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In going to Solvay 1963, Feynman wondered how to
explain quantum electrodynamics to 1913 physicists

He realized they understood ‘vacuum energy’

So he conceived of two boxes, one with a gas of
hydrogen atoms in 25/, state, the other in 2P|

Photons in these two boxes would have different
refractive index, hence different vacuum energies

This would be interpreted as a contribution to
Eop-E2s : the Lamb shift
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® Mathematically, photon dispersion relation
measures its forward amplitude against atoms

® TJo generalize: use hiw/2 to normalize fluctuations
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® Mathematically, photon dispersion relation
measures its forward amplitude against atoms

® TJo generalize: use hiw/2 to normalize fluctuations

AD ({p;}) = T C O N 1)

® From this, Feynman derived (for the first time)
the Faddev-Popov ghost in Yang-Mills&gravity

[@one loop]

® This was used in early string theory, in a proof
of no-ghost theorem, helping establish the rules




® Problems: Forward limits generally singular;

tree theorem doesn’t fully extent to higher-loops

[Catani,Bierenbaum et al ’10...;
SCH’ IO]

In planar case, bypassed by loop integrand recursion

I'll present new hybrid representations, combining
features of unitarity-based methods

-Express loops as integrals over on-shell trees
-Manifestly ghost-free

-Valid in any quantum field theory
-Can be integrated termwise with standard methods




Qutline

. Introduction

. Context
-Unitarity method and amplitude calculations

-Scattering equations

3. Three questions addressed:
-How to integrate expressions term-wise!
-How to make sense of forward limits
-How to extend to higher loops!?

4. Conclusions




Context

® Progress in precision calculations of

scattering amplitudes: spurred by
collider applications and fundamental desire

to understand structure

® Modern attitude is generally inverse to the
tree theorem: to go back to the trees

® Driven by simplicity of trees in gauge
theories (compared to Feynman rules expansion)




Unitarity method

\p‘ [\/ <ut diagD
Product of trees
A

® Match all cuts to solve for the integrand

(L) — 7(L)

products
of trees

standardized

Bern,Dixon,Kosower integral basis

&Dunbar’95-...]




® Unitarity method:

M-l . trees

® Generally “all or nothing’: until all ¢« are found, little
information is gained (e.g. limits hard to extract)

® Relations to trees in this talk will be fully explicit:

A®) //zm ((0)
TN

products evaluated at
of trees shifted arguments




Partial fractions




Partial fractions

- a

® Really: partial fraction in n? where /2 — 0% +4n?

1

0?2 (4p1)?+n?

1

1

62

(l+p1)° .




More on partial fractions

® Feynman’s proof of his tree theorem,
amounts to partial fraction in energy

BCFW'’s proof of recursion relation is

partial fraction in z (with A(2) = A(¢1+2q,l2—2q,...))
[Britto,Cachazo,Feng&Witten'05]

Here, we partial-fraction in N2 ¢ — {+n
extra-dimensional component of loop

momenta (perpendicular to all D=4-2¢)
-Works in any theory where dim.reg. is used

| 4



I ns Pi I"ati ON.: brief history...

® Recent novel representation of trees, localized
on zeros of ‘scattering equations’; [“achazo,He&Huang, 3]

® Shortly derived from ‘ambitwistor string’:

T on

1 — 1
S (n“”PM(?X,, — 5677“”P“Py> L
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® Shortly derived from ‘ambitwistor string’:
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® Extended to loop-level, led to complicated
L : [Adamo,Casali&Skinner ' 3;...]
elliptic functions




Moduli integral could be localized on boundary

[Geyer,Mason,Monteiro, Tourkine, "15]

[Reminiscent of a proof of no-ghost theorem!?
[Brink&Olive, 73]

General structure: 1/¢? x [linear denominators]

Partial fractions used to compare with known result




Moduli integral could be localized on boundary

[Geyer,Mason,Monteiro, Tourkine, "15]

[Reminiscent of a proof of no-ghost theorem!?
[Brink&Olive, 73]

General structure: 1/¢? x [linear denominators]

Partial fractions used to compare with known result

Connection with forward amplitudes, made on-shell
via N? shift, explicitly made in @3 case

[He&Huang, ’ | 5]




Questions

|. How to integrate expressions term-wise?
(Contour?)

2. How to make sense of forward limits!?

3. How to extend to higher loops?




Integration contour

® QI.Can individual terms be integrated?

® Earlier attitude, for BCFWV loop recursion:
No good technique: before integration one must

line-up and cancel spurious denominators
[Arkani-Hamed,Bourjaily,Cachazo,SCH&Trnka "1 0]

® Reinforced by calculation of MHV I|-loop on R!*3
[Lipstein&Mason ’| 3]




Contour derivation

® Start from a Feynman integral:
N(£)
[[;(Dj +i€;)

d%y

® |mportant: the (positive) & can have any rel. size




Contour derivation

Start from a Feynman integral:
N(£)
[[;(Dj +i€;)

d%y

Important: the (positive) & can have any rel. size

General denominator factor after partial fractions:

1
Di—Dj —+ i(éi—éj)

Individual term will depend on € ordering
[though the sum will not]

22



Options:
-Fix some arbitrary ordering [difficult beyond planar]
-Average over all choices!

Example: three denominators. 3!=6 orderings




Options:
-Fix some arbitrary ordering [difficult beyond planar]
-Average over all choices!

Example: three denominators. 3!=6 orderings
1 1 1
Di+ie Doy + i(ea—e€1) D31 + i(e3—e€q)

I 1 2 1

"6 Dy +ie | (Do1+i€)(Ds1+i€) (Do —i€)(Ds1+ie)
| 1 | 2
| (D21—|—’i6)(D31—’i€) | (Dgl—iE)(Dgl—iE)_
> -
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1 1
=——— |P—P
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! = 77l —imd(x)

(used: —— =P




® | ooks weird, but standard techniques work

® Example: Schwinger parameters

' © 9 o0 | o0 |
: @/ dae'”, p= @/ dasign(a)e'*”, 2mwd(x) @/ dae'”
0 L — 00 — 00

T -+ 1€

Try bubble:

d 00 '
/dé 1 D 2 @F(d—Q)/da sign(a)

wd/2 P21 4¢ 2€,p_|_p2 e (—a(l—a)p2 _ ie)Z_d/Q
a<0 and a>| cancel each other, leaving usual result

® Higher-point Schwinger parameters reproduced
through amusing identities:

0(a+b+c)(sign(a)sign(b) + sign(a)sign(c
+ sign(b)sign(c) + 1) = 0(a)0(b)0(c)




Lesson: terms can be integrated separately, on a

simple contour (‘average €’), so that the sum
reproduces original integral

Schwinger parameters work well

Integration-by-part identities work as usual

[Nontrivial contour reminiscent of tree theorem]




Forward limits

® Q2. How to make sense of forward limits?

® |imit is generally singular

Di
—C |>(

| pi+l—0)?
2 N

® Well-defined in SUSY, due to cancelations
(related to solution of hierarchy problem)

Benincasa ’| 5]




® General solution: partial-fractions! Start from:

1 N () 1 1
2| (20PHQY) - (2-PtQ2) | T 2

I(£) I(¢)

® Then partial-fraction I(a/)

® Three types of poles:

-X=0:




General solution: partial-fractions! Start from:

h N(f) 1 1.
@EPQY - Py~ 'O

Then partial-fraction I(af)

Three types of poIeS°

o=0: o« [] Qgp = scale-free = Drop!
7:Q;=0

-(=00




General solution: partial-fractions! Start from:

L[ N(0) = Li

I() = 02 | (20-Pi4+Q3) - (20-P+Q2) | — £

Then partial-fraction I(af)

Three types of poles:

-x=0: | —. = scale-free = Drop!

— scale-free = Drop!

-0=finite: physical unitarity cut

Up to vanishing integrals, forward limit okay!

30



Q-cut representation

1 —_— L] L] L]
‘A( ) E :/ ¢ (2€-PL + Pl%) Ar(fr, =L,

where : EL—oz(€+77), ZR:E+PL . -
= (4 =0 = /3
with: n% = —¢2, o= —P2/(20-P;). &

No forward limit: trees are nonsingular and well-defined




m
A

;

Cut can include either:
-Physical states
-Physical states + Unphysical states + ghosts

Ghosts unnecessary




Righer loops

® Q3. How to extend to higher loops?

® For tree theorem, most obvious guess: couple
two independent vacuum fluctuations

1 d> 04 d° {5
271')32Eg1 (271‘)32Eg2

Atree(€17 _817 627 _627 {pl})

® VWrong guess: too ‘classical’; no stable vacuum

(‘ultraviolet catastrophe’); unitarity violated
[Holdom; SCH ’10]




A no-go

® At 2-loop: first pick two preferred cycles

—

ML -Li-Lo.

® Using clever contour integration, cutting-oIJ:)en two
S

. . [Feynman ’63,69;
lines is not a PrObIem Catani,Bierenbaum et al; SCH’10]

® The issue is that the result depends on orientation
between L, and L.




® Causes problems when collecting graphs

A0 ~ ;[ om0t b
p’L 4 (27T)32E€1 (27T)32E€2 1 1s42, 29 p’L

® One finds that “A” must distinguish graphs where:
{ -a (L,+L,+P)? propagator appears

-a (Li-L,+P)?* propagator appears
-none of the above

® This prevents “A” to be physically meaningful (even
gauge invariant) and was recognized by Feynman

® |n 2010, | marginally improved, by noting that in
the planar limit one can use color flow as a proxy

35



two-loop Q-cuts

® |n previous graph, use three-parameter
deformation:

1o li2+ M2

where 77% = 21, 77% — 22, (771+772)2 — <3-

® The N’s (as before) are orthogonal to all external

and D=4-2eps loop variables

This is possible: within dim.reg. the space is effectively infinite
dimensional (no linear relations among loop momenta)

® With three-parameters, Feynman’s no-go avoided!




two-loop Q-cuts

® Doing partial-fractions separately in z|,z2,z3,
yields two nonvanishing contributions:

|.All z; finite: (three propagators cut)

Q e Ar (1,02, —03)AR(~ b1, ~ Lo, €3)

- 6262 €1 -I—gg -|—PL)

2. Two z; finite, one at infinity: two cut propagators.
Then apply two &-deformations:

OROROLINE

AR(l2,~ l>—Pp)
I%: (262 PR+P2)

~

Ap(ly,~£1-Pr)
ﬁ% (261 'PL+P2)

.A ( 51 €1+PL 62 €2+PR)
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® Thus

d/ dé
S [0=C
A
JoioR0

® Contour for individual term can be derived
and is similar as before

® (Gauge-invariant separation between the two
topologies achieved by z; — oo projections




3-loops

® At 3-loops, the three momenta and their dot
products allow for 6-variables deformation

® |ncluding all subtopologies (residues at infinity):

RS AN
O=0 &0




® A nice theorem: Q-cut integrands depend only

on four-dimensional part of L (proof:amplitude
themselves depend only on )

® Thatis,

d*/ d_zng_
| i | Gor 1O
(27) (2m)—2€ 02 — 0% + i€

~

d*/ 1 . .
— . . 7(¢) gauge-invariant
| Gy = g 1O Bugeinvaria

® Taking this as the starting point,any 4D
regulator will also work!




Outlook

Q-cuts: AL = /dd€1 ...dy, [products of on-shell trees]

® Solves outstanding problem: express loops from
on-shell trees

New ingredient: linear denominators

Conceptually clean starting point for:
-Applications at two-loop and higher
-Study of limits using on-shell methods
-Taking D=4 limit

-New regulators (gauge-invariance built-in!)

4]



When would we be able to explain the steps of a two-loop
QCD cross-section calculation, to a 191(3)3 physicist?




