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Poincaré group is only possible when z = 1.
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What is a Lifshitz field theory?

t — \7t, xt = Ax!

S = /dt dPx (%aﬂﬁaﬂf) + ¢(*A)Z¢>

Poincaré group is only possible when z = 1.

For high energy physicist, the important feature is the improved UV regime
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Condensed matter
It explains tri-critical phenomena known as " Lifshitz points”

s = / dt dPx (%a@m +H(—AYd+ ond(—AY b+ + az_1¢A¢)

The theory can flow from the anisotropic scaling to the isotropic one depending on
the RGE of the coupling constants.
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Motivation

Condensed matter
It explains tri-critical phenomena known as " Lifshitz points”

5= / dt dPx (%amatqs L G(—AY S+ ard(—A)Y Th+ .+ az_1¢A¢>

The theory can flow from the anisotropic scaling to the isotropic one depending on
the RGE of the coupling constants.

z can then be though as an order parameter.

Lorentz invariance emerges in the IR with a light speed ¢ = a,_1



Lifshitz

Mario Motivation

Herrero-
Valea

Lifshitz Theories in curved space
We are interested in studying Lifshitz field theories in curved space

ds® = (N? — N;N')dt? — 2N;dx’ — ~;dx’ dx/

t—=f(t) X =%,

Sz/dthx &) (LodLnd + S(—AYd+ ...)
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Lifshitz Theories in curved space
We are interested in studying Lifshitz field theories in curved space

ds® = (N? — N;N')dt? — 2N;dx’ — ~;dx’ dx/

t—=f(t) X =%,

s:/dthX &) (LadLnd + d(—DYh + ...)

Can produce gravitational counterterms and phenomena analogous to the Weyl
anomaly
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e Massive vector coupled to Einstein-Hilbert gravity in the bulk

e Hotava-Lifshitz gravity in the bulk
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Holography
Lifshitz scalar field theories are conjectured to be holographic duals to Lifshitz
space-times

e Massive vector coupled to Einstein-Hilbert gravity in the bulk

e Hotava-Lifshitz gravity in the bulk
Anisotropic Weyl invariance
N—= Q7N — Q 2y 6 QT ¢  zE+ T/ =0

S = [ dtdPx/Te (LabLad + 6(-AF 6+ )

For z = D, this is already invariant

Anisotropic Weyl invariance will be broken at the quantum level by conformal
anomalies. Entanglement entropy, general properties of RG flows,...??



Lifshitz

Mario Motivation

Herrero-
Valea

Quantum Gravity
Following this same idea, it is possible to construct an, a priori, renormalizable theory
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Motivation

Quantum Gravity
Following this same idea, it is possible to construct an, a priori, renormalizable theory
of Quantum Gravity: Hofava-Lifshitz gravity

The problem with GR can be summarized i na clash between dimensionality and
Lorentz invariance

1
Gl =2 Gk
Higher loops will produce new divergent counterterms, driving the
non-renormalizability of the theory. Modifying the propagator using Lifshitz scaling is
then a solution.
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Quantum Gravity

Following this same idea, it is possible to construct an, a priori, renormalizable theory
of Quantum Gravity: HoFava-Lifshitz gravity

ds® = (N? — N;N')dt? — 2N;dx’ — ~;dx’ dx!
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Quantum Gravity
Following this same idea, it is possible to construct an, a priori, renormalizable theory
of Quantum Gravity: HoFava-Lifshitz gravity

ds® = (N? — N;N')dt? — 2N;dx’ — ~y;dx’dx/

1 .
S= 7/dtd3x lg| | KyKi — K2+ R
167G ——— ~~

Kinetic term potential term
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Quantum Gravity
Following this same idea, it is possible to construct an, a priori, renormalizable theory
of Quantum Gravity: HoFava-Lifshitz gravity

ds® = (N? — N;N')dt? — 2N;dx’ — ~;dx’ dx/

1 .
S=—— [ dtd® KK — AK? R
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potential term
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Quantum Gravity
Following this same idea, it is possible to construct an, a priori, renormalizable theory
of Quantum Gravity: HoFava-Lifshitz gravity

ds? = (N? — N;N')dt? — 2N;dx’ — ~;dx’ dx!
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Quantum Gravity
Following this same idea, it is possible to construct an, a priori, renormalizable theory
of Quantum Gravity: HoFava-Lifshitz gravity

ds? = (N? — N;N')dt? — 2N;dx’ — ~;dx’ dx!
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For example, for z=D =2

R?, R
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Quantum Gravity
Following this same idea, it is possible to construct an, a priori, renormalizable theory
of Quantum Gravity: HoFava-Lifshitz gravity

ds? = (N? — N;N')dt? — 2N;dx’ — ~;dx’ dx!

_ 1 D e 2
SfilﬁﬁG/dtd x/g| (KUK AK +V(R)>

For example, for z=D =2
R?, R
While for z=D =3

R3, Ru,RMYR, V°R,
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Quantum Gravity
Following this same idea, it is possible to construct an, a priori, renormalizable theory
of Quantum Gravity: HoFava-Lifshitz gravity

There are two versions of the theory

e Projectable: The lapse does not depend on the spatial coordinates N = N(t) and
thus can be integrated out by fixing the gauge invariance in the time direction

N=1
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Quantum Gravity
Following this same idea, it is possible to construct an, a priori, renormalizable theory
of Quantum Gravity: HoFava-Lifshitz gravity

There are two versions of the theory

e Projectable: The lapse does not depend on the spatial coordinates N = N(t) and
thus can be integrated out by fixing the gauge invariance in the time direction

N=1

e Non-projectable: The lapse depends on all the coordinates N = N(t, x). Then,
the potential must be suplemented with extra terms

VN

where a; = T




The action

ds? = (N? — N;N")dt? — 2N;dx’ — ~;dx’ dx/
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ds® = (N? — N;N')dt? — 2N;dx’ — ~;dx’ dx!

S= / dtdPxN/~¢D¢

D=—L2— L, K+F(Vi, )+ Q

Temporal part spatial part

Lop= o (0 N3) 6 )



Effective action from the Heat Kernel

W= % log (det(D))
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W= % log (det(D))

In order to compute it for a riemannian manifold, we assume that there is a base of
eigenvectors of D

DY; = \V;

and write

> dt 1 [ dt
Iog()\,-):—/0 Te_’\t—> W:—E/0 —K(t, D)

where K(t,D) = Tr (e~ 'D)
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Effective action from the Heat Kernel

We reglarize the effective action by shifting the power of the proper time s

r

1
Wreg — _§M2s

dt
tl—s

K(t,D)
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Effective action from the Heat Kernel

We reglarize the effective action by shifting the power of the proper time s

1 > dt
Wieg = _§M2s/0 s K(t, D) (2)

One can now relate the UV divergences to the asymptotic behavior of the kernel when
t — 0 and show that

Ween = — - l0g(4%),(D) )

where a, is certain coefficient in the asymptotic expansion of the heat kernel

K(s,D) ~ 3 s"an )
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For relativistic operators of the form
D=-V2-E

the short time expansion is well known

1
_ n/2
K(s,D) = 7(475)4/2 E s"%a,
n

a():/ddx lg]
1
ap = g/ddXx/|g| Tr(R + 6E)

1
a1 = 505 | d"xV/lgl Tr(6OCE + 60RE + 180E2 4 1200R 4 5R*—

— 2Ry R™ 4 2Ry po RMVPT + 30, RMY)
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e [n the case of non-minimal operators, there are techniques available

It stands schematically for applying BCH lemma
eA+B ~ MEAEB (5)

o For higher order operators, one needs to combine this with the following lemma

1 d—k+e\"r [d—k+e
m_ 1
ak(O):nEhm0 [F (72 ) r(izn ) ax(0)




The short-time expansion

1 & o
K(s,D) = Tr(f e*P) = s > 528 a,(f, D)
n=0
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1 & o
K(s,D) = Tr(f e*P) = = > 52 a,(f, D)
n=0

The leading divergence is obtained by combining two techniques
e The highest momenta operators appearing in an anisotropic operator are

D) = w? — p¥
and by using dimensionless variables
Jz:w/sl/2, ;"):p/sz/2
one has
1

K(s, D)) ~ ———
(D) $3(1+D/2)
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oo

528
% 1+D/z Z an(f, D)

n=0

K(s,D) = Tr(f e *P) =
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n

s28 ap(f, D
%1+D/ Z )

n=0

K(s,D) = Tr(f e *P) =

The leading divergence is obtained by combining two techniques

e By choosing a separable spacetime
M=M;@Mp — e P ~ e 5P1e=5PD

one finds

1 ¢S]

Zsian(f,D)

K(s,D)=Tr(fe P)= — —
(D)= T ) = i S

(6)
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1

> n
PR IYYES ;sban(f, D)

K(s,D) = Tr(f e *P) = .
(47rs)5(
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1

> n
PRIy ;szzan(f, D)

K(s,D) = Tr(f e *P) = .
(4ms)2(

where the coefficients a, are constrained by simple relations.

M=z [l=2 [l=-2
[VI] =0, [ﬁt] = -z, [a,-] =0

2Ay—d =0
—zL-2Ay=—(D+z2)
L = even

where
o L= (#ofLr), Ay = (#0fyT) — (#0fvy), d = (#0f V))
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oo

K(s,D) = Tr(f e~*P) = > s%an(f, D)

o ~I(tD/z)
(471_5 5 1+D/z =
where the coefficients a, are constraint

2Ay—-d =0
—zL—2Ay=—(D+z2)

L = even
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1 N o
K(s,D)=Tr(f e P)= — N " s2za,(f,D
(62) = T &P) = i S sthan(r.D)
where the coefficients a, are constraint
2Ay —d =0
—zL—2Ay=—(D+z2)
L = even

e No possible term (no possible anomaly) for D + z =odd



Lifshitz

Mario The short-time expansion

Herrero-
Valea

1 N o
K(s,D)=Tr(f e P)= — N " s2za,(f,D
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where the coefficients a, are constraint
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L = even

e No possible term (no possible anomaly) for D + z =odd

e The number of Lie derivatives for z > D is constrained to L = 0,2
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1 N o
K(s,D)=Tr(f e P)= — N " s2za,(f,D
(62) = T &P) = i S sthan(r.D)
where the coefficients a, are constraint
2Ay —d =0
—zL—2Ay=—(D+z2)
L = even

e No possible term (no possible anomaly) for D + z =odd
e The number of Lie derivatives for z > D is constrained to L = 0,2

e For z > D the counterterm (anomaly) is given only by the spatial part of the
action



The critical coefficient
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D¢ = ¢(D: + Dx)¢

Dt = 7‘6% - KCt

D, = N~ 5E {XZ: Q (Ng A/>/

N, A=V, (N#V")

For z > D there is no Lie derivatives in the critical coefficient

a,ip = /dthXNﬁZ C,‘II(R,'J';(/,B,',V,')
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The critical coefficient

a,ip= /dthfoZ GT' (R, a1, V

/ dt a,,p(Dx)
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ay4p = /dthfoZ CI (R,Jk,,a,, , /dt az+D(Dx)

—SZQ,A’

1=0

I
e Px ~ exp |:—SZQ/ (NgA’) :| ~ exp

1=0

. 2_DVN_,
A:NgA’:Nf(A+7V’ ‘)

N

this is just a conformal transformation of the standard laplacian

_N zfyu
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The critical coefficient

In the case of z = D things are slightly different.
34D = /dthx el (COK,-J-KU +GK?+ CQEtK) +

+/dthxNﬁZ GI' (R, ai, Vi)



Lifshitz

Mario The critical coefficient

Herrero-
Valea

In the case of z = D things are slightly different.
4D = /dthx el (COK,-,-K"J' +GK?+ CQEtK) +
+/dthxNﬁZ GI' (R, ai, Vi)
i

To fix Cp, C1 and C, we use a technique developed by Solodukhin and Nesterov,
relying in the BCH formula

e—st—sDX ~ Me—sDte—sDX

where M contains comutators.

The other pieces are fixed by going to a spacetime in which Kj; = 0. There, we have
the same situation as with z > D.
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And we end up with

1 1 T L1
a2z(f,D)=fm/dthx N~ (2(D+2)r(g> |:KWJKM 7EK2:| +

3zr\/é))(,ctKJrK?) +@/dt a22(Dx)

+

_2
=N 2
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So now what?

e We can study the UV structure of the general Lifshitz theory

S= /dthx N~ (LepLegp + pAZ )

e We can also address the issue of Anisotropic Weyl Anomalies
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e We can study the UV structure of the general Lifshitz theory

S= /dthx N~ (LepLed + pAZ Q)

For even D, it is only possible to construct a counterterm if z =even.
2Ay—-d =0
—zL —2Ay=—(D +z)

L = even
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e We can study the UV structure of the general Lifshitz theory

S= /dthx N~ (LepLegp + pA*P)

For even D, it is only possible to construct a counterterm if z =even.
The critical coefficient will take the form

oo 1 1
aps+o(F, D) = — DiHTD / dtd®x N5 5 VT {KW K — 5!@} +

(47) (D+2)r(2)

NG

+ (LeK +K?) |+

/ dt ap.(Dx)

(4m)3 V=N 2
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For even D, it is only possible to construct a counterterm if z =even.
The critical coefficient will take the form

0,—D D 1 \/> 1 5
ap z(ﬂD):—i/‘dtd x N/~ KK — —K?| &+
! (4m)*5° 2(D+2)r (2> # D
YT (LK +K?) | +—+ /dt ap4z(Dx)
b 2 / =N" z
3zl (5> (471' 2 Yij
And by Gilkey's lemma
2 1, —z4 € -1 —z+ €
apiz(A*) = ; E'T;‘O [I’ ( 5 ) r ( > ) apyz(A)

which vanishes unless z =odd.
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e We can study the UV structure of the general Lifshitz theory

S= /dthx NVA (LepLid + pA%p)

For even D, it is only possible to construct a counterterm if z =even.
The critical coefficient will take the form

1 N 1
_ D v
ap+z(f,D) = 1+D /dtd x N~y DI (D) |:KHVKI/« DK2
2

VT
32l (g)

For z > D they are finite.

+ (LK + K?)
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e We can address Anisotropic Weyl anomalies

o Letusdoitfor D=2z=2
Some works argued wether there was presence or not of Ricci curvatures in the
anomaly

e Some said there were not

e But other authors showed that it appears for some particular choice of the action
o With our technique we can address the question in a general setting
1
S= /dthx N7 ¢ (-L% — LK + m(NA)2 +aRWM A+
w))? i 1.2
+az (RW) 47 Kik? = SK2) ) 0

where RW) = R + 2(DZ_1)V,-a" — (D_2;gD_1)a[ai.
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e We can address Anisotropic Weyl anomalies

Anomalies will be also given by the Heat Kernel critical coefficient

W = —z ap;;(w, D)



Lifshitz

Mario

Herrero-

Valea

So now what?

1
s— /dthx N7 & (—cf LK+ o (NAY +aiRMIAG
2 1
(W) Kl T K2
+aa (RM) g (K = 7)) o

where RW) = R + 2(D;1)V,-af — (D722§D71)a,-a".

_ 1 2 1 /af w2 1 1 i 1.0
a478—ﬂ/dtdeﬁw [5(7_a2 (R )-5 n+ g ) (Kok? =SR2 )+
1
—g(ﬁtK+K2)]

This reproduces all the preovious results and gives an insight about the presence of
Ricci curvature.
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_ 1 2 1 /af w2 1 1 i 1.0
a478—ﬂ/dtdeﬁw [5<7—a2 (R )-5 n+ g ) (KiK? =SR2 )+

—% (th+K2)]

This has dramatic consequences for holography
e Massive vector in Einstein gravity — No R? term

e There are tow possible solutions
e Add matter to bulk theory
e Use Horava-Lifshitz gravity
e Are both options the same???
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In arbitrary D and z

2

1 z 1 z
— D - _ 242 | = _ L) 42
5_/dtd xN\fy{ﬁtqutqur (1 2>¢K +2<1 )¢£tK+

z—1
+ng? (KWK“” - %K2> +oll (e + BRI ¢}

For either 8; = 0 or a; = A\S3;, we have that the spatial part is always of the form O%
so we conclude

e For even D and z > D there is no anomaly.

e For even D and D = z the anomaly is proportional to K,:,-KU — %KQ
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For the future

e Entanglement entropy?



Lifshitz

Mario
Herrero-
Valea

For

Conclusions

We have derived a method to compute quantum corrections to Lifshitz theories
in curved space.

Our techniques can be extended to other physical settings. An obvious example
are galileons.

We have found that theories with only the highest momenta are fixed points at
the one-loop level.

We have argued that Lifshitz holography has to be considered beyond the
minimal model.

We have constructed a probe for the duality in the form of anisotropic anomalies.

the future

Entanglement entropy?

Application to non-scalar matter. Horava-Lifshitz gravity.



