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energy scattering requires these trajectories not to be
associated with spin-zero particles. 2 This is by no means
a drawback to our model; again, as in the case of the a

n R.J.N. Phillips and W. Rarita, Phys. Rev. 139,B1336 (1965).

meson, we remark that we do not expect to obtain all the
known mesons out of the present model. The dynamical
origin of spin-zero particles may very well be found in a
different channel.
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V/e examine a simple relativistic theory of two scalar Qelds, Grst discussed by Goldstone, in which as a
result of spontaneous breakdown of U(1) symmetry one of the scalar bosons is massless, in conformity with
the Goldstone theorem. When the symmetry group of the Lagrangian is extended from global to local U(1)
transformations by the introduction of coupling with a vector gauge Geld, the Goldstone boson becomes the
longitudinal state of a massive vector boson whose transverse states are the quanta of the transverse gauge
Geld. A perturbative treatment of the model is developed in which the major features of these phenomena are
present in zero order. Transition amplitudes for decay and scattering processes are evaluated in lowest order,
and it is shown that they may be obtained more directly from an equivalent Lagrangian in which the original
symmetry is no longer manifest. When the system is coupled to other systems in a U(1) invariant La-
grangian, the other systems display an induced symmetry breakdown, associated with a partially conserved
current which interacts with itself via the massive vector boson.

I. INTRODUCTION

HE idea that the apparently approximate nature
of the internal symmetries of elementary-particle

physics is the result of asymmetries in the stable solu-
tions of exactly symmetric dynamical equations, rather
than an indication of asymmetry in the dynamical
equations themselves, is an attractive one. Within the
framework of quantum 6eld theory such a "spontane-
ous" breakdown of symmetry occurs if a Lagrangian,
fully invariant under the internal symmetry group, has
such a structure that the physical vacuum is a member
of a set of (physically equivalent) states which trans-
form according to a nontrivial representation of the
group. This degeneracy of the vacuum permits non-
trivial multiplets of scalar fields (which inay be either
fundamental dynamic variables or polynomials con-
structed from them) to have nonzero vacuum expecta-
tion values, whose appearance in Feynman diagrams
leads to symmetry-breaking terms in propagators and
vertices. That vacuum expectation values of scalar
fields, or "vacuons, " might play such a role in the
breaking of symmetries was 6rst noted by Schwinger'
and by Salam and Ward. ' Vnder the alternative name,
"tadpole" diagrams, the graphs in which vacuons

*This work was partially supported by the U. S. Air Force
QfBce of Scientidc Research under grant No. AF-AFQSR-153-64.

t Qn leave from the Tait Institute of Mathematical Physics,
University of Edinburgh, Scotland.' J. Schwinger, Phys. Rev. 104, 1164 (1954); Ann. Phys.(¹Y.) 2, 407 (1957).' A. Salam and J. C. Ward, Phys. Rev. Letters 5, 390 (1960);
Nuovo Cimento 19, 167 (1961).

appear have been used by Coleman and Glashow' to
account for the observed pattern of deviations from
SU(3) symmetry.

The study of Geld theoretical models which display
spontaneous breakdown of symmetry under an internal
Lie group was initiated by Nambu, 4 who had noticed'
that the BCS theory of superconductivity' is of this
type, and was continued by Glashow7 and others. 8 All
these authors encountered the difficulty that their
theories predicted, inter alia, the existence of a number
of massless scalar or pseudoscalar bosons, named
"zerons" by Freund and Nambu. ' Since the models
which they discussed, being inspired by the BCS
theory, used an attractive interaction between mass-
less fermions and antifermions as the mechanism of
symmetry breakdown, it was at first unclear whether
zerons occurred as a result of the approximations
(including the usual cutoff for divergent integrals)
involved in handling the models or whether they
would still be there in an exact solution. Some authors,

3 S. Coleman and S. L. Glashow, Phys. Rev. 134, 8671 (1964}.
4 V. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961);

124, 246 (1961};Y. Nambu and P. Pascual, Nuovo Cimento 30,
354 (1963).' Y. Nambu, Phys. Rev. 117, 648 (1960).

i J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev.
106, 162 (1957).

r M. Baker and S. L. Glashow, Phys. Rev. 128, 2462 (1962);
S. L. Glashow, ibid 130, 2132 (1962). .

vM. Suzuki, Progr. Theoret. Phys. (Kyoto) 30, 138 (1963);
30, 627 (1963); N. Byrne, C. Iddings, and E. Shrauner, Phys.
Rev. 139, B918 (1965); 139, B933 (1965).

9 P. G. Q. Freund and Y. Nambu, Phys. Rev. Letters 13, 221
(1964).
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wishing to identify their zerons with known massive
scalar or pseudoscalar mesons, were prepared to spoil
the elegance of their theories by adding symmetry-
breaking terms to the Lagrangian in order to generate
masses.

That zerons must indeed be present in Lorentz
invariant Geld theories in which an internal symmetry
breaks down spontaneously was Grst shown by Gold-
stone. " He clariGed the nature of the phenomenon
considerably by exhibiting it in a model of a self-
interacting scalar Geld, where the vacuon is the vacuum
expectation value of the Geld itself, rather than that
of a bilinear combination of fermion operators which
occurs in the BCS model and its progeny. In a theory
of this type the breakdown of symmetry occurs already
at the level of classical field theory, where vacuons are
just nontrivial translationally invariant solutions of
the Geld equations, and zerons, whose existence is
readily demonstrated, are small-amplitude waves (super-
imposed on a "vacuon" solution) whose frequency tends
to zero as their wavelength tends to inGnity. In a later
paper" the proof of the Goldstone theorem, as it is
now known, was generalized to allow for the possibility
that vacuons might be formed from polynomials of
any degree in the fundamental 6eld variables of a
dynamical system.

During the last few years the problem of how to
avoid massless Goldstone bosons has received much
attention. Attempts in this direction have been en-
couraged by the observation that the BCS model does
not contain such excitations, provided that Coulomb
interactions are taken into account. "Klein and Lee"
showed that in a nonrelativistic theory the spectral
representations upon which the more sophisticated
proofs of Goldstone's theorem are based are not so
restricted in form as to allow the proof to go through,
and they conjectured that this might remain true in
some relativistic theories. But Gilbert'4 pointed out
that their extra terms are ruled out in relativistic
theories by the requirement of manifest Lorentz covari-
ance. The present writer restored the status quo to a
limited extent by remarking" that radiation gauge
formulations of gauge 6eld theories, of which electro-
dynamics is the simplest and best known example, can
describe Lorentz-invariant dynamical systems despite
the lack of manifest covariance of some of the equa-
tions. The freedom which Klein and Lee hoped for in
the spectral representations is thereby restored suKci-
ently to invalidate the Goldstone theorem. From a
more physical standpoint one may regard this as an
eBect of Coulomb interactions, treated now as part of
a relativistic Geld theory.

' J. Goldstone, Nuovo Cimento 19, 154 (1961}.' J. Goldstone, A. Salam, and S. Weinberg, Phys. Rev. 127,
965 (1962).

'~ P. W. Anderson, Phys. Rev. 112, 1900 (1958).
'~ A. Klein and B. W. Lee, Phys. Rev. Letters 12, 266 (1964).
4 W. Gilbert, Phys. Rev. Letters 12, 713 (1964)."P.W. Higgs, Phys. Letters 12, 132 (1964).

More recently Guralnik, Hagen, and Kibble'~ and
Lange" have studied how the failure of global (as
distinct from local) conservation laws in spontaneous
breakdown theories is related to the existence of GoM-
stone bosons. Meanwhile, proofs of the theorem have
reached new levels of sophistication within the lan-
guage (or languages) of axiomatic 6eld theory. "It has
been pointed out that theories of the type proposed
in Ref. 15 do not contradict the Goldstone theorem,
but rather represent a departure from the assumptions,
such as wsunifest covariance and rwumifest causality,
upon which it is based. Such considerations do not
seem relevant to the possible usefulness of such theories
in generating zeron-free models of spontaneous sym-
metry breakdown, a point which seems to have been
overlooked by those" who proclaim the failure of the
Nambu-Glashow program.

In parallel with the development of "superconductor"
models a program has emerged for describing the weak, 20

and possibly also the strong, " interactions by an ex-
tension of the gauge principle" which operates in elec-
trodynamics. According to this principle the symmetry
group of the Lagrangian is. to be enlarged from global
to local (i.e., coordinate-dependent) transformations:
To maintain the invariance of derivative terms it is
necessary to couple the currents of the group generators
to a multiplet of vector fields belonging to the adjoint
representation. " Like the "superconductor" theories,
these gauge theories have suffered from a zero-mass
diKculty: The gauge principle appears to guarantee
that the associated vector Geld quanta are massless, in

"G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble, Phys,
Rev. Letters 13, 585 (1964). These authors appear to attribute
the failure of a local conservation law to yield a global conserva-
tion law to the lack of manifest covariance of a theory. In fact
this happens even in manifestly covariant models of spontaneous
breakdown.

"R.V. Lange, Phys. Rev. Letters 14, 3 (1965),
rs R. F. Streater, Proc. Roy. Soc. (London) A287, 510 (1965).

The proof of the Goldstone theorem given here is based on
axioms which include manifest causality. Radiation gauge
theories escape this version of the theorem by virtue of their
(quite innocuous) acausality. The question of the extent to
which one may give up manifest covariance and causality in a
theory without losing covariance and causality of the physics
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which it is possible other than the gauge theories which we are
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Goldstone theorem. See also D. Kastler, D. W. Robinson, and A.
Swieca, Commun. Math. Phys. (to be published).
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9, 433 (1958); S. L. Glashow, Nucl. Phys. 10, 107 (1959); 22,
579 (1961).

"A. Salam and J. C. Ward, Nuovo Cimento ll, 568 (1959);
Phys. Rev. 136, B763 (1964); J. J. Sakurai, Ann. Phys. (N. Y.)
11, 1 (1960).

sr C. N. Yang and R. L. Mills, Phys. Rev. 96, 191 (1954);
R. Shaw, dissertation, Cambridge University, 1954 (unpublished);
R. Utiyama, Phys. Rev. 101., 1597 (1956).

~ M. Gell-Mann and S. L. Glashow, Ann. Phys. (N. Y.) 15,
437 (1961).
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perturbation theory at least. But the only known mass-
less vector boson is the photon; the existing evidence
suggests" that all other vector bosons must be massive.
In particular, the hypothetical intermediate vector
bosons of weak interactions, which in a gauge theory
belong to the gauge Geld multiplet, must be much
heavier than the known hadrons. For the most part,
advocates of gauge theories have met this difficulty
either by spoiling the gauge invariance of their theories
with explicit mass terms or by taking comfort from
the argument of Schwinger" that a sufficiently strong
gauge-Geld coupling might generate mass. Recently,
however, it was shown by Englert and Brout" and by
the present writer'~ that gauge vector mesons acquire
mass if the symmetry to whose generators they are
coupled breaks down spontaneously, however weak
their coupling may be. In Ref. 27 this phenomenon
was exhibited in a classical Geld theory, and it was
pointed out that in such a theory the longitudinal
polarization of the massive vector excitation replaces
the massless scalar excitation which would occur in
the absence of coupling to the gauge Geld. Thus it
now appears that the spontaneous breakdown program
of Nambu et al. and the gauge field program of Salam
et ul. stand or fall together. Each saves the other from
its zero-mass difhculty.

The purpose of the present paper is to amplify and
substantiate the assertions made in Refs. 15 and 27 by
displaying the behavior of the simplest possible rela-
tivistic Geld theory which combines spontaneous break-
down of symmetry under a compact Lie group with
the gauge principle. That is to say, we take the sym-
metry group to be the trivial Abelian group U(1), we
take as the fundamental dynamic variables a pair of
Hermitian scalar fields Ci(x), @s(x) together with the
Hermitian vector gauge field A„(x), and we induce
spontaneous breakdown by means of the simplest U(1)-
invariant self-interaction of C, (x) which will do the
trick, namely, a combination of quadratic and quartic
terms. In the absence of the gauge Geld coupling, the
model is just one which Goldstone" Grst discussed. "

In Sec. II the behavior of the small-amplitude wave
solutions of the classical Geld equations is used as a
guide in formulating a perturbation theory in which
the major eGects of spontaneous breakdown are already
taken into account in zero order. The radiation gauge
commutators of the zero-order approximation are ob-
tained and used to provide an explicit realization of the
spectral representation which was proposed in Ref. 15.
In Sec. III decay and scattering amplitudes are cal-
culated in lowest order and it is verified that they are

~See, for example, S. Weinberg, Phys. Rev. Letters 13, 495
(1964).

» J. Schwinger, Phys. Rev. 125, 39'/ (1962)
&

128, 2425 (1962).
's F. Engiert and R. l3ront, Phys. Rev. Letters 13, 321 (1964).
» P. W. Higgs, Phys. Rev. Letters 13, 508 (1964).
'8 I understand from Dr. Goldstone (private communication)

that he and W. Gilbert at one time considered adding a gauge
Geld to the model.

9,F "=ej, j„=C2V„C»—C»V„C2,

Qs+"C&~+s (mes —f%s@s)C'~=0,
(2)

in the classical theory possess a coordinate-independent
solution

A„=O, C sC s=mp'/f' (3)

The invariance of the Lagrangian (1) under the local
U(1) transformations

A„(x) -+ A„(x)+e-'B„A(x),
Ci(x) ~Ct(x) cosA(x)+Cs(x) sinA(x),

C'2(x) ~ —
C t(x) sinA(x)+C's(x) cosA (x)

(4)

is reQected in the existence of a one-parameter family
of static solutions defined by Eq. (3)."In the classical

~' Ke do not explicitly perform the symmetrizations which a
correct quantum-mechanical treatment would demand. They are
not necessary for the purposes of the present paper and would,
in any case, be dealt with more satisfactorily in a 6rst-order
formalism.

'0 Strictly speaking, global V{1)invariance suKces to guarantee
this result.

gauge-invariant, Lorentz-invariant, and causal despite
the lack of manifest covariance and causality of the
radiation gauge. In Sec. IV it is shown that the same
amplitudes may be derived by a manifestly covariant
and causal method from an equivalent Lagrangian
which lacks the original symmetry. Finally, our con-
clusions are summarized in Sec. V, and the way in
which coupling between a system of the kind described
here and other symmetric dynamical systems may lead
to partially conserved currents is sketched.

In subsequent papers we propose to elaborate these
considerations, both with regard to symmetry groups
and with regard to mechanisms of symmetry break-
down, so as to make closer contact with particle
physics.

II. THE MODEL

The Lagrangian density from which we shall work
is given by"

~ gKIIlgXVP ~P ~ gPVQ

+-'~,'C C —-'f'(C C.)'. (1)

In Eq. (1) the metric tensor g""=—1 (p= r =0),
+1 (ii= p&0) or 0 (li& p), Greek indices run from 0
to 3 and Latin indices from 1 to 2. The U(1)-covariant
derivatives Ii „,and V„C, are given by

I'„v= ~~AV —~vAP )

~„Cg
——8„Cg

—eA„C2,

V„C's= BsC's+eA„C't.

At Grst sight this theory appears to be scalar electro-
dynamics augmented by a quartic self-interaction.
However, what appears to be the bare-mass term has
the wrong sign. In conjunction with the quartic term
this feature has the consequence that the field equations
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theory, any one of these solutions,

4'» = g cosa
q 42 =

T/ sine
~

where tl=ms/f, defines a possible asymmetric con-
figuration of stable equilibrium, stability being ensured
by the sign of the quartic term in Eq. (1). Quantum
mechanically each solution, regarded as the "bare"
value of the vacuon (C,), corresponds to a different
possible vacuum state."

Let us choose o.=m./2 and linearize the classical field
equations (2) by treating A„, Ci, and C»—ri as small
quantities. We obtain

8 F&"=—e'g'81", B„BI'=0,
(a —m,s)X=0,

in which we have introduced the notation

B„=A „(etf)—'8—„C,
4 =4») X=42—g.

As we remarked in Ref. 27, these are the linear field
equations which, after quantization, describe free vector
bosons of mass eg and free scalar bosons of mass mo.
The longitudinal vector excitation becomes the Gold-
stone scalar excitation in the limit e —+ 0. The Lagran-
gian to which these field equations belong is given by

Zo = sI"g.F""—', gl""(8„—C -miA „)(—8P miA—„)
—-', g&"8„X8„X—-', mp'X', (6)

where we have written m» for the vector boson. mass eg,
The foregoing analysis of classical small-amplitude

wave propagation suggests the following perturbation
theoretic treatment of the quantized theory. We re-
write Eq. (1) in the form 2=Pe+2;~t, where Zs is
given by Eq. (6) apart from a trivial additive constant
and

2;~,= eA &(X8„C C8„X) e—miXA „A—I' rsfmsX (C—s+Xs)
r e2A A y ((P2+X2) rf2 (@2+X2)2 (7)

Note that the ancestry of (6) plus (7) in the symmetric
Lagrangian (1) is embodied in the relation mt/ms= e/f
between the bare masses and the bare coupling con-
stants. Our perturbation theory now consists in de-
veloping transition amplitudes in powers of e and f

"The orthogonality of the worlds built upon different vacua
may be understood as a consequence of the impossibility in the
classical theory of a displacement of the system from one static
configuration to another, on account of the infinite inertia associ-
ated with such a motion. To see this, imagine a one-dimensional
model consisting of an infinite uniform elastic string subjected to
a force field of cylindrical symmetry about the axis from which
transverse displacements C 1, C 2 are measured. (We omit the gauge
field from this do-it-yourself model. ) If the force is such that
stable equilibrium occurs when the whole string is at a distance
p from the axis in any direction, then the system exhibits broken
rotational symmetry. Displacement of the string from equilibrium
at one orientation to equilibrium at another is impossible, since
the moment of inertia about the axis is infinite. Waves on the
string do not conserve angular momentum about the axis, since
the string as a whole can emit or absorb angular momentum
without recoiling.

(or, equivalently, in inverse powers of rf), the masses
mo and m» being treated as of order zero."Thus in
Eq. (7) all five cubic vertices are of the first degree
and all five quartic vertices are of the second in the
expansion parameter. It will be found that, with few
exceptions, gauge-invariant results are obtained only
when all Feynman graphs of the same degree are
summed.

We first write down the commutators and propaga-
tors corresponding to the bare Lagrangian Zo. Apart
from the terms in X, this is just the second-order
Lagrangian of a model proposed by Boulware and
Gilbert" as an illustration of the possibility of a gauge-
invariant theory describing a massive vector boson. We
shall study it in a radiation gauge; the Lorentz gauge
formulation, which even in quantum electrodynamics
leads to unnecessary complications such as redundant
states, is here inconsistent with the canonical corn,
mutation rules, as was pointed out by Guralnik, Hagen-
and Kibble. " In a radiation gauge defined by the
condition

(8A)+ (N8)(tsA) =0,

where e" is a constant timeline unit vector and (ab)
denotes a„bl', the variables A„and C may be expressed
in terms of the massive vector Geld B„which was
introduced in Eq. (5):

A„=B„+mt '8„C,
C'= —tisi~(8')+ «8)'5 'L(8B)+ ("8)("B)). (8)

Since Zo, when expressed in terms of B„and X, is just
the usual second order Lagrangian for free vector and
scalar bosons, we may immediately write down the
covariant commutators:

(B„(x),B„(y))= i(g„„nt —'8„8,)6—(x -y, mrs), —
LX(x),X(y))=—ih(x —y, m(p),

where D(x,m')=i(2n. ) 'J'd'ke'&s &e(k')8(k'+m') Then
Eq. (8) enables us to deduce the nonvanishing com-
mutators of A„, C, and X:

LA„(x),A, (y)) = i(g„„P(m„8„+r1„8—„)—(n8)+8„8„)
X((8')+ (~8)') ')&(x—y, ~t"),

PA„(x) C (y)) = ieste„(e—8)
XL(8')+ (ts8)'5 'h(x y) mi')—, —

PC (x) C (y)) = —i(e8)'P(8')+ (m8)') 'h(x y,
—mrs),—

LX(x),X(y))=—i~(x—y, ~os).

We also note the commutator relation

D4(x) C(y))= —im 'E(8') .—( 8)8)( 8)
XL(8')+ (e8)')-'h(x —y, tests) . (11)

» When one comes to consider radiative corrections, it becomes
necessary to make these statements about the renormalized rather
than the bare masses and coupling constants.

"D.C. Boulware and W. Gilbert, Phys. Rev. 126, 1563 (1962).
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The generator Q(t) of infinitesimal global U(1) trans-
formations (that is, transformations (4) with h. con-
stant and infinitesimal) on the hypersurface (Nx)+3=0
is J'dcr„j&, where dcr„ is the volume element of the
hypersurface and j„(x) is given by Eq. (2). The in-
variance of the Lagrangian (1) under these transforma-
tions leads to the local conservation law, B„j&=0.
However, even in the absence of the gauge Geld cou-
pling, the four-dimensional integral of this equation
fails to yield the usual global conservation law, Q(t)
=constant, since the Aux of j„across the surface of a
large sphere bounding the hypersurface does not tend
to zero as the radius tends to inGnity. That this is so
can be seen by noting that the lowest order approxi-
mation to j„is er)'B„(o—r rlB„C in the absence of the
gauge Geld): Matrix elements of this operator do not
decrease sufficiently rapidly at large spatial distances
for the flux term to vanish. (In normal theories the
lowest order term in j„is quadratic, giving a better
asymptotic behavior of the matrix elements. ) Strictly
speaking, the "operator" Q(t) is now not merely time-
dependent but nonexistent, since J'do „j&diverges as a
result of the same bad asymptotic behavior of j&.
However, certain commutators, such as PQ(t),C (y)],
do still exist. '

The zero-order approximation to the commutator
vacuum expectation value (iPj„(a),C»(y)]), upon which
so much of the discussion of the Goldstone theorem
has centered, "is found by replacing j„by —ep'B„and
using Eq. (11):It is

r)L(rcc))8„—(c)')N„](eB)I (8')+(ec))'] '6(g —
y, mr—').

Its Fourier transform,

—2mr)t (Nk)k —(k')e ](ek)
XP(ks) y (Nk)s]

—re (ks)$(ks+mrs) (12)

provides an explicit realization of a spectral represen-
tation of the form obtained in Ref. 15, the Lorentz
invariance of the spectrum of intermediate states now

being made clear. We are led to conjecture that the
vacuum expectation value of the exact commutator
may be of the form

(C s) t (Ia) a —(as)rc ](Na) P(as)+ (ng)s]-r

X dm'p(m')6(x —y, m'), (13)
0

ing the sum rule

dm'p(m') =1.

It may be noted that when mt ——0 in Eq. (12), corre-
sponding to e= 0, we recover the manifestly covariant
spectral representation —2m. r)k„e(k')b(k') and with it
the Goldstone theorem.

We de6ne the propagators of the system described
by Zs to be the quantities (T*A„(x)A,(y)), etc. , ob-
tained from the corresponding commutators in Eq.
(10) by substituting for 6 the scalar propagator hp
given by

6 (x m') = (2~) ' d'k e' "'(k'+m' se)—

Then we may calculate S-matrix elements by using the
simple Feynman rules based on the Nishijima-Wick
expansion of the expression T* exp(i Jd'x 2'; c) for the
5-operator in the interaction picture. " We thereby
avoid the e„-dependent terms, in addition to those
already introduced by the radiation gauge, which the
use of simple chronological ordering and the Dyson-
Wick expansion would entail.

III. DECAY AND SCATTERING AMPLITUDES

As an illustration of the physical content of the
model we now calculate in lowest order the matrix
elements for the simplest processes which it describes.
We shall verify that, despite the unpromising appear-
ance of the radiation gauge propagators, these matrix
elements are gauge invariant and I.orentz invariant.

In applying the Feynman rules we shall need, in
addition to the propaga, tors, the wave functions a„(k,cr)

and P(k,cr) which correspond to the annihilation by the
operators A„and C, respectively, of a vector meson
from an incoming state of momentum k and spin
component 0.. They are related by the Fourier trans-
form of Eq. (8) to the usual vector meson wave func-
tion b„(k,cr), which has the explicit form

b&(k,0) = ((y/mr) (~ k~ /ce, k/
~
k)),

b"(k, +1)=2 '"(0, er+ies),

where co= (~ k~ '+mrs)"' and er, es, k/
~
k) form a right-

handed orthonormal triad. Actually, all that we shall
need is the relation

where p(m') is a nonnegative spectral function satisfy- cI,„=b„+(ik„/mr) y, (15)

'4In Ref. 18 it is proved that in a manifestly causal theory
this commutator (or at least certain of its matrix elements) is
independent of t, despite the breakdown of the global conserva-
tion law. The gauge field coupling destroys manifest causality
and induces a time dependence in this commutator: In the zero-
order approximation it oscillates at a frequency m&.

35 See Refs. 11, 13, 14, and 15. In Refs. 14 and 15 it is implied
erroneously that the commutator LQ(c),C, (y)j is independent of
t. Fortunately, the discussion of the Goldstone theorem in these
papers does not depend on this assumption.

by which matrix elements may be expressed in terms
of wave functions b„and g, the desired invariance
being achieved by the cancellation of all terms con-
taining factors Q. Similar considerations apply to out-

3'P. T. Matthews, Phys. Rev. 76, 684 (1949};K. Nishijima,
Progr. Theoret. Phys. (Kyoto) 5, 405 (1950). The most general
conditions for the validity of this expression have been stated by
C. S. Lam, Nuovo Cimento BS, 1755 (1965).
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going states and associated complex conjugate wave
functions.

i. Decay of a Scalar Boson into Toro
Vector Bosons

The process occurs in erst order (four of the 6ve
cubic vertices contribute), provided that mp&2m~. Let
p be the incoming and k~, kp the outgoing momenta.
Then

M=i{e[a* (k,)( ik—,„)y*(kp)+a*»(k,)( ik—&„)y*(k&)j
—( p.)L *"(k )~*(k.)+ *"(k )~*(k )3

—2emga„*(kg) a*»(kp) —fmoy'(kg)y*(kp) }.

By using Eq. (15), conservation of momentum, and
the transversality (k„b»(k)=0) of the vector wave
functions we reduce this to the form

M =—2iemyb*» (kg) b„(kp)
—iem (p'+m. ')y*(k,)y*(k,). (16)

We have retained the last term, which we shall need
in calculating scattering amplitudes; when the incident
particle is on the mass shell it vanishes and we are left
with the invariant expression

M = —2iemgb* (kg) b„~(kp) . (17)

Conservation of angular momentum allows three pos-
sibilities for the spin states of the decay products: They
may be both right-handed, both left-handed, or both
longitudinal (p ~=op ——+1, —1, or 0). With the help of
the explicit vectors (14), we 6nd

M(+1, +1)=M(—1, —1)=2iem~,

M(0,0) =ifmp(1 2e'/f') .—

We note that as @~0 the amplitudes for decay to
transverse states tend to zero, but the amplitude
M(0,0) tends to the value ifmp which we would calcu-
late from the vertex —'pfmpC'X for the decay of one
massive into two massless scalar bosons in the original
Goldstone model. (The sign change arises from the
factor i which is associated with the term p in each b„).

ii. Vector Boson-Vector Boson Scattering

Let k~, k2 be the incoming and k~', k2' the outgoing
momenta. The process occurs as a second-order effect
of the cubic vertices, by exchange of a scalar boson in
the s, t, or I channel, where s= —(p~+ pp)',
=—(p,—p, ')', I=—(p,—p, ')'. It also occurs as a
direct effect of two of the quartic vertices. Equation
(16) enables us to write down

M, =i'( 2emgb»*(—kg') b*»(kp')

+em' —'(s—mp') y*(kg')@*(kp') }
Xi(s—mp')

—'{—2emgb„(kg) b" (kp)

+em' '(s—mp')P(kg)y(kp) }

and similar expressions for M& and M . The quartic
vertices yield a contribution given by

Md;, ~g
——p( —2e') (a»*(kg') a'»(kp')y (kg)g (kp)

+5 similar terms)
+i(-3f')4*(k~')4*(kp')4 (k~)4 (kp)

=—2pd(b»+(k, ')b*»(k, ')y(k, )y(k,)
+5 similar terms)
+i(4e' —3f')4*(ki')4*(kp')4(k~)4 (kp).

It is only when we combine these four contributions
that we obtain (after some algebra) the invariant
expression

M„„(=M.+M)+M.+Me;, t

=—4~e'mP( (s—mp')-'b*»(kg') b*»(kp') b„(kg) b" (kp)

+ (i—mo') 'b *(kg') b»(kg) b„*(kp')b"(kp)

+(I—moo) 'b ~(kg')b»(kp)b„*(kp')b"(ky)}. (18)

iii. Vector Boson-Scalar Boson Scattering

Let k, p be the momenta of the incoming vector and
scalar boson, respectively, and k', p' be their outgoing
momenta. Again there are four contributions, M„3f~,
M„, and M~;, ~. In the s and u channels a vector boson
is exchanged and it turns out that the various propa-
gators, (T*Ag„), (T*A„C), and (T*CC), occur only in
the combination (T*BQ„).We obtain the expression

M, = io( —2em&b*»(k')+ieq»g*(k') }i(g»„+m& 'q„q„)

X (s—mP) '( —2em~b" (k) —ieq"P(k) },
where q=k+p and s= —q', and a similar expression
for M . In the t channel a scalar boson is exchanged,
and we 6nd that

M~=i'( —3fmo}i(t—mo') '{—2emqb»~(k')b»(k)

+em (i—moo)y'(k')y(k) },
where i= —(k—k')'. Finally, the contribution of the
quartic vertices is given by

Mp;, t
——i(—2e'$b„*(k') —imp 'k»'g*(k')]

XLb»(k)+im&-'k»y(k) j—f'y*(k')y(k) }
Again the four contributions sum to the invariant
expression

M~opsi= —2imP(2e'(s —ma') '$b *(k')b"(k)
+m p»'b*»(k') p b"(k)$
+3f'(r —mop)-'b„*(k') b»(k)

+2e'(u —mP) 'Lb»*(k') b»(k)

+m p„b*»(k')p„'b"(k)$}
2ie'b *(k')b—»(k) . (19)

A similar matrix element may be written down for the
process, vector pair &-+ scalar pair, by making appropri-
ate interchanges of incoming and outgoing momenta
and wave functions.
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M4.4,i=M.+M4+M„+Md;, 4

94—f'mP((s —mp') '+(t—mp) '
+ (I m—p') '+ (3mps) ') . (20)

IV. EQUIVALENT LAGRANGIAN

In the previous section we have illustrated the
Lorentz and gauge invariance of the model by the
somewhat unsophisticated device of performing a few
lowest order calculations. From a more sophisticated
point of view we remark that Lorentz invariance may
be proved by constructing the generators of the
Lorentz group and verifying their commutation rela-
tions. Provided that the Lagrangian (1) is first properly
symmetrized, the proof goes through as in quantum
electrodynamics"; spontaneous breakdown of the in-
ternal symmetry is irrelevant to the argument, which
depends only on the equal-time commutators of prod-
ucts of field operators.

Concerning gauge invariance we remark that our
result, that (in lowest order at least) decay and scat-
tering amplitudes depend only on the gauge-invariant
vector wave functions b„(k,o), suggest. s that it must
be possible to rewrite the theory in a form in which
only gauge-invariant variables appear. Indeed, if one
were shown only the expressions (17)—(20), he would
guess that they had been derived from an interaction
Lagrangian given by

emiB„B"x '—fm px' 'e'B—B—&x'—r—f'—x4 (21)

We shall now show that the expressions (7) and (21)
are equivalent by finding a transformation of the total
Lagrangian (1) which takes the one into the other.

We note that the gauge dependence of the classical
dynamic variables may be expressed in the form

Ci(x) =R(x) cosO~(x),

Cs(x) =R(x) sinO(x),

A„(x)=B„(x) e '8„8(x), ——
(22)

where R(x) and B„(x) are gauge invariant variables
and the transformations (4) take the simple form,
O~(x) -+ O~(x) —A. (x). The classical Lagrangian (1), ex-
pressed in terms of the new variables, takes the form

2= ——F F"——g'gggg
rpe'B,B~R'+ i4mp'R' —s' fs R'. (23)—

Gauge invariance here has ensured the disappearance

'7 See S. Zumino, J. Math. Phys. 1, 1 (1960).

iv. Scalar Boson-Scalar Boson Scattering

This is the only simple process in which no invariance
problems arise in lowest order: The vertices which are
involved contain no vector boson factors. We find that

of the variable 0' from the scene. LWhat we have done
is to exploit the freedom which local U(1) invariance
gives us to "rotate" the entire two-component field
C, (x) onto one of the "axes." In a theory with only
global U(1) invariance this rotation cannot be per-
formed on the entire field but only on the static solu-
tion (3).] The existence of the solution B„=O, R'
=mp'/f' suggests the substitution R(x) = rt+x(x). In
this way, we find immediately that, apart from an
additive constant, 2'= Zp'+Z;„4', where

@p~= rR Ra~ rmlsB By, rgsvcj Xcj X lmpsXs (24)

The expression (24) is the same as (6), except that
the exactly gauge-invariant variables B„and X which
we have just defined replace their interaction picture
counterparts.

We conjecture that the equivalence demonstrated
here between the classical Lagrangians (1) and. (23)
may be extended to the corresponding quantum
mechanical operators, provided that careful attention
is given to the ordering problems which may arise,
for example, in the definition of the current j„."

V. DISCUSSION

The foregoing considerations illustrate our contention
in Refs. 15 and 27 that the extension of a spontaneously
broken internal symmetry of a Lorentz-invariant
Lagrangian from global to local transforrnations not
only may but actually does change zerons into the
longitudinal states of massive vector bosons. Since we
believe the value of this simple model to lie in the
insight which it may give into this phenomenon when
one looks at it as simple-mindedly as we have here,
we shall not go into more dificult questions, such as
radiative corrections and renormalization, in the pres-
ent paper.

We note that in this model the original symmetry is
almost unrecognizable in the physical states. Even
without the gauge field coupling, the invalidation of
the usual argument leading to the conservation of
Q(t) "by the asymptotic behavior of the term (C»)B„C»
in j„destroys the commutativity of Q with the Hamil-
tonian: Consequently, the one-particle states are not
eigenstates of Q and the masses within the C, multiplet
are not degenerate, but at least the multiplet structure
remains. The gauge field coupling obscures even the
multiplet structure: The scalar doublet is now incom-
plete, having lost its formerly massless member to
form the longitudinal polarization of the vector
singlet.

"J.Schwinger, Phys. Rev. Letters 3, 296 (1959); K. Johnson,
Nncl. Phys. 25, 431 (1961).

'9 In passing, we remark that this feature of spontaneous
breakdown theories seems to call into question the validity of the
results obtained on the basis of chirality conservation by Nambu
and his collaborators. See V. Nambu and D. I uric, Phys. Rev.
125, 1429 (1962); Y, Nambu and E. Shrauner, ibid. 128, 862
(1962); E. Shrauner, ibid. 131, 1847 (1963).
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In view of the rather drastic nature of the sym-
metry breakdown which we have just summarized, it
is of interest to inquire what happens when this system
is coupled to a second in a Lagrangian which retains
local U(1) invariance and contains no additional mecha-
nisms for spontaneous breakdown. To be specific, let
us take the second system to be a pair of "baryons" of
"charges" ~-', , together with their antiparticles, and
let us assume that the C-baryon interaction is of the
Vukawa type. The total Lagrangian is then given by

+total @(~yC) fa(y +/I+~)4'a+gLC1($14'2+it'24'1)

+C's(its@—4' i)j, (25)

in which g(A,t) is the expression (1), V„gi=B„fi
', e—A„—ps, V„ps=8„ps+ ,'eA„p-i and we have, without

loss of generality, made a choice of a phase angle in
writing down the invariant Yukawa term. But for the
presence of this last term, the Lagrangian would be
invariant under global U(1) transformations on C and

f independently; that is, the symmetry would be U(1)
)&U(1) and the currents j„(C) and j„(lt) would be
separately conserved. Thus, despite the nonconserva-
tion of Q(C) brought about by the structure of the first
term in (25), there would still be conservation of Q(lt).

The Yukawa term reduces the symmetry to U(1),
the divergences of the individual currents now being
given by

8js(p) = gal(pl/1 —$2$s)+42($1/2+$2/1)]
=—~.j"(C') . (26)

We observe that spontaneous breakdown of the sym-
metry in the C system breaks the symmetry of the f
system to an extent which depends on the coupling
constant g. In the spirit of the perturbative approach
which we have been using, we may evaluate the major
part of the effects on the P system by replacing C by
its vacuum expectation value. Then in Eq. (25) the

term gr)(/sits —fipi) removes the baryon mass degen-
eracy, and Eq. (26) becomes

B„jI'(p) =grig, ps+&&pi)+higher order terms. (27)

If we were to modify the Lagrangian (25) by adding
to it such U(1) invariant baryon-antibaryon interac-
tions as would produce a doublet of low-mass scalar
bound states with wave functions transforming as
PiPs+fsPi and. ggk, P—i/i, then Eq. (21) would be
approximately a partial conservation law of the type
which has proved so successful for the axial currents
of the weak interactions. e Moreover, the current j„(f)
interacts with itself via the massive intermediate vector
boson which the C —A „coupling produces.

There appears to be some hope that the basic in-
gredients of our model, namely the combination of
spontaneous symmetry breakdown with the gauge
principle, may provide the basis for an understanding
of the broken symmetries of high-energy physics. In
a subsequent paper we shall discuss models in which
the breakdown of higher symmetries such as SU(3) is
treated in the same fashion.
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