+ ln(1 + 1/rΛ)])p]}1/p, we have not been able to obtain a χ2 per point below 1.3
and the parameters, typically c or p, tend to take unnatural values.

3A more involved treatment of the correlated systematic uncertainties leads to similar results with slightly worse χ2 per
points (about 0.04).
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What the Fit Tells Us

n Very good quality fits for the most recent HERA data

(H1+ZEUS combined analysis) for σγ
∗p

red : χ2 per point ∼ 1.1-1.2

n Very discriminatory

Favors Disfavors
rcMV initial condition 
(pQCD + saturation) 

fixed-coupling MV and GBW 
(at high Q2) initial conditions 

physical prescriptions for running 
(FAC, smallest dipole) Balitsky prescription for RC 

physical values of fit parameters anomalous dimension >1 
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Conclusions and Outlook
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Summary

• In the LHC, very low values of x will be probed in pp, pA and
AA collisions, providing a great opportunity to understand the
high-energy dynamics of strong interactions.

• Our study assembles for the first time all the important
contributions to high-energy QCD evolution: rapidity/energy
logs, collinear double and single logs, running coupling and
saturation

• We identified the diagrammatic origin of double transverse logs
and show how to resum them into a local kernel

• We provided very solid and discriminatory fits to high-precision
DIS data
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• We identified the diagrammatic origin of double transverse logs
and show how to resum them into a local kernel

• We provided very solid and discriminatory fits to high-precision
DIS data
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What Next?

1 Double Logs in an Arbitrary Frame: Symmetric γ∗γ∗ Scattering

2 Introduce Energy-Momentum Conservation (γ(ω = 1) = 0)

3 Resummation of Impact Factor in k⊥ Factorization

4 Collinear Resummation in Inclusive Forward Hadron Production
[Staśto, Xiao & Zaslavsky’13; Altinoluk, Armesto, Beuf, Kovner & Lublinsky’14]

5 Adding Pure NLO Terms in BK Equation

6 Performing Full Matching with DGLAP

7 Use of the Extracted Dipole Amplitude in Processes Like:
particle multiplicity in hadronic collisions, the diffractive
structure functions, the elastic production of vector mesons, or
the forward particle production in heavy-ion collisions
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Collinear Resummation à la Salam

Double Mellin Representation for BFKL Green’s function

G(k, k0, Y ) =
1

k2

∫ a+i∞

a−i∞

dω

2πi

∫ 1
2 +i∞

1
2−i∞

dγ

2πi

(
s

kk0

)ω
eγρ

1

ω − κ(ω, γ)
,

ρ = ln(k2/k2
0); κ(ω, γ) = ᾱsχ(γ) + ᾱ2

sχ1(ω, γ) + · · ·

Matching with DGLAP through identification of relevant evolution
variable for k2 > k2

0 and viceversa: ω-shift

G(k, k0, Y ) =
1

k2

∫ a+i∞

a−i∞

dω

2πi

∫ 1
2 +i∞

1
2−i∞

dγ

2πi

( s
k2

)ω
e(γ+ω/2)ρ 1

ω − κ(γ, ω)

=
1

k2
0

∫ a+i∞

a−i∞

dω

2πi

∫ 1
2 +i∞

1
2−i∞

dγ

2πi

(
s

k2
0

)ω
e(1−γ+ω/2)(−ρ) 1

ω − κ(ω, γ)
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Dipole Scattering Amplitude

Glauber-Mueller Formula for Dipole S-Matrix

S(r, Y ) = exp

[
−r

2Q2
s(Y )

4

]

(T (r) ∼ 1 for r � 1
Qs

(black disk limit); T (r) ∼ 0 for r � 1
Qs

(color

transparency)

GBW Model for Dipole Cross Section

σdip = σ0

[
1− exp

(
−r

2Q2
s(x)

4

)]
; Q2

s(x) = Q2
0

(x0

x

)λ

AAMQS Parametrization

T (r, b) = 1− exp

[
− (r2Q2

s0(b))γ

4
ln

(
1

Λr
+ e

)]
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Saturation Momentum

Gribov-Levin-Ryskin Estimate

Qs ∼ α2
sΛQCD

(
1

x

)αP−1

DLA Estimate of Rapidity Dependence of Dipole Scattering

Amplitude (r � 1/Qs0)

T (r, Y ) ∼ (rQs0)2(ᾱsY )1/4ρ−3/4 exp[2
√

2ᾱsY ρ]
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BFKL Green’s Function, Dipole Amplitude and
Unintegrated Gluon Distribution

TYr1r2
=

∫
d2r′1d2r′2G̃(r1, r2; r′1, r

′
2;Y )e−iq· (r

′
1+r′2)

2

=

∫
d2k

(2π)2
(1− eik·r01)T̃Y (k) (q = 0)

αs(k
2)φ(k, Y ) =

NcS⊥
(2π)3

k2T̃Y (k)

G̃(r1, r2; r′1, r
′
2;Y ) =

∫
d2kd2k′eik·r12eik·(r12−r1′2′ )

× (1− e−i(k+q/2)·r12)(1− ei(−k+q/2)·r12)

×G(k + q/2,−k + q/2;k′ + q/2,−k′ + q/2;Y )

× (1− ei(k+q/2)·r1′2′ )(1− e−i(−k+q/2)·r1′2′ )
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Completing DLA to BFKL/BK Evolution

We can now easily promote our local DLA equation to easily include NLL
BFKL/BK:

1 T̃ (Y, ρ) = e−ρÃ(Y, ρ)

2 Return to transverse coordinates: ρ = ln(1/r2Q2
0); ρ− ρ1 =

ln(z2/r2); T̃ (Y, ρ) = T̃xy(Y ); 2T̃ (Y, z2)→ T̃xz(Y ) + T̃zy(Y )

3 Restore full dipole kernel r2

z4 dz2 → 1
π
Mxyzd2z

4 Introduce the virtual term and temove IR and UV cutoffs in the z
integration

5 Replace the argument of KDLA by ln z2

r2
→
√
LxzrLyzr, with

Lxzr ≡ ln[(x− z)2/(x− y)2]
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