the limits of cosmology

observing the dark ages

22 MARCH 2017

Joseph Silk

IAP/JHU

We have made remarkable progress in cosmology in past 100 yrs. its now a precision science But the big questions are unanswered

What is the matter?

Dark matter, dark energy

Where do we come from? Inflation....

THE DARK AGES OF THE UNIVERSE

Modern observations of the expanding universe require dark matter and dark energy

Direct Detection: Look for scattering events in detector

Indirect Detection: Halo (cosmic-rays)) Accelerators: LHC

DARK MATTER: status of indirect detection

 γ , ν , e^+ ...

thermal freeze-out In early universe σ_{ann} ~10⁻³⁶ cm²

DARK MATTER

What if we don't find dark matter in the next decade(s)?

So far, modifying gravity is ugly and doesn't work!

Look elsewhere

DARK ENERGY accelerates

we measure dark matter minus dark energy

CURVATURE = ENERGY-MOMENTUM $G_{\mu\nu} = 8\pi T_{\mu\nu}$ $G_{\mu\nu} - \Lambda g_{\mu\nu} = 8\pi T_{\mu\nu}$ $G_{\mu\nu} + \Lambda g_{\mu\nu}$ $= 8\pi T_{\mu\nu} + \Lambda g_{\mu\nu}$

Distant type Ia supernovae are too faint!

ACCELERATION

observe

$$\rho_{\text{vac}} \approx 10^{-10} \text{eV}^4$$

predict

$$M \sim M_{Planck} = G^{-1/2} = 10^{28} \text{ eV} \implies \rho_{vac} \sim 10^{112} \text{eV}^4$$

The worst prediction in physics!

MULTIVERSE

We live in one tiny pocket where the value of the cosmological constant is consistent with our kind of life

Leonard Susskind

Eternal inflation produces a nearly infinite number of inaccessible universes

The multiverse theory can't make any predictions ... it can explain anything... George Ellis

Multiverse: an astrophysical explanation?

P. Ferreira
Clifton & Ferreira 2008

e.g. a very big void

or a fundamental physics theory?

10⁵⁰⁰ Calabi-Yau manifolds to 3

But now its 10¹⁷²⁰⁰⁰!

Taylor & Wang 2016

DARK ENERGY

There is no acceptable theory, despite claims such as

To establish a prior, I note that the multiverse is easy to make; it requires quantum mechanics and general relativity...I will start with a prior of 50%. I will first update this with the fact that the observed cosmological constant is not enormous. Now, if I consider only known theories, this pushes the odds of a multiverse close to 100%. But I have to allow for the possibility that the correct theory is still undiscovered...The second update is that the vacuum energy is not exactly zero...The final update is the fact that our outstanding candidate for a theory of quantum

gravity, string theory, most likely predicts a multiverse..... So this is my estimate

for the likelihood that the multiverse exists: 94%.

Joseph Polchinski, 2016

Could Λ just be a constant of nature?

Inflation via slow roll

$$rac{\ddot{a}}{a} = -rac{1}{6M_{ ext{Pl}}^2} \sum_i \left(
ho_i + 3p_i
ight)$$

$$ho=rac{\dot{\phi}^2}{2}+V(\phi),\quad p=rac{\dot{\phi}^2}{2}-V(\phi).$$

1980s inflation made 3 predictions

- 1. flatness of space
- 2. size of the universe
- 3. primordial density fluctuations

2017: most trust inflation

Planck satellite just 6 numbers

PREDICTIONS

Gaussianity of fluctuations f_{NL} δT/T< 0.01%
Gravity wave background

T/S < 0.08 B mode

A search for spectral distortions

Guaranteed signal

Pajer & Zaldarriaga 2013

Can we do more?

A different direction

SEEK NON-RANDOM PATTERNS ON THE SKY TO PROBE INFLATION we call this non-gaussianity and its guaranteed!

The Planck satellite already rules out the simplest inflation theories

Inflation most likely is complex, predicts possibly very low gravity waves but generically predicts nongaussianity

Even in simplest inflation models, there is some non-gaussianity, since corrections involve square of a gaussian, which is non-gaussian.

Non-gaussianity is larger in complex inflation models. But its still very small!

NON-GAUSSIANITY

is an essential part of the observed universe

This is not

These simulations of galaxy clustering have exactly the same power

A nuisance for the primordial universe

An example of nongaussian foregrounds

ULTIMATE PROBE OF INFLATION

Only robust prediction of inflation is NON-gaussianity

The signal is a small fraction $f_{nl} \delta T/T$ of temperature fluctuations $\delta T/T$

 f_{nl} < 10 (current limit) vs ~1 (multifield prediction)

we'd like to get to ~0.01 (vanilla inflation, guaranteed)

Maldacena 2003 $f_{nl} \sim n_s-1 \sim 0.02$ with Planck $n_s=0.98$..

simple inflation already is strongly constrained by the failure to detect gravitational waves in the cosmic microwave background

we need to improve on Planck precision by 100 or more!

Microwave background probes N~10⁶ independent samples to I~1000

2D limiting accuracy $N^{-1/2} \sim 0.1\%$

How do we increase N?

galaxy surveys? 3D probe allow N~ 109 but galaxies are biased probes

Need to go to dark ages to use HI gas clouds, allows $N > 10^{10}$ in 3D

Long ago

 $\begin{array}{c|c} I_1S_{1/2} & & & \uparrow \uparrow \\ & & \lambda = 21 \text{ cm} \\ I_0S_{1/2} & & & \uparrow \downarrow \\ & & n_0 & & \end{array}$

 $\nu_{21cm} = 1,420,405,751.768 \pm 0.001 \,\mathrm{Hz}$

Spin temperature describes relative occupation of levels

Hyperfine transition of neutral hydrogen

Long ago

NOW

Detectable in absorption against the cosmic microwave background

Highly redshifted from a wavelength of 21 cm or a very precise frequency 1420.40575177 GHz

a very challenging experiment!

Sweet spot is at redshift around 50 or a frequency of 35 MHz

CMB: ℓ ~ 1000 or N~10⁶ modes and $f_{nl}\delta\varphi$ < 10^{-3} (NB: f_{nl} < 10, $\delta\varphi$ ~ 10^{-4})

 $f_{nl}\delta\varphi \sim (n_s-1) \,\delta\varphi \sim 10^{-6}$ requires N~10¹² modes resolve $\ell \sim 10^5$ + 3d tomography: eg $\Delta\nu/\nu\sim0.01$ gives N~10¹⁰ x 10² ~ 10¹² modes for 21cm experiment

30-40 MHz is a very difficult frequency range to map from the Earth

Need to go to far side of MOON for low radio interference

A vision for the ultimate future of cosmology

far side of the Moon: first, launch a 30 MHz pathfinder: lunar satellite dipole

Aim: probe reionization epoch z ~ 10

EDGES dipole at MWA site in Western Australia

STRATEGY

Observe at 30 MHz or λ =21cm x (1+z)=10m

Need to resolve $\ell \sim 10^5$ or a few arc-seconds

Optimal telescope array size is $\ell \lambda/2\pi$ or a few100 km

Optimal bandwidth L=1 Mpc ($\Delta v/0.1$ MHz)

Need millions of ~10m dipole antennas for sensitivity, as it's a weak signal

Far side of the moon is unique site for radio interferometer dipole array

Allows N $\sim 10^{10}$ patches on the sky x 10^2 resolved along line of sigh

gain up to $\sim 10^3$ in $N^{1/2}$ relative to CMB

This enables precision cosmology at a part in a million

NEED lunar satellites to add baselines, download data

Far side of the Moon ~ 2050

The ultimate dark ages explorer: a lunar dipole array with $> 10^6$ dipoles

Chang'e lander December 2013

Yutu (jade rabbit) moon rover

ESA concept: Moon Village

WORKING ON THE MOON

A non-gaussianity program

CMB: suborbital +space $N^{\sim}10^{6}$ $f_{nl}^{\sim}10$ (>3 σ)

Optical/IR galaxy surveys N~108 f_{nl}~1

Radio: far side of Moon... $N^{10^{10}}$ $f_{nl}^{0.1}$

and eventually $N^{10^{12}}$ $f_{nl}^{0.01}$

Foregrounds???

f_{nl}~1 is a generic prediction in multifield inflation Aim: detect pattern of nongaussianity on the sky

THE LIMITS OF COSMOLOGY

Where did we come from?

The ultimate probe of inflation science on the far side of the moon

A radio interferometer will provide at least

- > 100 improvement in precision cosmology
- whereas LSST/EUCLID/DESI+ only yields x 10

We'll be able to study the creation of the observable universe via inflation at 10⁻³⁶ sec after the Big Bang⁴⁰