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• In going to Solvay 1963, Feynman wondered how to 
explain quantum electrodynamics to 1913 physicists

• He realized they understood ‘vacuum energy’

• So he conceived of two boxes, one with a gas of 
hydrogen atoms in 2S1/2 state, the other in 2P1/2

• Photons in these two boxes would have different 
refractive index, hence different vacuum energies

• This would be interpreted as a contribution to
E2P-E2S : the Lamb shift
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• Mathematically, photon dispersion relation 
measures its forward amplitude against atoms

• To generalize: use        to normalize fluctuations

• From this, Feynman derived (for the first time) 
the Faddev-Popov ghost in Yang-Mills&gravity 
[@one loop]

• This was used in early string theory, in a proof 
of no-ghost theorem, helping establish the rules
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• Problems: Forward limits generally singular;
tree theorem doesn’t fully extent to higher-loops

• In planar case, bypassed by loop integrand recursion

• I’ll present new hybrid representations, combining 
features of unitarity-based methods

-Express loops as integrals over on-shell trees
-Manifestly ghost-free
-Valid in any quantum field theory
-Can be integrated termwise with standard methods
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Outline
1. Introduction

2. Context
-Unitarity method and amplitude calculations
-Scattering equations

3. Three questions addressed:
-How to integrate expressions term-wise?
-How to make sense of forward limits
-How to extend to higher loops?

4. Conclusions
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Context
• Progress in precision calculations of 

scattering amplitudes: spurred by
collider applications and fundamental desire 
to understand structure

• Modern attitude is generally inverse to the 
tree theorem: to go back to the trees

• Driven by simplicity of trees in gauge 
theories (compared to Feynman rules expansion)
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Unitarity method

• Match all cuts to solve for the integrand

A(L) =
X

k

ck

Z

`
I(L)
k

Cut diagram
=

Product of trees

[Bern,Dixon,Kosower
&Dunbar’95-...]

products
of trees

standardized
integral basis



• Unitarity method:

• Generally ‘all or nothing’: until all ck are found, little 
information is gained (e.g. limits hard to extract)

• Relations to trees in this talk will be fully explicit:
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Partial fractions
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Partial fractions

• Really: partial fraction in η2 where 
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More on partial fractions
• Feynman’s proof of his tree theorem, 

amounts to partial fraction in energy

• BCFW’s proof of recursion relation is 
partial fraction in z

• Here, we partial-fraction in η2:
extra-dimensional component of loop 
momenta (perpendicular to all D=4-2ε)
-Works in any theory where dim.reg. is used
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Inspiration
• Recent novel representation of trees, localized 

on zeros of ‘scattering equations’:

• Shortly derived from ‘ambitwistor string’:

• Extended to loop-level, led to complicated 
elliptic functions
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• Moduli integral could be localized on boundary

• [Reminiscent of a proof of no-ghost theorem?]

• General structure:

• Partial fractions used to compare with known result

• Connection with forward amplitudes, made on-shell 
via η2 shift, explicitly made in ϕ3 case
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For n = 4, I is a constant for any q, giving the expected
t
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R4 kinematic tensor [10], and the n-gon results above
suffice to give the correct answer. For n = 5, the inte-
grand I

0

depends on the �i and the loop momentum.
The amplitude can be written in terms of pentagon and
box integrals, and we can apply the shift procedure above
to connect to our results, yielding
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The supergravity numerators N5 and Nbox are the square
of the gauge theory numerators given in [12] or [13], which
satisfy the colour-kinematics duality [14, 15]. This for-
mula precisely matches that from the off-shell scattering
equations at 5 points numerically.

VI. SUPER YANG-MILLS AT 1-LOOP

Following CHY at tree level, we can hope to obtain
super Yang-Mills amplitudes at 1-loop by replacing one
of the factors IR for supergravity above by a cyclic sum
over Parke-Taylor factors that run through the loop
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0

is given in (11). Each factor of 1/�i goes with
a Pfaffian, so in removing a Pfaffian, we also remove one
of the 1/�is. At four points, IL

0

is constant as mentioned
above and it factors out. This ansatz has been checked
numerically at both four and five points. There is an
additional obvious conjecture for the analogue of the bi-
adjoint scalar theories.

VII. ALL-LOOP INTEGRANDS

The ACS proposals have natural extensions to Rie-
mann surfaces ⌃

g of arbitrary genus g for g-loop ampli-
tudes [8, 9, 16]. We can again attempt to use residue

theorems to localise on a preferred boundary component
of the moduli space. Here we choose a basis of g a-cycles
to contract in g non-separating degenerations, to obtain
Riemann spheres ⌃

g
0

with g nodes, i.e pairs of double
points (�r,�r0), r = 1, . . . , g. (We still expect separating
degenerations to be suppressed by the remaining scatter-
ing equations for generic momenta.) This fixes g of the
moduli, and the remaining 2g � 3 moduli are now as-
sociated with the 2g new marked points modulo Möbius
transformations. On nodal curves, 1-forms are allowed to
have simple poles at the nodes so that the nodal Riemann
sphere ⌃g

0

is endowed with a basis of g global holomorphic
1-forms
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where `r 2 Rd are the zero modes in P representing
the loop momenta. Setting S(�) := P 2 �Pg

r=1

`2r!
2

r , a
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points including �r,�r0 , the multiloop off-shell scattering
equations are
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where i now ranges over all the marked points. We have
as before three relations between the scattering equations
arising from the vanishing of the sum of the residues of
�↵��S. Thus if we impose n+2g�3 of them, the remain-
ing ones must also be satisfied, so that S is holomorphic
and, being of negative weight, vanishes.

This leads to the following proposal for the all-loop
supergravity integrand
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⇥ C3 is the residual gauge symmetry of
the ambitwistor string. It is fixed in standard Faddeev
Popov fashion by fixing three points to (0, 1,1) and re-
moving their corresponding delta functions. In this for-
mula, the integrand factors IR and IL depend on the
marked points, momenta and polarisation data, and take
values in 1-forms in each integration variable. They are
most simply defined to be the sum over spin structures of
the worldsheet correlator [9, 16] of n type-II supergravity
vertex operators on a genus g Riemann surface ⌃

g, then
taken to the g-fold nodal limit ⌃

g
0

. There is of course
much work to be done to make such correlators explicit,
but they are the same as those that arise in conventional
string theory and as such are much studied. This is done
in our context at four points and two loops in [16].
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1. How to integrate expressions term-wise?
(Contour?)

2. How to make sense of forward limits?

3. How to extend to higher loops?

19
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Integration contour
• Q1. Can individual terms be integrated?

• Earlier attitude, for BCFW loop recursion:
No good technique: before integration one must
line-up and cancel spurious denominators

• Reinforced by calculation of MHV 1-loop on R1,3
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Contour derivation
• Start from a Feynman integral:

• Important: the (positive) εj can have any rel. size

21
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Contour derivation
• Start from a Feynman integral:

• Important: the (positive) εj can have any rel. size

• General denominator factor after partial fractions:

• Individual term will depend on ε ordering

22
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• Options:
-Fix some arbitrary ordering
-Average over all choices!

• Example: three denominators. 3!=6 orderings

23

[difficult beyond planar]
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• Looks weird, but standard techniques work

• Example: Schwinger parameters

Try bubble:

a<0 and a>1 cancel each other, leaving usual result

• Higher-point Schwinger parameters reproduced 
through amusing identities:

i
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• Lesson:  terms can be integrated separately, on a 
simple contour (‘average ε’), so that the sum 
reproduces original integral

• Schwinger parameters work well

• Integration-by-part identities work as usual

• [Nontrivial contour reminiscent of tree theorem]
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Forward limits
• Q2. How to make sense of forward limits?

• Limit is generally singular

• Well-defined in SUSY, due to cancelations
(related to solution of hierarchy problem)
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• General solution: partial-fractions! Start from:

• Then partial-fraction 

• Three types of poles:

-α=0: 
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• Then partial-fraction 
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-α=0: 

-α=∞: 
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• General solution: partial-fractions! Start from:

• Then partial-fraction 

• Three types of poles:

-α=0: 

-α=∞: 

-α=finite: physical unitarity cut

• Up to vanishing integrals, forward limit okay!
30
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Q-cut representation

31
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Using this generalization of the partial fraction expan-
sion to decompose every integral of the Feynman expan-
sion, it is easy to see that every term has the form (up
to a shift in ` by external momenta),
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where N(`) accounts for both the numerators of the di-
agrams and any loop-independent propagators. Let I(`)
denote the factors in the square brackets above.

Although forward-limit divergences prevent us from in-
terpreting I(`) in terms of an entire tree-amplitude in
general, it turns out that we can construct I(`) in terms
of tree-level objects up to terms that vanish upon inte-

gration. This becomes possible after one further partial-
fraction-like expansion—this time, in the scale of `. Con-
cretely, consider the residue theorem resulting from:

I(`) 7! eI(↵, `)⌘
eI(↵`)
(↵�1)

. (4)

Clearly, I(`) is recovered as the residue of eI(↵, `) at ↵=1;
and by Cauchy’s theorem, this is equal to (minus) the
sum of all other residues. These residues are associated
with three types of poles: at zero, at infinity, and at finite
locations (↵ 6=1). By inspection of equation (3), residues
at ↵=0 correspond to integrals of the form,
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where the product runs over only those factors for which
Q

k

= 0, and e
N(`) denotes all other factors at ↵ = 0.

Integrals of this form must vanish upon integration in
any number of dimensions d because the denominator is
homogeneous in ` and hence scale-free. Similarly, the
Laurent expansion of eI(↵, `) at ↵!1 can involve only
terms homogeneous in `, which hence vanish upon inte-
gration. Notice that these residues precisely correspond
to the terms poorly defined in the forward-limit.

Therefore, we can replace I(`) by the sum of residues
of eI(↵, `) at ↵ /2{0, 1,1}. Importantly, all such residues
can be interpreted as involving two additional on-shell
particles, with specific momenta determined by the suc-
cessive residues. It is not hard to see that expanding
every term in the Feynman expansion in this way, the
coe�cient of each pair of propagators becomes a prod-
uct of complete tree-amplitudes evaluated for particular
on-shell, internal momenta (and summing over states):

A
L

(· · · , è
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of momenta over a partition of external legs. We refer
to functions of the form of (6) as Q-cuts, which we can

represent graphically as follows:
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Notice that the shifted propagator, corresponding to the
factor 1/((`+P

L

)2 �
`

2) in equation (6), is indicated by a
dashed line in the figure above to distinguish it from the
unshifted, o↵-shell propagator 1/`2.
We claim that the sum over all Q-cuts (with P
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6=0)
reproduces any one-loop amplitude. Notice that the inte-
grand of aQ-cut is similar to a Cutkosky unitarity cut [4].
The principal novelty involved in the Q-cut is that the
amplitudes involved are evaluated with shifted (on-shell)

values of (è
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), multiplied by unusual propagators.

CONTOURS OF INTEGRATION

At a fundamental level, the causal structure of
scattering amplitudes is encoded in the Feynman i✏-
prescription, critical to the precise definition of the loop
integration contour. It will be useful here to observe
that every Feynman propagator can be assigned its own
✏, transforming D

j

7!D

j

+
i✏

j

; so long as each ✏

j

is real
and positive, the physical contour will be unambiguous
(and independent of the ✏

j

’s).
Since Q-cuts do not involve products of Feynman prop-

agators, it is not immediately clear how to assign i✏’s
to the linear poles appearing in their definition. How-
ever, if we had started with a single Feynman integral
with specific ✏’s for each propagator, then the partial
fraction expansion would result in terms of the form
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), with contours prescribed by shifts in-
volving i✏
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), the signs of which will be fully
determined by the (arbitrary) ordering of the original
✏’s. This always provides a precise contour of integration
for the resulting expressions that is guaranteed to match
the original expression. The problem is in going in the
other direction: to assign an unambiguous prescription
for the ✏’s associated with the linear-factors in ` of each
Q-cut integral.2

(We should mention that the contour we describe here
requires that on-shell tree amplitudes are represented in
a way that involves only local poles. Representations of
trees generated by the BCFW recursion relations [5], for
example, involve spurious, complex poles in individual
terms. Finding a contour prescription for such terms is
an important and interesting open problem.)
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In planar theories, where all the ✏’s of all propagators can be

identified and conventionally ordered according to the ordering

of the external legs, an unambiguous convention for the signs of

the ✏’s for any linear factor can be easily assigned.
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R = L̃+ PL

with: ⌘2 = �`2, ↵ = �P 2
L/(2`·PL).

No forward limit: trees are nonsingular and well-defined

) ˜̀2
L = 0 = ˜̀2
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Cut can include either:
 -Physical states
 -Physical states + Unphysical states + ghosts

Ghosts unnecessary



Higher loops

• Q3. How to extend to higher loops?

• For tree theorem, most obvious guess: couple 
two independent vacuum fluctuations

• Wrong guess: too ‘classical’; no stable vacuum 
(‘ultraviolet catastrophe’); unitarity violated

33

A(2)({pi}) ⇠
1

4

Z
d3`1

(2⇡)32E`1

d3`2
(2⇡)32E`2

Atree(`1,�`1, `2,�`2, {pi})

[Holdom; SCH ’10]



A no-go
• At 2-loop: first pick two preferred cycles

• Using clever contour integration, cutting-open two 
lines is not a problem

• The issue is that the result depends on orientation 
between L1 and L2.
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[Feynman ’63,’69;
Catani,Bierenbaum et al; SCH’10]

L1 L2 -L1-L2-



• Causes problems when collecting graphs

• One finds that ‘‘A’’ must distinguish graphs where:

• This prevents ‘‘A’’ to be physically meaningful (even 
gauge invariant) and was recognized by Feynman

• In 2010, I marginally improved, by noting that in
the planar limit one can use color flow as a proxy
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{-a (L1+L2+P)2 propagator appears
-a (L1-L2+P)2 propagator appears
-none of the above

A(2)({pi}) ⇠
1

4

Z
d3`1

(2⇡)32E`1

d3`2
(2⇡)32E`2

“A”(`1,�`1, `2,�`2, {pi})



two-loop Q-cuts
• In previous graph, use three-parameter 

deformation:

• The η’s (as before) are orthogonal to all external 
and D=4-2eps loop variables
This is possible: within dim.reg. the space is effectively infinite 
dimensional (no linear relations among loop momenta)

• With three-parameters, Feynman’s no-go avoided!
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`1,2 7! `1,2 + ⌘1,2

where ⌘21 = z1, ⌘22 = z2, (⌘1+⌘2)
2 = z3.



• Doing partial-fractions separately in z1,z2,z3,
yields two nonvanishing contributions:

1. All zi finite: (three propagators cut)

2. Two zi finite, one at infinity: two cut propagators.  
Then apply two α-deformations:
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two-loop Q-cuts

4

Regarding extensions to higher multiplicity and higher
loops, it is worth mentioning that the Q-cut representa-
tion can be combined with other modern techniques—for
example, integral reduction and the use of integration-by-
parts identities.

EXTENSIONS TO HIGHER LOOPS

To generalize the construction to two loops, we be-
gin by writing each Feynman diagram such that only
loop momenta `

1

, `

2

or (`
1

+
`

2

) enter propagators. We
then separately partial-fraction-out the propagators of
each three type. More precisely, we introduce a three-
parameter deformation `

i
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3

. Partial-fractioning then expresses the
amplitude in terms of its residues in z

1

, z

2

, z

3

.
In each variable z

i

there are residues at both finite and
infinite locations. The residues with all three z

i

finite are
immediately given by on-shell three-particle cuts, given
by the following Q-cut:
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è
3

)

`

2

1

`

2

2

(`
1

+
`

2

+
P

L

)2
,(18)

where è
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are such that è2
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= 0 for i = 1, 2, 3.
The residues at infinity require more work. It is easy to
see that residues with two or three z

i

at infinity yield
vanishing integrals and so can be discarded. Residues
with one at infinity, say z

3

, represent degenerate topolo-
gies with disconnected loops. For these terms we repeat
the procedure introduced already at one-loop and rescale
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and expand by partial fractions separately in
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. This yields a second type of Q-cut:
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These tree amplitudes are evaluated using è
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), similar to
the one-loop case. The amplitudes are projected onto the
0th-order term in the Laurent expansion for large ⌘

1

·⌘
2

.
Intuitively the two Q-cuts above account for graphs

with connected and disconnected loops, with the extra-
dimensional deformation and ⌘

1

·⌘
2

!1 projection ac-
complishing a gauge-invariant separation between them.
According to our derivation, adding all Q-cuts (for all
possible external leg insertions) will reproduce the correct
integrated amplitude. The contour for each Q-cut is de-
termined by equations (8)–(11), which should be applied
separately for each group of linear propagators—that is,
those involving (A·`

1

+
B), (A·`

2

+
B) or (A·(`

1

+`

2

)+B).
As a natural variation of the same technique, in a pla-

nar theory one could restrict to a two-parameter defor-
mation with z

3

= 0, since no graph has more than one

mixed propagator 1/(`
1

+
`

2

+
P )2. The residues would

then be related to the double-forward limits of trees, in
theories where this limit can be defined [11].
We believe that the Q-cut-construction generalizes

straightforwardly to any loop order. For example, using
a 6 parameter deformation with all ⌘

i

·⌘
j

taken indepen-
dent at three loops, we obtain the six Q-cut diagrams:

(20)

SUMMARY AND CONCLUSION

The desire to represent loop amplitudes directly in
terms of lower-loop amplitudes is motivated by the prac-
tical and conceptual advantages of eliminating explicit
reference to the redundancies required by the Feynman-
diagrammatic expansion. Recently, several such repre-
sentations of loop amplitudes in terms of trees have ap-
peared in the context of the scattering equation formal-
ism. This is in part because this formalism makes it pos-
sible (at least for certain theories) to systematically reg-
ulate the divergences of tree amplitudes in the forward-
limit [12, 13].4 But it remains an important, open prob-
lem to systematically regulate the forward-limit diver-
gences of amplitudes in general theories.
In this Letter we have described a new, “Q-cut” repre-

sentation of loop amplitudes, derived from general field
theory arguments and without any reference to forward
limits. And this representation naturally extends to all
orders of perturbation theory opening new possibilities
for computation.
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3

⌘ è
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• Thus

• Contour for individual term can be derived 
and is similar as before

• Gauge-invariant separation between the two 
topologies achieved by             projections
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Regarding extensions to higher multiplicity and higher
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1

,

è
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complishing a gauge-invariant separation between them.
According to our derivation, adding all Q-cuts (for all
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integrated amplitude. The contour for each Q-cut is de-
termined by equations (8)–(11), which should be applied
separately for each group of linear propagators—that is,
those involving (A·`
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taken indepen-
dent at three loops, we obtain the six Q-cut diagrams:
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SUMMARY AND CONCLUSION

The desire to represent loop amplitudes directly in
terms of lower-loop amplitudes is motivated by the prac-
tical and conceptual advantages of eliminating explicit
reference to the redundancies required by the Feynman-
diagrammatic expansion. Recently, several such repre-
sentations of loop amplitudes in terms of trees have ap-
peared in the context of the scattering equation formal-
ism. This is in part because this formalism makes it pos-
sible (at least for certain theories) to systematically reg-
ulate the divergences of tree amplitudes in the forward-
limit [12, 13].4 But it remains an important, open prob-
lem to systematically regulate the forward-limit diver-
gences of amplitudes in general theories.
In this Letter we have described a new, “Q-cut” repre-

sentation of loop amplitudes, derived from general field
theory arguments and without any reference to forward
limits. And this representation naturally extends to all
orders of perturbation theory opening new possibilities
for computation.
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tion can be combined with other modern techniques—for
example, integral reduction and the use of integration-by-
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2

,

è
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3-loops
• At 3-loops, the three momenta and their dot 

products allow for 6-variables deformation

• Including all subtopologies (residues at infinity):
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(è
1

,

è
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X



• A nice theorem: Q-cut integrands depend only 
on four-dimensional part of L (proof: amplitude 
themselves depend only on             )

• That is, 

• Taking this as the starting point, any 4D 
regulator will also work!
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Outlook

• Solves outstanding problem: express loops from 
on-shell trees

• New ingredient: linear denominators

• Conceptually clean starting point for:
-Applications at two-loop and higher
-Study of limits using on-shell methods
-Taking D=4 limit
-New regulators (gauge-invariance built-in!)
-...
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Q-cuts: A(L)
=

Z
dd`1 · · · dd`L [products of on-shell trees]



When would we be able to explain the steps of a two-loop
QCD cross-section calculation, to a 191(3)3 physicist?


