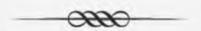
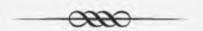
Nature loves us, loves us not...


Oriol Pujolàs

IFAE, UAB

IFT Madrid 11/2/2016


PLAN

1) Loves us not: no-show @ LHC Relaxions

2) Loves us: present(s) @ LHC

PLAN

1) Loves us not: no-show @ LHC Relaxions

2) Loves us: present(s) @ LHC

© Dilaton

1) Cosmological Relaxation mechanisms

A long long time ago, in a far far away place, the scale of the EW forces (the Higgs mass) were suppressed... by... a cosmic conspiracy...

Motivation

A new type of solution to the Hierarchy Problem has been identified (Graham, Kaplan & Rajendran '15)

It doesn't require new particles @ TeV energies

Instead, a fantastic cosmological history

Idea

Relaxation mechanism

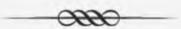
Abbot '85

Dvali & Vilenkin'2004

Graham, Kaplan, Rajendran '15

$$M^2H^2 \rightarrow M^2(\phi) H^2$$

 ϕ rolls, scans, and stops when M small

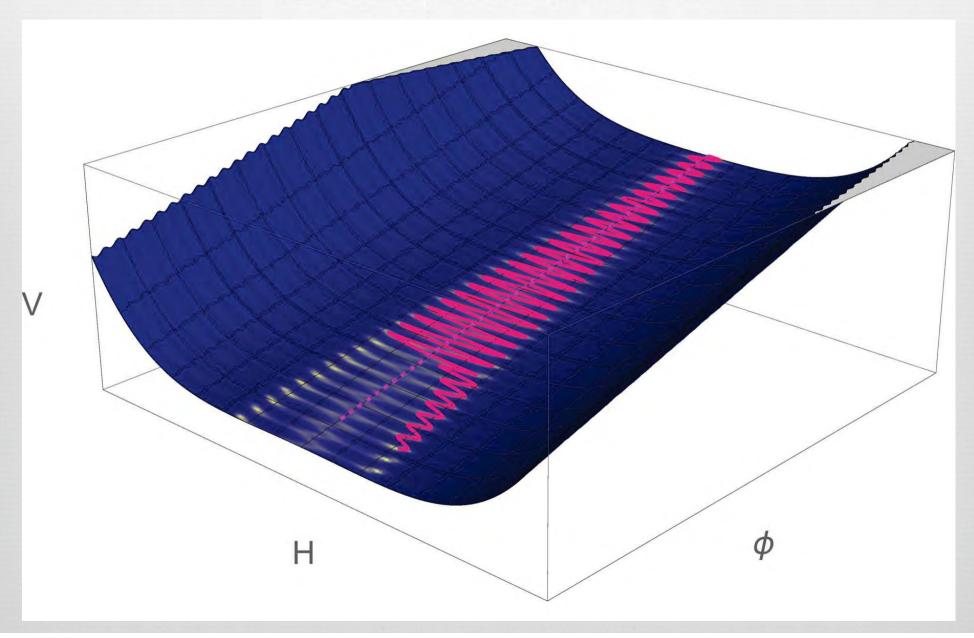

Stopping can be linked to EWSB

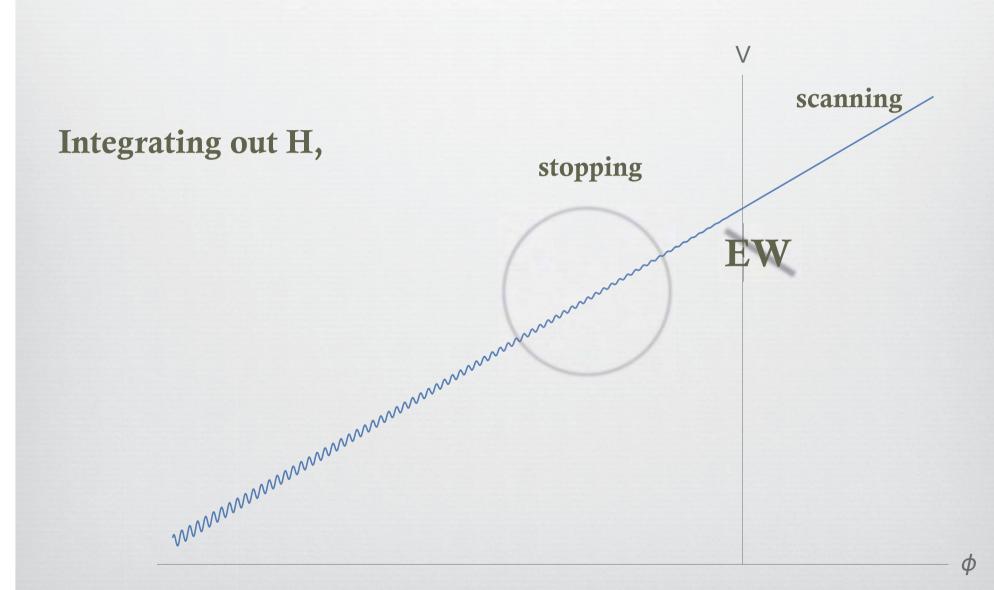
$$M^2 < 0$$

-0000

$$V_{SM+PQ}(\phi,H) = M^2H^2 + \lambda H^4 + \varepsilon H \Lambda^3 \cos(\phi/f)$$

$$m_{q}\langle \overline{q}_{R}q_{L}\rangle$$


$$V_{SM+PQ}(\phi,H) = M^2H^2 + \lambda H^4 + \varepsilon H \Lambda^3 \cos(\phi/f)$$


(Graham, Kaplan, Rajendran'15)

$$V_{GKR} = M^{2}(\phi)H^{2} + \lambda H^{4} + \varepsilon H \Lambda^{3} \cos(\phi/f) + V_{0}(\phi)$$
scanning stopping rolling

Technically natural!!

$$V_0(\phi) = \Lambda^4 F(g\phi/\Lambda)$$
$$M^2(\phi) = \Lambda^2 F(g\phi/\Lambda)$$

conditions:

ca full scan

$$\Delta \phi \geq \Lambda / g$$

$$\bowtie$$
 many vacua $(\Delta M_H \ll \Lambda) =>$

$$(\Delta M_{\scriptscriptstyle H} \ll \Lambda)$$
 =>

$$gf \ll \Lambda$$

$$g \sim \varepsilon v/f$$

- ca friction => inflation (maybe more options...)
- α subleading to inflaton => $\Lambda^4 < H_I^2 M_P^2$
- ca classical motion

$$=> H_I^3 < g\Lambda^3$$

$$\Lambda^3 < gM_P^3$$

$$\Lambda^3 < gM_P^3$$

solve HP

- ca results:
- raises NP scale to
- **CR** Long inflation epoch
- Call Long field excursion
- **low inflation scale**

$$\Lambda \leq 30\text{-}1000 \text{ TeV}$$

$$N_{efolds} \sim 10^{40}$$

$$\Delta \phi \gg \Lambda$$

$$g^{1/3}\Lambda^2M_P^2$$

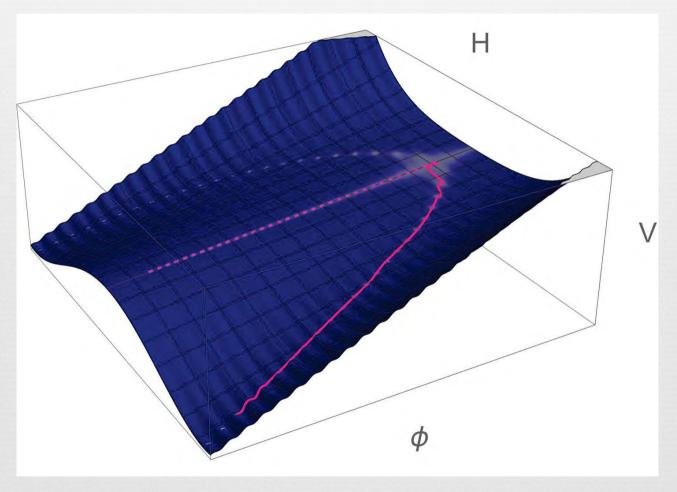
(Reminder) Ingredients below $\Lambda = \{ SM + QCD \text{ axion} + \text{expl. breaking of } PQ + \text{few assumptions on inlfation} \}$

Cosmological Higgs-Axion Interplay – CHAIN

Cosmological Higgs-Axion Interplay for a Naturally Small Electroweak Scale

J. R. Espinosa, C. Grojean, G. Panico, A. Pomarol, O. Pujolàs, and G. Servant Phys. Rev. Lett. **115**, 251803 – Published 16 December 2015

-0000


$$V(H, \phi) = M^{2}(\phi) H^{2} + \lambda H^{4} + V_{0}(\phi) + H^{n} \Lambda^{4-n} \cos(\phi/f)$$

scanning

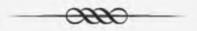
driving

stopping

$$V_{stopping} = |H|^2 \Lambda^2 \cos(\phi/f)$$

$$V_{stopping} = H^2 \Lambda^2 \cos(\phi/f)$$

-0000


$$V(H, \phi) = M^{2}(\phi) H^{2} + \lambda H^{4} + V_{0}(\phi) + H^{n} \Lambda^{4-n} \cos(\phi/f)$$

scanning

driving

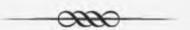
stopping

$$V_{stopping} = |H|^2 \Lambda^2 \cos(\phi/f)$$

$$V(H, \phi) = M^{2}(\phi) H^{2} + \lambda H^{4} + V_{0}(\phi) + H^{n} \Lambda^{4-n} \cos(\phi/f)$$

scanning

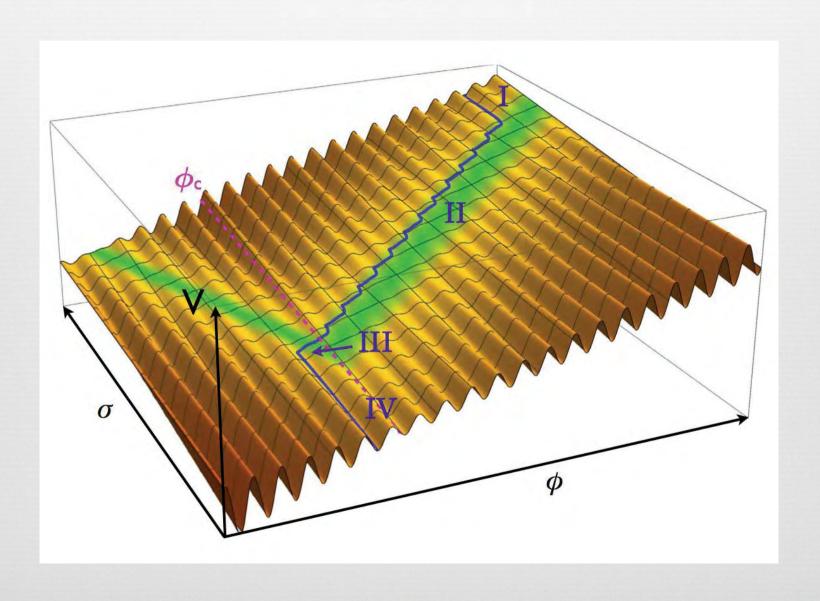
driving

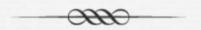

stopping

$$V_{stopping} = |H|^2 \Lambda^2 \cos(\phi/f)$$

??

$$V_{stopping} = (|H|^2 \Lambda^2 + \Lambda^4) \cos(\phi/f)$$
 !!

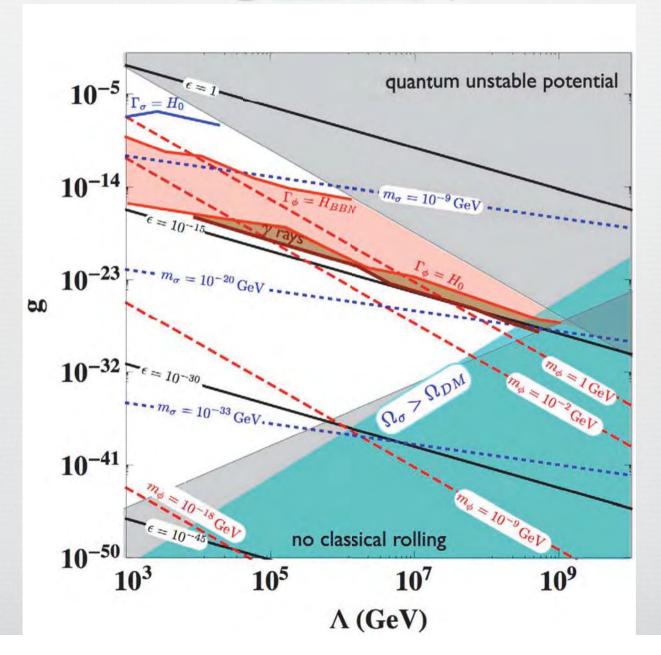



Resolution:

Technically natural!!

$$V(H, \phi, \sigma) = M^{2}(\phi) H^{2} + \lambda H^{4}$$
$$+ A(H, \phi, \sigma) \cos(\phi/f) + V_{0}(\phi, \sigma)$$

$$=\varepsilon\Lambda^{2}\left(\Lambda^{2}+|H|^{2}+g\Lambda\sigma+g\Lambda\phi+...\right)$$



2 light scalars,

 ϕ axion-like $m_{\phi} \sim \text{sub-GeV-ish}$ moderate weakly coupled (thermally produced) impact on BBN


σ ultra-light scalar, ultra weakly coupled DM candidate (from 'vac. misalignment')

No new particles until $10^5 - 10^9$ GeV

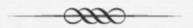
BBN constraints can be evaded if

$$T_{reh} < m_H$$

- Can raise the New Physics (NP) scale to ~109 GeV
- => Partial Solution to the Hierarchy problem
- => No new particles @ EW scale, but implications in cosmo
- Only remnant: 2 light and weakly coupled scalar singlets
- Cong excursions/periods a problem?

-0000

Call Long excursions/periods a problem?


Weak Gravity Conjecture(hep-th/0601001) suggests $f < M_p$

Gupta Komargodski Perez Ubaldi 1509.00047

Representation of the Argument is naïve/quick

Choi & Im 1511.00132 Kaplan & Rattazzi 1511.01827 Ibanez Montero Uranga Valenzuela 1512.00025

Monodromy in Large N QCD Witten 80's

Calculation Long excursions/periods a problem?

Exponentially large field periods can be realized in models with:

- order-few fields
- order-few charge assignments

$$\Delta \phi \sim e^N f$$

Choi & Im 1511.00132 Kaplan & Rattazzi 1511.01827

Open questions (?):

tension with Quantum Gravity/Weak Gravity Conjecture?

From EFT perspective, I see

- i) no problem ii) no deviation from QFT framework, and
- iii) WGC and alike are assumptions about QG

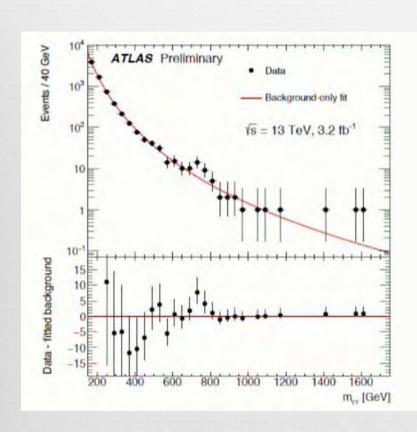
CR Long excursions/periods a problem?

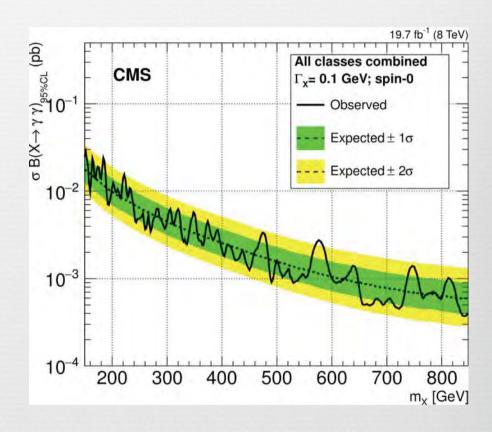
It seems not (at least yet).

Rather, it makes relaxion-ology a probe of QG.

2) What if Nature loves us?

A nice present would be...


2) What if Nature loves us?


A nice present would be...

a dilaton!

"Naturally light dilatons" w/ Eugenio Megías and Mariano Quirós

Diphoton excess

Goldstone Boson of Spontaneously Broken Conformal Invariance (SBCI)

Contino-Pomarol-Rattazzi '2010 showed how to realize naturally SBCI and a light dilaton

Now we have examples of such beasts arising from (holographic) strong dynamics

EFT of SBCI

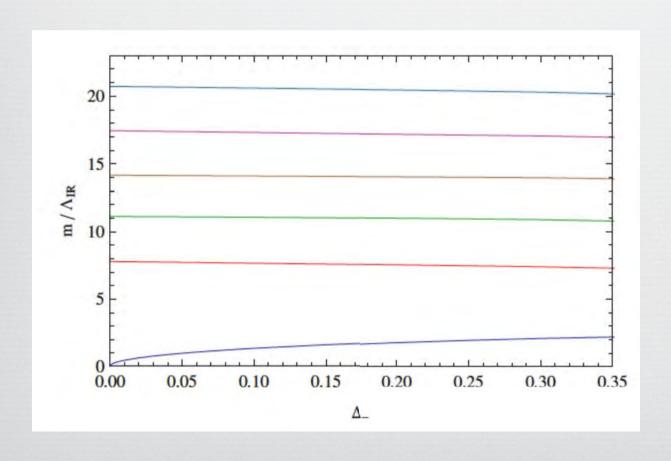
$$\phi \to s\phi \qquad \langle \phi \rangle \neq 0$$
$$x \to s^{-1}x$$

$$L = \phi^4 F \left[\frac{(\partial \phi)^2}{\phi^4} \right] = (\partial \phi)^2 - \lambda \phi^4 + \dots$$

Expected to be large $(\sim 1) => no natural SBCI$

Analogous to Cosmological Constant problem

Simplest example: IR brane in Randall Sundrum


$$\phi =$$
 warp factor at IR brane location

$$\lambda \sim \ell \Lambda_5 - \Lambda_4$$

- CPR solution: add small explicit breaking (by nearly marginal deformation)
- $\approx \lambda$ gets dynamically suppressed in the ground state and a (naturally) light dilaton appears

w/ Eugenio Megías 1401.4998

Also in 1305.3919 1306.4601

$$m_{dil}^2 \sim \beta_{IR} \Lambda_{IR}^2$$

Diphoton as a dilaton?

Explicit & minimal Soft-Wall model with:

- KK resonances at most at 2 TeV
- light dilaton ~ 750 GeV
- large enough couplings to $\gamma \gamma$ and gg
- pass EWPT tests

'diphoton-dilaton' is light naturally stands as a possibility

w/ E. Megías and M. Quirós 1512.06106

Conclusions

- If she loves us => happy family, lots of children
- CR Loves us not =>

Conclusions

- If she loves us => happy family, lots of children
- Loves us not => keep working on her, learning how to lover her
 - eventually she'll love us back!

Thanks!

(and apologies for many missing refs)