Physics at a future eter collider

J. List (DESY)

IFT Seminar, Madrid, 17th of January 2022

Outline

- Introduction
 Higgs
- **Z, W & T**op
- High energies
 Conclusion & ECFA study

An e+e- Higgs factory is the highest-priority next collider

- accelerator R&D, in particular high-field magnets
- investigate technical & financial feasibility of 100 TeV pp collider at CERN, with posssible e+e- first stage
- timely realisation of ILC in Japan would be compatible and European particle physics would wish to collaborate

https://europeanstrategyupdate.web.cern.ch/welcome

High-priority future initiatives

A. An electron-positron Higgs factory is the highest-priority next collider. For the longer term, the European particle physics community has the ambition to operate a proton-proton collider at the highest achievable energy. Accomplishing these compelling goals will require innovation and cutting-edge technology:

• the particle physics community should ramp up its R&D effort focused on advanced accelerator technologies, in particular that for high-field superconducting magnets, including high-temperature superconductors;

• Europe, together with its international partners, should investigate the technical and financial feasibility of a future hadron collider at CERN with a centre-of-mass energy of at least 100 TeV and with an electron-positron Higgs and electroweak factory as a possible first stage. Such a feasibility study of the colliders and related infrastructure should be established as a global endeavour and be completed on the timescale of the next Strategy update.

The timely realisation of the electron-positron International Linear Collider (ILC) in Japan would be compatible with this strategy and, in that case, the European particle physics community would wish to collaborate.

What we'd really like to know

- How can the Higgs boson be so light?
- What is the mechanism behind electroweak symmetry breaking?
- What is Dark Matter made out of?
- What drives inflation?
- Why is the universe made out of matter?
- What generates Neutrino masses?
- ...

What we'd really like to know

- How can the Higgs boson be so light?
- What is the mechanism behind electroweak symmetry breaking?
- What is Dark Matter made out of?
- What drives inflation?

. . .

- Why is the universe made ou outside of the Standard

Answers can only be found What generates Neutrino ma Model of particle physics

What we'd really like to know

- How can the Higgs boson be so light?
- What is the mechanism behind electroweak symmetry breaking?
- What is Dark Matter made out of?
- What drives inflation?
- Why is the universe made ou outside of the Standard

Answers can only be found What generates Neutrino ma Model of particle physics

What we know:

. . .

most hints for BSM come out of the electroweak sector, incl. Higgs

=> some new particles must be charged under electroweak interactions

What we'd really like to know

- How can the Higgs boson be so light?
- What is the mechanism behind electroweak symmetry breaking?
- What is Dark Matter made out of?
- What drives inflation?
- Why is the universe made ou outside of the Standard

Answers can only be found What generates Neutrino ma Model of particle physics

What we know:

. . .

most hints for BSM come out of the electroweak sector, incl. Higgs

=> some new particles must be charged under electroweak interactions

What we don't know:

- participation in strong interaction?
- energy scale of new particles
- => no guarantee for direct production of new particles
- => need to explore different, complementary experimental approaches

... and how to tackle them at colliders

Energy thresholds in e+e- collisions

Energy thresholds in e+e- collisions

Energy thresholds in e+e- collisions

[J. R. Reuter]

Other important parameters in e⁺e⁻ collisions

Luminosity

- Defines event rate => size of data set
- Future e⁺e⁻ colliders aim for 10³..10⁶ larger data sets than LEP
- Depends strongly on invest costs and power consumption => be careful to compare apples to apples!
- Are there fundamental boundaries beyond statistics? (e.g. theory & parametric uncertainties, detector resolution, ...)

Beam polarisation:

$$P := \frac{N_R - N_L}{N_R + N_L}$$

- Electroweak interactions highly sensitive to chirality of fermions: SU(2) x U(1)
- both beams polarised => "four colliders in one": \bullet

Physics benefits of polarised beams

background suppression:

• $e^+e^- \rightarrow WW / vv$ strongly P-dependent since t-channel only for $e_{L}e_{R}^{+}$

chiral analysis:

SM: Z and γ differ in ulletcouplings to left- and right-handed fermions

BSM:

chiral structure unknown, needs to be determined!

- arXiv:1801.02840
- Phys. Rept. 460 (2008) 131-243

redundancy & control of systematics:

- "wrong" polarisation yields "signal-free" control sample
- flipping *positron* polarisation controls nuisance effects on observables relying on *electron* polarisation
- essential: fast helicity reversal for *both* beams!

ILC: e+e- @ 200-500 GeV (91 GeV-1TeV)Technical Design Rep. in 2012Staging proposal 2017: start at 250 GeVawaiting decision by Japanese Government

ILC: e+e- @ 200-500 GeV (91 GeV-1TeV) Technical Design Rep. in 2012 Staging proposal 2017: start at 250 GeV awaiting decision by Japanese Government

SUE Antréasi
 Luys Lanisot
 ans * 2015 Torralisation

ILC: e+e⁻ @ 200-500 GeV (91 GeV-1TeV) *Technical* Design Rep. in 2012 Staging proposal 2017: start at 250 GeV awaiting decision by Japanese Government

CEPC: e+e- @ 240 GeV CDR published in 2018 Aim to start construction in 2023

SppC: pp @ 50-70 TeV CDR by **2035**

Laps Lamiset # 2015 Terralletries

ILC: e+e⁻ @ 200-500 GeV (91 GeV-1TeV) *Technical* Design Rep. in 2012 Staging proposal 2017: start at 250 GeV awaiting decision by Japanese Government

CEPC: e+e- @ 240 GeV CDR published in 2018 Aim to start construction in 2023

SppC: pp @ 50-70 TeV CDR by **2035**

Linear or Circular ?

- synchrotron radiation:
 - $\Delta E \sim (E^4 / m^4 R)$ per turn => 2 GeV at LEP2
- cost in high-energy limit:
 - circular : • \$\$ ~ a R + b ΔE ~ a R + b (E⁴ / m⁴R)

optimisation => $R \sim E^2$ => \$ ~ E^2

linear : \$\$ ~ **Length**, with **L ~ E** => **\$\$ ~ E => scalable**

Linear or Circular ?

- synchrotron radiation:
 - $\Delta E \sim (E^4 / m^4 R)$ per turn => 2 GeV at LEP2
- cost in high-energy limit:
 - circular : • $\$ - a R + b \Delta E - a R + b (E^4 / m^4 R)$

optimisation $=> R \sim E^2 =>$ \$\$ $\sim E^2$

linear : \$\$ ~ **Length**, with **L ~ E** => **\$\$ ~ E => scalable**

New insights from our new friend...at 250 GeV

How big can BSM effects be?

- low scale new physics \bullet => modification of Higgs properties!
- different *patterns* of deviations from SM prediction for different NP models •
- size of deviations depends on NP scale typically few percent on tree-level:

•	MSSM, eg:	$\frac{g_{hbb}}{g_{h_{SM}bb}} =$	$\frac{g_{h\tau\tau}}{g_{h_{SM}\tau\tau}} \simeq$	$1+1$ g_h
•	Littlest Higgs, eg m⊤=1TeV:			$g_{h_{\mathrm{S}}}$ $g_{h'}$ $g_{h_{\mathrm{S}}}$
•	Composite Higgs, eg:		$\frac{g_{hff}}{g_{h_{SM}ff}}$	~

$$\begin{array}{rcl} 1.7\% \left(\frac{1 \ \text{TeV}}{m_A} \right)^2 \\ \frac{gg}{mgg} &= 1 - (5\% \sim 9\%) \\ \frac{\gamma\gamma}{M} &= 1 - (5\% \sim 6\%), \\ \frac{\gamma\gamma}{M} &= 1 - (5\% \sim 6\%), \\ \frac{1}{M} &=$$

How big can BSM effects be?

- low scale new physics
 => modification of Higgs properties!
- different patterns of deviations from SM prediction for different NP models
- size of deviations depends on NP scale typically few percent on tree-level:

•	MSSM, eg:	$\frac{g_{hbb}}{g_{h_{SM}bb}} =$	$\frac{g_{h\tau\tau}}{g_{h_{SM}\tau\tau}} \simeq$	$1+1$ g_h
•	Littlest Higgs, eg m⊤=1TeV:			$g_{h_{\mathrm{S}!}}$ $g_{h'_{\mathrm{S}N}}$
•	Composite Higgs, eg:		$\frac{g_{hff}}{g_{h_{SM}ff}}$	\simeq

How big can BSM effects be?

- low scale new physics
 => modification of Higgs properties!
- different patterns of deviations from SM prediction for different NP models
- size of deviations depends on NP scale typically few percent on tree-level:

•	MSSM, eg:	$\frac{g_{hbb}}{g_{h_{SM}bb}} =$	$\frac{g_{h\tau\tau}}{g_{h_{SM}\tau\tau}} \simeq$	$1+1$ g_h
•	Littlest Higgs, eg m⊤=1TeV:			$g_{h_{\mathrm{S}!}}$ $g_{h'_{\mathrm{S}N}}$
•	Composite Higgs, eg:		$\frac{g_{hff}}{g_{h_{SM}ff}}$	\simeq

How big can BSM effects be?

- low scale new physics
 => modification of Higgs properties!
- different patterns of deviations from SM prediction for different NP models
- size of deviations depends on NP scale typically few percent on tree-level:

•	MSSM, eg:	$\frac{g_{hbb}}{g_{h_{SM}bb}} =$	$\frac{g_{h\tau\tau}}{g_{h_{SM}\tau\tau}} \simeq$	1 + 1 g_h
•	Littlest Higgs, eg m⊤=1TeV:			$g_{h_{\mathrm{S}}}$ $g_{h'}$ $g_{h_{\mathrm{S}}}$
•	Composite Higgs, eg:		$\frac{g_{hff}}{g_{h_{SM}ff}}$	\simeq

How big can BSM effects be?

- low scale new physics
 => modification of Higgs properties!
- different patterns of deviations from SM prediction for different NP models
- size of deviations depends on NP scale typically few percent on tree-level:

•	MSSM, eg:	$\frac{g_{hbb}}{g_{h_{SM}bb}} =$	$\frac{g_{h\tau\tau}}{g_{h_{SM}\tau\tau}} \simeq$	1 + 1 g_h
•	Littlest Higgs, eg m⊤=1TeV:			$g_{h_{\rm SN}}$ $g_{h'_{\rm SN}}$
•	Composite Higgs, eg:		$\frac{g_{hff}}{g_{h_{SM}ff}}$	\simeq

At least percent-level precision required!

Precision Higgs Physics @ 250 GeV

- production dominated by Zh •
- 2 ab⁻¹ => ~600 000 Zh events
- fantastic sample for measuring:
 - (recoil) mass •

. . . .

- total Zh cross section: the key to model-independent determination of absolute couplings!
- h-> invisible (Dark Matter!): **expected limited < 0.3% @ 95%**
- all kinds of branching ratios
- **CP** properties of h-fermion coupling
- CP properties of Zh coupling

for detailed listings of individual precisions c.f. arXiv:1708.08912

Precision Higgs Physics @ 250 GeV

production dominated by Zh •

2 ab⁻¹ => ~600 000 Zh events

- fantastic sample for measuring:
 - (recoil) mass

. . . .

- total Zh cross section: the key to model-independent determination of absolute couplings!
- h-> invisible (Dark Matter!): **expected limited < 0.3% @ 95%**
- all kinds of branching ratios
- **CP** properties of h-fermion coupling
- CP properties of Zh coupling

for detailed listings of individual precisions c.f. arXiv:1708.08912

Polarisation & Higgs Couplings

- THE key process at a Higgs factory:
 Higgsstrahlung e⁺e⁻→Zh
- ALR of Higgsstrahlung: very important to disentangle different SMEFT operators!

arXiv:1903.01629

Polarisation & Higgs Couplings

- **THE key process** at a Higgs factory: Higgsstrahlung e⁺e⁻→Zh
- **ALR** of Higgsstrahlung: very important to disentangle different SMEFT operators!

Polarisation & Higgs Couplings

- **THE key process** at a Higgs factory: Higgsstrahlung e⁺e⁻→Zh
- **ALR** of Higgsstrahlung: very important to disentangle different SMEFT operators!

Extra Higgs Bosons ?

- - $g_{hZZ^2} < 2.5\% g_{SM^2}$ excluded at 95% CL

=> decay mode independent!

Extra Higgs Bosons ?

New insights from old friends... at the Z pole and up to 250 GeV

g_{Lf}, g_{Rf} : helicity-dependent couplings of Z to fermions - at the Z pole: $\Rightarrow A_{f} = \frac{g_{Lf}^{2} - g_{Rf}^{2}}{g_{Lf}^{2} + g_{Rf}^{2}}$

at an *un*polarised collider:

$$A_{FB}^{f} \equiv \frac{(\sigma_{F} - \sigma_{B})}{(\sigma_{F} + \sigma_{B})} = \frac{3}{4}A_{e}A_{f}$$

 $=> A_e O(0.1)$ reduces sensitivity to A_f ,

While at a *polarised* collider:

$$A_e = A_{LR} \equiv rac{\sigma_L - \sigma_R}{(\sigma_L + \sigma_R)}$$
 and

g_{Lf}, g_{Rf} : helicity-dependent couplings of Z to fermions - at the Z pole: $\Rightarrow A_{f} = \frac{g_{Lf}^{2} - g_{Rf}^{2}}{g_{Lf}^{2} + g_{Rf}^{2}}$

specifically for the electron:

at an *un*polarised collider:

$$A_e = \frac{(\frac{1}{2} - \sin^2 \theta_{eff})^2 - (\sin^2 \theta_{eff})^2}{(\frac{1}{2} - \sin^2 \theta_{eff})^2 + (\sin^2 \theta_{eff})^2}$$

$$A_{FB}^{f} \equiv \frac{(\sigma_{F} - \sigma_{B})}{(\sigma_{F} + \sigma_{B})} = \frac{3}{4}A_{e}A_{f}$$

While at a *polarised* collider:

$$A_e = A_{LR} \equiv rac{\sigma_L - \sigma_R}{(\sigma_L + \sigma_R)}$$
 and A_{FR}^f

trading theory uncertainy:

the **polarised** $A_{FB,LR}^{f}$

receives 7 x smaller radiative corrections than the unpolarised A_{FB}^{\prime}

g_{Lf}, g_{Rf} : helicity-dependent couplings of Z to fermions - at the Z pole: $\Rightarrow A_{f} = \frac{g_{Lf}^{2} - g_{Rf}^{2}}{g_{Lf}^{2} + g_{Rf}^{2}}$

at an *un*polarised collider:

$$A_{FB}^{f} \equiv \frac{(\sigma_{F} - \sigma_{B})}{(\sigma_{F} + \sigma_{B})} = \frac{3}{4}A_{e}A_{f}$$

 $=> A_e O(0.1)$ reduces sensitivity to A_f ,

While at a *polarised* collider:

$$A_e = A_{LR} \equiv rac{\sigma_L - \sigma_R}{(\sigma_L + \sigma_R)}$$
 and A_F^f

trading theory uncertainy:

the **polarised** $A_{FB,LR}^{f}$

above Z pole, polarisation essential to disentangle Z / γ exchange in e⁺e⁻ \rightarrow ff

receives 7 x smaller radiative corrections than the unpolarised A'_{FB}

g_{Lf}, g_{Rf} : helicity-dependent couplings of Z to fermions - at the Z pole: $\Rightarrow A_{f} = \frac{g_{Lf}^{2} - g_{Rf}^{2}}{g_{Lf}^{2} + g_{Rf}^{2}}$

at an *un*polarised collider:

$$A_{FB}^{f} \equiv \frac{(\sigma_{F} - \sigma_{B})}{(\sigma_{F} + \sigma_{B})} = \frac{3}{4}A_{e}A_{f}$$

 $=> A_e O(0.1)$ reduces sensitivity to A_f ,

While at a *polarised* collider:

$$A_e = A_{LR} \equiv rac{\sigma_L - \sigma_R}{(\sigma_L + \sigma_R)}$$
 and A_F^f

trading theory uncertainy:

the **polarised** $A_{FB,LR}^{f}$

above Z pole, polarisation essential to disentangle Z / γ exchange in e⁺e⁻ \rightarrow ff

receives 7 x smaller radiative corrections than the unpolarised A'_{FB}

Polarisation & Electroweak Physics at the Z pole

new detailed studies by ILD@ILC:

- at least factor 10, often ~50 improvement over LEP/SLC
- note in particular:
 - A_c nearly 100 x better thanks to excellent charm / anti-charm tagging:
 - excellent vertex detector
 - tiny beam spot
 - Kaon-ID via dE/dx in ILD's TPC

polarised "GigaZ" typically only factor 2-3
less precise than FCCee's unpolarised TeraZ
=> polarisation buys

a factor of ~100 in luminosity

Note: not true for pure decay quantities!

arXiv:1908.11299

Polarisation & Electroweak Physics at the Z pole

new detailed studies by ILD@ILC:

- at least factor 10, often ~50 improvement over LEP/SLC
- note in particular:
 - A_c nearly 100 x better thanks to excellent charm / anti-charm tagging:
 - excellent vertex detector
 - tiny beam spot
 - Kaon-ID via dE/dx in ILD's TPC

polarised "GigaZ" typically only factor 2-3
less precise than FCCee's unpolarised TeraZ
=> polarisation buys

a factor of ~100 in luminosity

Note: not true for pure decay quantities!

Polarisation & Electroweak Physics at the Z pole

new detailed studies by ILD@ILC:

- at least factor 10, often ~50 improvement over LEP/SLC
- note in particular:
 - A_c nearly 100 x better measurements and the charm / anti-charm tagg
 FCCee, CEPC & ILC

Thu Jan 20, 4 pm CET: Snowmass EF04 meeting dedicated to asymmetry measurements and their systematics at FCCee, CEPC & ILC

- excellent vertex detector
- tiny beam spot
- Kaon-ID via dE/dx in ILD's TPC

polarised "GigaZ" typically only factor 2-3
less precise than FCCee's unpolarised TeraZ
=> polarisation buys

a factor of ~100 in luminosity

Note: not true for pure decay quantities!

Triple Gauge Couplings at 250 GeV

- previously studied in full detector simulation at 500 GeV & 1 TeV for ILC
 => few 10⁻⁴ level at 500 GeV
- NEW: generator-level study of ee→µvqq
 @ 250 GeV focusing on polarisation impact [J.Beyer, PhD thesis in preparation]
- W production and decay angles (tripledifferential cross section fit)
- polarisation => ability to measure A_{LR} (ee $\rightarrow \mu \nu$ qq) adds important information

Arrow'ed direction: LR shape ~ constant \rightarrow constraint only from A_{LR}

Old and new friends... above 250 GeV

Top quark couplings

- e+e- -> tt: possible above ~360 GeV
- near threshold: no boost
 => little sensitivity to axial coupling
- beam polarisation disentangles Z and γ exchange
- few 10⁻³ for all couplings requires
 ≥ 500 GeV and polarisation
- probes BSM into the multi-ten TeV regime

ILD-PHYS-PUB-2019-007, arXiv:1908.11299, Eur.Phys.J. C78 (2018) no.2, 155]

Top quark couplings

- · e+e⁻ -> tt: possible above ~360 Ge.
- near threshold: no boost
 => little sensitivity to axial couplin
- beam polarisation disentangles Z
 γ exchange
- few 10⁻³ for all couplings requires
 ≥ 500 GeV and polarisation
- probes BSM into the multi-ten TeV regime

ILD-PHYS-PUB-2019-007, arXiv:1908.11299, Eur.Phys.J. C78 (2018) no.2, 155]

Top quark couplings

- ・ near threshold: no boost => little sensitivity to axial couplin
- beam polarisation disentangles Z
 γ exchange
- few 10⁻³ for all couplings requires
 ≥ 500 GeV and polarisation
- probes BSM into the multi-ten TeV regime

full SM-EFT:

- 500 GeV improves various coefficients by 2 orders of magnitude
- 4-fermion operators profit quadratically from higher energies

ILD-PHYS-PUB-2019-007, arXiv:1908.11299, Eur.Phys.J. C78 (2018) no.2, 155]

• HL-LHC:

- ~5σ observation of HH
- ~50% on λ in single-parameter fit
- e+e-:
 - 500 GeV: 8σ observation of HH
 - 27% on λ in full coupling analysis
 - full, testbeam-gauged simulation
 (note: first ILC fast sim. was ~3 times better!)
 - 1 TeV & 3 TeV: ~10%
- FCC-hh:
 - 5% statistical uncertainty on λ
 - from fast simulation, single-par. fit
 - assuming LHC detector performance despite e.g.100x higher neutron fluence
 - plus systematics, theory, pdf, ...

most detailed ILC ref: PhD Thesis C.Dürig Uni Hamburg, DESY-THESIS-2016-027 UPDATE ONGOING!

most detailed ILC ref: PhD Thesis C.Dürig Uni Hamburg, DESY-THESIS-2016-027 UPDATE ONGOING!

hadron collider dependence on λ : $\lambda > \lambda_{SM}$: cross section drops

most detailed ILC ref: PhD Thesis C.Dürig Uni Hamburg, DESY-THESIS-2016-027 UPDATE ONGOING!

hadron collider dependence on λ : $\lambda > \lambda_{SM}$: cross section drops

hadron collider dependence on λ : $\lambda > \lambda_{SM}$: cross section drops

Region of interest for electroweak baryogenesis

Top Yukawa coupling

- absolute size of |yt|:
 - HL-LHC: •
 - $\delta \kappa_t = 3.2\%$ with $|\kappa_v| \le 1$ or 3.4% in SMEFT_{ND}
 - · ILC:
 - current full simulation achieved 6.3% at 500 GeV
 - strong dependence on exact choice of E_{CM}, • e.g. 2% at 600 GeV
 - *not* included:
 - experimental improvement with higher energy (boost!)
 - other channels than H->bb

Top Yukawa coupling

- absolute size of |yt|:
 - HL-LHC:
 - $\delta \kappa_t = 3.2\%$ with $|\kappa_V| \le 1$ or 3.4% in SMEFT_{ND}
 - · ILC:
 - current full simulation achieved 6.3% at 500 GeV
 - strong dependence on exact choice of E_{CM},
 e.g. 2% at 600 GeV
 - *not* included:
 - experimental improvement with higher energy (boost!)
 - other channels than H->bb

Top Yukawa coupling

- absolute size of |yt|:
 - HL-LHC:
 - · $\delta \kappa_t = 3.2\%$ with $|\kappa_V| \le 1$ or 3.4% in SMEFT_{ND}
 - · ILC:
 - current full simulation achieved 6.3% at 500 GeV
 - strong dependence on exact choice of E_{CM}, e.g. 2% at 600 GeV
 - *not* included:
 - experimental improvement with higher energy (boost!)
 - other channels than H->bb
- full coupling structure of tth vertex, incl. CP:
 - e+e- at E_{CM} ≥ ~600 GeV
 => few percent sensitivity to CP-odd admixture
 - beam polarisation essential!

[Eur.Phys.J. C71 (2011) 1681]

mono-photon search $e^+e^- \rightarrow \chi \chi \gamma$

reduced ~10x with polarisation

- shape of observable distributions changes with **polarisation** sign => combination of samples with sign(P) = (-,+), (+,-), (+,+), (-,-)
 beats down the effect of systematic uncertainties
- 200 fb⁻¹ polarised \approx 10 ab⁻¹ unpolarised

mono-photon search $e^+e^- \rightarrow \chi \chi \gamma$

reduced ~10x with polarisation

- shape of observable distributions changes with **polarisation** sign => combination of samples with sign(P) = (-,+), (+,-), (+,+), (-,-)
 beats down the effect of systematic uncertainties
- 200 fb⁻¹ polarised \approx 10 ab⁻¹ unpolarised

mono-photon search $e^+e^- \rightarrow \chi \chi \gamma$

reduced ~10x with polarisation

- shape of observable distributions changes with **polarisation** sign => combination of samples with sign(P) = (-,+), (+,-), (+,+), (-,-)
 beats down the effect of systematic uncertainties
- 200 fb⁻¹ polarised \approx 10 ab⁻¹ unpolarised

mono-photon search $e^+e^- \rightarrow \chi \chi \gamma$

reduced ~10x with polarisation

- shape of observable distributions changes with **polarisation** sign => combination of samples with sign(P) = (-,+), (+,-), (+,+), (-,-)
 beats down the effect of systematic uncertainties
- 200 fb⁻¹ polarised \approx 10 ab⁻¹ unpolarised

mono-photon search $e^+e^- \rightarrow \chi \chi \gamma$

main SM background: $e^+e^- \rightarrow vv\gamma$

reduced ~10x with polarisation

- shape of observable distributions changes with **polarisation** sign => combination of samples with sign(P) = (-,+), (+,-), (+,+), (-,-)beats down the effect of systematic uncertainties
- 200 fb⁻¹ polarised \approx 10 ab⁻¹ unpolarised

Mono-photon searches

Conclusions

- The European Strategy for Particle Physics identified an e+e- Higgs factory as the highest-priority next collider
- Various projects are proposed if we want to see any of them realized, anywhere in the world, there needs to be a much larger active community behind it!
- ECFA set up a workshop series on Physics, Experiments and Detectors at a Higgs, Top and Electroweak factory cf <u>https://indico.cern.ch/event/1044297/</u>
 - WG1 Physics Potential, WG2 Physics Analysis Methods, WG3 Detectors (tba)
 - main focus: topics in common between all e+e- colliders
 - theory prediction
 - assessment of systematic uncertainties
 - software tools
 - •
 - \cdot topical workshops, seminar series, tutorials, mailing lists -> starting up
 - will give input to next round of ESU •
 - if you don't won't to commit to a specific collider project / detector concept => this is your way to contribute => get in touch!

