Ultralarge-scale cosmology with future surveys

David Alonso – Oxford Astrophysics

ArXiv:1405.1751, 1409.8667, 1505.07596, 1507.03550 In collaboration with: P. Bull, P. Ferreira, R. Maartens, M. Santos

xford

hysics

IFT UAM-CSIC, Madrid – September 2015

Cosmology

Accelerated expansion

Dark Energy

 $G_{\mu\nu} \propto T_{\mu\nu} + \delta T_{\mu\nu} | G_{\mu\nu} + \delta G_{\mu\nu} \propto T_{\mu\nu}$ Mod. Gravity

Cosmic Microwave Background

CMB:

- Exquisite probe (good S/N, no theor. uncertainties).
- Informs us mainly about the early Universe, but....
- CMB lensing, ISW... more later.

Source number counts

Source number counts

Multiple probes:

- BAO (standard ruler).
- RSDs (growth rate).

Source number counts

Multiple probes:

- BAO (standard ruler).
- RSDs (growth rate).
- Ultra-large scales?
 - Initial conditions
 - Relativistic (horizon) effects
 - Turnover

Pros:

- Linear theory is valid.
- New regime, interesting in MG

Cons:

- Large cosmic variance
- Large systematic uncertainties

Relativistic effects

Relativistic effects

$$\Delta_N = \delta_N + \frac{\partial \ln \bar{N}}{\partial \eta} \delta \eta + \delta_{\parallel} + \left[1 - \frac{\partial \ln \bar{N}}{\partial \ln L} \right] 2\delta_{\perp}$$

Evolution bias

Magnification bias

Challinor and Lewis, arXiv:1105.5292 Bonvin and Durrer, arXiv:1105.5280

Relativistic effects

$$\Delta_{N} = b \,\delta_{M} - \left[\frac{1}{\mathcal{H}} \frac{\partial v_{r}}{\partial \chi}\right] + \left[(5s-2)\left[\kappa - \frac{2}{\chi} \int \Phi d\eta\right] + \left[\frac{2-5s}{\mathcal{H}\chi} + 5s - f_{\text{evo}} + \frac{\dot{\mathcal{H}}}{\mathcal{H}}\right] \left[\psi + \int \dot{\Phi} d\eta - v_{r}\right] + \frac{\dot{\phi}}{\mathcal{H}} + \psi + (5s-2)\phi$$

Challinor and Lewis, arXiv:1105.5292 Bonvin and Durrer, arXiv:1105.5280

> xford hysics

Primordial non-Gaussianity

Φ

- Massive objects, hosting galaxies, form in high-density environments.
- Primordial non-Gaussianity affects the clustering statistics of biased tracers.

Dalal et al. arXiv:0710.4560 Matarrese and Verde arXiv:0801.4826

Camera et al. ArXiv:1305.6928

Angular power spectra

Basic observable:

- Angular fluctuations of source counts in redshift bins
- We will use harmonic space for convenience
- Most information contained in the crosscorrelation of all pairs of bins.
- Radial resolution set by experimental or theoretical limitations.

$$\begin{split} \Delta_{N}^{i}(\hat{\mathbf{n}}) &= \int dz \, W^{i}(z) \Delta_{N}(z, \hat{\mathbf{n}}) \\ a_{\ell m}^{i} &= \int d\hat{\mathbf{n}}^{2} \Delta_{N}^{i}(\hat{\mathbf{n}}) Y_{\ell m}(\hat{\mathbf{n}}) \\ C_{\ell}^{ij} &= \left\langle a_{\ell m}^{i} a_{\ell m}^{j*} \right\rangle \end{split}$$

hysics

Angular power spectra

Fisher matrix analysis

$$\Delta_{\ell}^{i} = \Delta_{\ell}^{\mathrm{D},i}(f_{\mathrm{NL}}) + \Delta_{\ell}^{\mathrm{RSD},i} + \epsilon_{\mathrm{WL}} \Delta_{\ell}^{\mathrm{L},i} + \epsilon_{\mathrm{WL}} \Delta_{\ell}^{\mathrm{L},i} + \Delta_{\ell}^{\mathrm{P3},i} + \Delta_{\ell}^{\mathrm{P4},i} + \Delta_{\ell}^{\mathrm{ISW},i} + \Delta_{\ell}^{\mathrm{ISW},i} + \Delta_{\ell}^{\mathrm{P3},i} + \Delta_{\ell}^{\mathrm{P4},i} + \Delta_{\ell}^{\mathrm{ISW},i} + \Delta_{\ell}^{\mathrm{ISW},i}$$

Fisher matrix: most optimistic errors for a given survey.

$$F_{\mu\nu} = \frac{f_{\rm sky}}{2} \sum_{\ell} (2\ell + 1) \partial_{\mu} \hat{C}_{\ell} \, \hat{C}_{\ell}^{-1} \partial_{\nu} \hat{C}_{\ell} \, \hat{C}_{\ell}^{-1}$$

Main parameters:

$$f_{\rm NL}, \epsilon_{\rm GR}$$

Marginalized over:

$$\Omega_M, \, f_b, \, A_s, w, \, n_s$$

Nuisance parameters:
 $b(z), \, s(z), \, f_{
m evo}(z)$

- Originally implemented in CLASS (Di Dio and Montanari, arXiv:1307.1459).
- Modified to include:
 - Primordial non-Gaussianity
 - x4 speed-up for integrated terms
 - MPI parallelization
 - Multiple number count and lensing tracers

DA et al. arXiv:1505.07596, 1507.03550

1.0

0.8

0.6 Ľ, 0.4

0.2

Elliptical Galaxy at z=0.7

www.www.www.

Spectroscopic surveys

- Good radial and angular resolution
- Long integration times \rightarrow
- Low number density and redshift •

Photometric surveys

θ

- Good angular resolution, bad radial
- Higher number densities and redshifts •

z

xford

hysics

Radio continuum survey

HI survey:

- 21 cm: (almost) only radio feature.
- Very faint \rightarrow
- Long integration times \rightarrow
- Low number densities \rightarrow
- Low redshifts

xford

hysics

Intensity mapping

- Large pixels: joint emission from multiple galaxies instead of resolving them.
- We only care about large scales
- "Cheap" way to observe large volumes
- No perturbations on transverse scales

xford

Intensity mapping

- Bad angular resolution, good radial
- High redshifts

 θ

- Potentially high noise
- Tremendous foregrounds

xford

hysics

Bull et al. arXiv:1405.1452

Z

Summary

Experiment	z-range	$N_{\rm bins}$	$f_{\rm sky}$	$\langle S/N \rangle$	Δz	$\Delta \theta$
Intensity mapping (SKA1-MID)	[0.1, 3.5]	100	0.75	6.7	~ 0	1°
Continuum survey $(S_{\text{cut}} = 1\mu Jy)$	[0,5]	1	0.75	32	∞	~ 0
Spectroscopic survey (Euclid)	[0.5, 2]	100	0.35	6	~ 0	~ 0
Photometric survey (LSST)	[0, 2.5]	9	0.5	210	$\sim 0.05(1+z)$	~ 0

Oxford hysics

Summary

Experiment	z-range	$N_{\rm bins}$	$f_{\rm sky}$	$\langle S/N \rangle$	Δz	$\Delta \theta$
Intensity mapping (SKA1-MID)	[0.1, 3.5]	100	0.75	6.7	~ 0	1°
Continuum survey $(S_{\text{cut}} = 1\mu Jy)$	[0, 5]	1	0.75	32	∞	~ 0
Spectroscopic survey (Euclid)	[0.5, 2]	100	0.35	6	~ 0	~ 0
Photometric survey (LSST)	[0, 2.5]	9	0.5	210	$\sim 0.05(1+z)$	~ 0

Summary

DA et al. arXiv:1505.07596, 1507.03550

Experiment	z-range	$N_{\rm bins}$	$f_{\rm sky}$	$\langle S/N \rangle$	Δz	$\Delta \theta$
Intensity mapping (SKA1-MID)	[0.1, 3.5]	100	0.75	6.7	~ 0	1°
Continuum survey ($S_{\text{cut}} = 1\mu Jy$)	[0,5]	1	0.75	32	∞	~ 0
Spectroscopic survey (Euclid)	[0.5, 2]	100	0.35	6	~ 0	~ 0
Photometric survey (LSST)	[0, 2.5]	9	0.5	210	$\sim 0.05(1+z)$	~ 0

Fisher matrix analysis

Experiment	$\sigma(f_{\rm NL})$	$\sigma(\epsilon_{ m GR})$
Intensity mapping (SKA1-MID)	3.01	2.75
Continuum survey ($S_{\text{cut}} = 1\mu Jy$)	11.8	17.1
Spectroscopic survey (Euclid)	6.64	2.57
Photometric survey (LSST)	1.71	2.33

Fisher matrix analysis

Why no detection?

- CMB ISW has been detected (4.5 s) by crosscorrelating with low-z tracers.
- E.g. IM is like a large set of CMB maps → why can't we detect the ISW?
- The problem is clustering variance!

For disjoint tracers deterministically related to the density field, terms proportional to the bias parameters can be measured below the cosmic variance limit

$$\delta^a_{\mathbf{k}} = b^a \, \delta_{\mathbf{k}} + n^a \longrightarrow \sigma\left(\frac{b^1}{b^2}\right) = \mathcal{O}(n^1, n^2)$$

The multi-tracer technique works similarly for relativistic effects due to the magnification and evolution biases.

$$\delta^a_{\mathbf{k}} = b^a \,\delta_{\mathbf{k}} + \epsilon f^a g_{\mathbf{k}} + n^a \longrightarrow \sigma(\epsilon) = \mathcal{O}\left(\frac{(n^1, n^2)}{f^1 - f^2}\right)$$

Optimal combination:

- Low-noise tracers.
- Very different bias functions.
- E.g.: photometric survey, red vs. blue galaxies

Yoo et al. arXiv:1109.0998. DA et al. arXiv:1505.07596, 1507.03550

• Early-type galaxies:

- First galaxies to be formed
- Highly biased tracers
- Star formation ended
- Red colors \rightarrow more precise photo-z
- Start appearing at $z \sim 1 \rightarrow high f_{evo}$
- Late-type galaxies:
- Lower bias
- High star-formation
- Blue colors \rightarrow worse photo-z
- Can be found at higher redshifts

- 4 x improvement on f_{NL}.
- No detection of GR effects.

DA et al. arXiv:1507.03550

xford

hysics

hysics

Systematics: photometric surveys

Sources of systematics on large scales: ²

- Dust extinction
- Star confusion and obscuration
- Airmass, sky brightness, seeing

Specific for photo-z:

- Uncertainties on the true redshift distribution
- Catastrophic redshift outliers

Radio foregrounds

Galactic synchrotron

ΔT ~ O(10) K

Radio foregrounds

Systematics: radio foregrounds

hysics

Ultralarge-scale cosmology - David Alonso

Signal+FG

A store with the second second

Signal only

A store with the second second

Cleaned map

Most important features still observable! (BAO, shape...)

xford

hysics

DA et al. ArXiv:1409.8667.

Systematics: intensity mapping

Conclusions

- Future surveys will give us access to unprecedented volumes, and new cosmological observables.
- Relativistic effects in large-scale structure contain important information about the underlying theory of gravity, however their detectability is limited by cosmic variance.
- Ultra-large scales also contain information about the statistics of the primordial fluctuations.
- We have produced Fisher forecasts for these observables for next-generation experiments: spectroscopic, photometric and radio continuum surveys and HI intensity mapping.
- Only mild improvement on fNL and no detection of GR effects for individual tracers.
- Combining multiple tracers would make it possible to beat cosmic variance.
- O(10) and O(3) σ detections might be possible with LSST and DES respectively.
 Combination with intensity mapping will be very beneficial.
- Main systematic for IM: foregrounds.
- First tests show promise, but might fall short due to instrumental effects

Conclusions

- Future surveys will give us access to unprecedented volumes, and new cosmological observables.
- Relativistic effects in large-scale structure contain important information about the underlying theory of gravity, however their detectability is limited by cosmic variance.
- Ultra-large scales also contain information about the statistics of the primordial fluctuations.
- We have produced Fisher forecasts for these observables for next-generation experiments: spectroscopic, photometric and radio continuum surveys and HI intensity mapping.
- Only mild improvement on fNL and no detection of GR effects for individual tracers.
- Combining multiple tracers would make it possible to beat cosmic variance.
- O(10) and O(3) σ detections might be possible with LSST and DES respectively.
 Combination with intensity mapping will be very beneficial.
- Main systematic for IM: foregrounds.
- First tests show promise, but might fall short due to instrumental effects

¡Gracias!

Fisher matrix analysis

Experiment	$\sigma(f_{\rm NL})$	$\sigma(\epsilon_{ m GR})$
Intensity mapping (SKA1-MID)	3.01	2.75
Continuum survey $(S_{\text{cut}} = 1\mu Jy)$	11.8	17.1
Spectroscopic survey (Euclid)	6.64	2.57
Photometric survey (LSST)	1.71	2.33

