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Motivation

What is a Lifshitz field theory?

t → λz t, x i → λx i

E. M. Lifshitz, 1941

S =

∫
dt dD x

(
1

2
∂tφ∂tφ+ φ(−∆)zφ

)
Poincaré group is only possible when z = 1.

For high energy physicist, the important feature is the improved UV regime

G(ω, pi ) ∼
1

ω2 + p2z
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Motivation

Condensed matter
It explains tri-critical phenomena known as ”Lifshitz points”

S =

∫
dt dD x

(
1

2
∂tφ∂tφ+ φ(−∆)zφ+ α1φ(−∆)z−1φ+ ...+ αz−1φ∆φ

)
The theory can flow from the anisotropic scaling to the isotropic one depending on
the RGE of the coupling constants.

z can then be though as an order parameter.

Lorentz invariance emerges in the IR with a light speed c2 = αz−1

S. Chadha and H. B. Nielsen, 1982
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Motivation

Lifshitz Theories in curved space
We are interested in studying Lifshitz field theories in curved space

ds2 = (N2 − Ni N
i )dt2 − 2Ni dx i − γij dx i dx j

t → f (t) x i → x̃ i (x j , t)

S =

∫
dtdD x

√
|g | (LnφLnφ+ φ(−∆)zφ+ ...)

Can produce gravitational counterterms and phenomena analogous to the Weyl
anomaly
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Motivation

Holography
Lifshitz scalar field theories are conjectured to be holographic duals to Lifshitz
space-times

• Massive vector coupled to Einstein-Hilbert gravity in the bulk
S. Kachru, X. Liu and M. Mulligan, 2008

• Hǒrava-Lifshitz gravity in the bulk
T. Griffin, P. Hǒrava and C. M. Melby-Thompson, 2012

Anisotropic Weyl invariance

N → Ω−z N γij → Ω−2γij φ→ Ω
D−z

2 φ zE + T i
i = 0

S =

∫
dtdD x

√
|g | (LnφLnφ+ φ(−∆)zφ+ ...)

For z = D, this is already invariant

Anisotropic Weyl invariance will be broken at the quantum level by conformal
anomalies. Entanglement entropy, general properties of RG flows,...??
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Motivation

Quantum Gravity
Following this same idea, it is possible to construct an, a priori, renormalizable theory
of Quantum Gravity: Hǒrava-Lifshitz gravity

P. Hǒrava, 2009

The problem with GR can be summarized i na clash between dimensionality and
Lorentz invariance

[Gn] = −2, G(k) ∝
1

k2

Higher loops will produce new divergent counterterms, driving the
non-renormalizability of the theory. Modifying the propagator using Lifshitz scaling is
then a solution.
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H-L Gravity

Quantum Gravity
Following this same idea, it is possible to construct an, a priori, renormalizable theory
of Quantum Gravity: Hǒrava-Lifshitz gravity

P. Hǒrava, 2009

ds2 = (N2 − Ni N
i )dt2 − 2Ni dx i − γij dx i dx j

S =
1

16πG

∫
dtd3x

√
|g |
(

Kij K
ij − K 2 + R

)
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ds2 = (N2 − Ni N
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16πG

∫
dtd3x
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|g |

Kij K
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+ R︸︷︷︸
potential term
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While for z = D = 3

R3, RµνRµνR, ∇2R, ...



Lifshitz

Mario
Herrero-

Valea

H-L Gravity

Quantum Gravity
Following this same idea, it is possible to construct an, a priori, renormalizable theory
of Quantum Gravity: Hǒrava-Lifshitz gravity
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H-L Gravity

Quantum Gravity
Following this same idea, it is possible to construct an, a priori, renormalizable theory
of Quantum Gravity: Hǒrava-Lifshitz gravity

P. Hǒrava, 2009

There are two versions of the theory

• Projectable: The lapse does not depend on the spatial coordinates N = N(t) and
thus can be integrated out by fixing the gauge invariance in the time direction

N = 1

• Non-projectable: The lapse depends on all the coordinates N = N(t, x). Then,
the potential must be suplemented with extra terms

ai a
i , ∇i a

i , ...

where ai = ∇i N
N

.

D. Blas, O. Pujolas and S. Sibiryakov, 2010
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The action

ds2 = (N2 − Ni N
i )dt2 − 2Ni dx i − γij dx i dx j

S =

∫
dtdD xN

√
γφDφ

D = −L2
n − LnK︸ ︷︷ ︸

Temporal part

+F(∇i ,ΩI ) + Ω0︸ ︷︷ ︸
spatial part

Lnφ =
1

2N

(
∂t − N i∂i

)
φ (1)
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Effective action from the Heat Kernel

W =
1

2
log (det(D))

In order to compute it for a riemannian manifold, we assume that there is a base of
eigenvectors of D

DΨi = λi Ψi

and write

log(λi ) = −
∫ ∞

0

dt

t
e−λt →W = −

1

2

∫ ∞
0

dt

t
K(t,D)

where K(t,D) = Tr
(
e−tD)
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Effective action from the Heat Kernel

We reglarize the effective action by shifting the power of the proper time s

Wreg = −
1

2
µ2s
∫ ∞

0

dt

t1−s
K(t,D) (2)

One can now relate the UV divergences to the asymptotic behavior of the kernel when
t → 0 and show that

Wren = −
1

2
log(µ2)au(D) (3)

where au is certain coefficient in the asymptotic expansion of the heat kernel

K(s,D) ∼
1

su

∑
n

snan (4)
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The short-time expansion

For relativistic operators of the form

D = −∇2 − E

the short time expansion is well known

K(s,D) =
1

(4πs)d/2

∑
n

sn/2an

a0 =

∫
dd x

√
|g |

a2 =
1

6

∫
dd x

√
|g | Tr(R + 6E)

a4 =
1

360

∫
dnx

√
|g | Tr(60�E + 60RE + 180E 2 + 12�R + 5R2−

− 2RµνRµν + 2RµνρσRµνρσ + 30R̂µνR̂µν)
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The short-time expansion

• In the case of non-minimal operators, there are techniques available
A. O. Barvinsky and G. A. Vilkovisky, 1985

It stands schematically for applying BCH lemma

eA+B ∼MeAeB (5)

• For higher order operators, one needs to combine this with the following lemma

ak (On) =
1

n
ĺım
ε→0

[
Γ

(
d − k + ε

2

)−1

Γ

(
d − k + ε

2n

)]
ak (O)

P. Gilkey, 1985
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The short-time expansion

K(s,D) = Tr(f e−sD) =
1

sα

∞∑
n=0

s
n

2β an(f ,D)

The leading divergence is obtained by combining two techniques

• The highest momenta operators appearing in an anisotropic operator are

Dl = ω2 − p2z

and by using dimensionless variables

ω̃ = ω/s1/2, p̃ = p/sz/2

one has

K(s,Dl ) ∼
1

s
1
2

(1+D/z)
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1

s
1
2

(1+D/z)

∞∑
n=0

s
n

2β an(f ,D)

The leading divergence is obtained by combining two techniques

• By choosing a separable spacetime

M =M1 ⊗MD −→ e−sD ∼ e−sD1 e−sDD

one finds

K(s,D) = Tr(f e−sD) =
1

(4πs)
1
2

(1+D/z)

∞∑
n=0

s
n

2z an(f ,D) (6)
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The short-time expansion

K(s,D) = Tr(f e−sD) =
1

(4πs)
1
2

(1+D/z)

∞∑
n=0

s
n

2z an(f ,D)

where the coefficients an are constrained by simple relations.

[N] = z, [γij ] = 2, [γ ij ] = −2

[∇i ] = 0, [Lt ] = −z, [ai ] = 0

2∆γ − d = 0

− zL− 2∆γ = −(D + z)

L ≡ even

where

• L ≡ (#of Lt ), ∆γ = (#of γ ij )− (#of γij ), d = (#of∇i )
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The short-time expansion

K(s,D) = Tr(f e−sD) =
1

(4πs)
1
2

(1+D/z)

∞∑
n=0

s
n

2z an(f ,D)

where the coefficients an are constraint

2∆γ − d = 0

− zL− 2∆γ = −(D + z)

L ≡ even

• No possible term (no possible anomaly) for D + z ≡odd

• The number of Lie derivatives for z > D is constrained to L = 0, 2

• For z > D the counterterm (anomaly) is given only by the spatial part of the
action
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The critical coefficient

φDφ = φ(Dt +Dx )φ

Dt = −L2
t − KLt

Dx = N−
D+3z

2z

[
z∑

I =0

ΩI

(
N

D
z ∆
′)I
]

N−
z−D

2z , ∆
′

= ∇i

(
N

2−D
z ∇i

)

For z > D there is no Lie derivatives in the critical coefficient

az+D =

∫
dtdD xN

√
γ
∑

i

CiI I (Rijkl , ai ,∇i )
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The critical coefficient

az+D =

∫
dtdD xN

√
γ
∑

i

CiI I (Rijkl , ai ,∇i ) =

∫
dt az+D (Dx )

e−sDx ∼ exp

[
−s
∑
I =0

ΩI

(
N

D
z ∆′

)I
]
∼ exp

[
−s
∑
I =0

ΩI ∆̃I

]

∆̃ = N
D
z ∆′ = N

2
z

(
∆ +

2− D

z

∇i N

N
∇i

)
this is just a conformal transformation of the standard laplacian

γ
′
ij = N−

2
z γij
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CiI I (Rijkl , ai ,∇i ) =

∫
dt az+D (Dx )

e−sDx ∼ exp

[
−s
∑
I =0

ΩI

(
N

D
z ∆′

)I
]
∼ exp

[
−s
∑
I =0

ΩI ∆̃I

]

∆̃ = N
D
z ∆′ = N

2
z

(
∆ +

2− D

z

∇i N

N
∇i

)
this is just a conformal transformation of the standard laplacian

γ
′
ij = N−

2
z γij
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The critical coefficient

In the case of z = D things are slightly different.

az+D =

∫
dtdD x N

√
γ
(

C0Kij K
ij + C1K 2 + C2Lt K

)
+

+

∫
dtdD xN

√
γ
∑

i

CiI I (Rijkl , ai ,∇i )

To fix C0, C1 and C2 we use a technique developed by Solodukhin and Nesterov,
relying in the BCH formula

e−sDt−sDx ∼Me−sDt e−sDx

where M contains comutators.

S. Solodukhin and D. Nesterov, 2010

The other pieces are fixed by going to a spacetime in which Kij = 0. There, we have
the same situation as with z > D.
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The critical coefficient

And we end up with

a2z (f ,D) =−
1

(4π)
1+D

2

∫
dtdD x N

√
γ

 1

2(D + 2)

√
π

Γ
(

D
2

) [KµνKµν −
1

D
K 2

]
+

+

√
π

3zΓ
(

D
2

) (Lt K + K 2
)+

1

(4π)
1
2

∫
dt a2z (D̃x )

∣∣∣
γ′ij =N

− 2
z γij
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So now what?

• We can study the UV structure of the general Lifshitz theory

S =

∫
dtdD x N

√
γ (LtφLtφ+ φ∆zφ)

• We can also address the issue of Anisotropic Weyl Anomalies
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So now what?

• We can study the UV structure of the general Lifshitz theory

S =

∫
dtdD x N

√
γ (LtφLtφ+ φ∆zφ)

For even D, it is only possible to construct a counterterm if z ≡even.

2∆γ − d = 0

− zL− 2∆γ = −(D + z)

L ≡ even
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So now what?

• We can study the UV structure of the general Lifshitz theory

S =

∫
dtdD x N

√
γ (LtφLtφ+ φ∆zφ)

For even D, it is only possible to construct a counterterm if z ≡even.
The critical coefficient will take the form

aD+z (f ,D) =−
δD−z

(4π)
1+D

2

∫
dtdD x N

√
γ

 1

2(D + 2)

√
π

Γ
(

D
2

) [KµνKµν −
1

D
K 2

]
+

+

√
π

3zΓ
(

D
2

) (Lt K + K 2
)+

1

(4π)
1
2

∫
dt aD+z (D̃x )

∣∣∣
γ′ij =N

− 2
z γij
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So now what?

For even D, it is only possible to construct a counterterm if z ≡even.
The critical coefficient will take the form

aD+z (f ,D) =−
δz−D

(4π)
1+D

2

∫
dtdD x N

√
γ

 1

2(D + 2)

√
π

Γ
(

D
2

) [KµνKµν −
1

D
K 2

]
+

+

√
π

3zΓ
(

D
2

) (Lt K + K 2
)+

1

(4π)
1
2

∫
dt aD+z (D̃x )

∣∣∣
γ′ij =N

− 2
z γij

And by Gilkey’s lemma

aD+z (∆z ) =
1

z
ĺım
ε→0

[
Γ

(
−z + ε

2

)−1

Γ

(
−z + ε

2z

)]
aD+z (∆)

which vanishes unless z ≡odd.
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So now what?

• We can study the UV structure of the general Lifshitz theory

S =

∫
dtdD x N

√
γ (LtφLtφ+ φ∆zφ)

For even D, it is only possible to construct a counterterm if z ≡even.
The critical coefficient will take the form

aD+z (f ,D) =−
δz−D

(4π)
1+D

2

∫
dtdD x N

√
γ

 1

2(D + 2)

√
π

Γ
(

D
2

) [KµνKµν −
1

D
K 2

]
+

+

√
π

3zΓ
(

D
2

) (Lt K + K 2
)

For z > D they are finite.
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So now what?

• We can address Anisotropic Weyl anomalies

• Let us do it for D = z = 2
Some works argued wether there was presence or not of Ricci curvatures in the
anomaly
• Some said there were not

M. Baggio, J. de Boer and K. Holsheimer, 2011

• But other authors showed that it appears for some particular choice of the action
T. Griffin, P. Horava and C. M. Melby-Thompson, 2012

• With our technique we can address the question in a general setting

S =

∫
dtdD x N

√
γ φ

(
−L2

t − Lt K +
1

N2
(N∆)2 + α1R(W )∆+

+ α2

(
R(W )

)2
+ η

(
Kij K

ij −
1

D
K 2

))
φ

where R(W ) = R + 2(D−1)
z
∇i a

i − (D−2)(D−1)

z2 ai a
i .
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So now what?

• We can address Anisotropic Weyl anomalies

Anomalies will be also given by the Heat Kernel critical coefficient

δW = −z aD+z (ω,D)
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So now what?

S =

∫
dtdD x N

√
γ φ

(
−L2

t − Lt K +
1

N2
(N∆)2 + α1R(W )∆+

+ α2

(
R(W )

)2
+ η

(
Kij K

ij −
1

D
K 2

))
φ

where R(W ) = R + 2(D−1)
z
∇i a

i − (D−2)(D−1)

z2 ai a
i .

a4 =
1

8π

∫
dt d2xN

√
γ ω

[
1

2

(
α2

1

4
− α2

)(
R(W )

)2
−

1

2

(
η +

1

4

)(
Kij K

ij −
1

2
K 2

)
+

−
1

6

(
Lt K + K 2

)]

This reproduces all the preovious results and gives an insight about the presence of
Ricci curvature.
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So now what?

a4 =
1

8π

∫
dt d2xN

√
γ ω

[
1

2

(
α2

1

4
− α2

)(
R(W )

)2
−

1

2

(
η +

1

4

)(
Kij K

ij −
1

2
K 2

)
+

−
1

6

(
Lt K + K 2

)]

This has dramatic consequences for holography

• Massive vector in Einstein gravity −→ No R2 term

• There are tow possible solutions
• Add matter to bulk theory
• Use Horava-Lifshitz gravity
• Are both options the same???
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So now what?

In arbitrary D and z

S =

∫
dt dD x N

√
γ

{
LtφLtφ+

1

4

(
1−

z2

D2

)
φ2K 2 +

1

2

(
1−

z

D

)
φ2Lt K+

+ηφ2

(
KµνKµν −

1

D
K 2

)
+ φ

z−1∏
i=0

(
αi ∆̂ + βi R

(W )
)
φ

}

For either βi = 0 or αi = λβi , we have that the spatial part is always of the form Oz

so we conclude

• For even D and z > D there is no anomaly.

• For even D and D = z the anomaly is proportional to Kij K
ij − 1

D
K 2
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Conclusions

• We have derived a method to compute quantum corrections to Lifshitz theories
in curved space.

• Our techniques can be extended to other physical settings. An obvious example
are galileons.

• We have found that theories with only the highest momenta are fixed points at
the one-loop level.

• We have argued that Lifshitz holography has to be considered beyond the
minimal model.

• We have constructed a probe for the duality in the form of anisotropic anomalies.

For the future

• Entanglement entropy?

• Application to non-scalar matter. Horava-Lifshitz gravity.
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