Phenomenology of Semileptonic *B*-meson Decays with Form Factors from Lattice QCD

Andreas S. Kronfeld Fermilab & IAS TU München

IFT Seminar | Universidad Autonoma Madrid November 23, 2015

Why Exclusive Semileptonic Decays?

- Rare processes are sensitive to non-Standard physics: leptoquarks, Z', 4th generation, non-Standard Higgs bosons, supersymmetry.
- Several "tensions":
 - CKM from inclusive vs. exclusive decays;
 - excess in $B \rightarrow D^{(*)} \tau \nu$;
 - deficits in $B \rightarrow K^{(*)}\mu\mu$.
- Experimental results available; more on the way.
- Nonperturbative hadronic matrix elements available (with full error budgets).

Processes

$$\ell = \mu, e$$

- CKM Determination

(in pedagogical order)

- New Physics Search
 - $B
 ightarrow \pi au v$ $B \rightarrow D \tau v$ $B \rightarrow K \nu \bar{\nu}$ $B \rightarrow \pi \nu \bar{\nu}$ $B \to K \ell^+ \ell^ B
 ightarrow \pi \ell^+ \ell^-$

Effective Hamiltonian

- Masses of W, Z, top, and Higgs are much greater than m_b :
 - $\mathscr{L} = \mathscr{L}_{\mathrm{kin}}[\ell, q, \gamma, g] + \sum_{i} \mathscr{C}_{i}(\alpha, \alpha_{s}, G_{F}, \sin^{2}\theta, m_{\ell}, m_{q}, V; \mathrm{NP}) \mathscr{L}_{i}[\ell, q, \gamma, g]$

- Contributions of unknown particles lumped into Wilson coefficients \mathscr{C}_i .
- We use SM Wilson coeff's of Huber, Lunghi, Misiak, Wyler [hep-ph/0512066].

Matrix Elements and Form Factors

• Decompose amplitudes in form factors $(q = p - k = \ell + \nu)$:

$$\begin{split} \langle \pi(k) | \bar{u} \gamma^{\mu} b | B(p) \rangle &= \left(p^{\mu} + k^{\mu} - \frac{M_B^2 - M_\pi^2}{q^2} q^{\mu} \right) f_+(q^2) + \frac{M_B^2 - M_\pi^2}{q^2} q^{\mu} f_0(q^2), \\ &= \sqrt{2M_B} \left[p^{\mu} f_{\parallel}(q^2) / M_B + k_{\perp}^{\mu} f_{\perp}(q^2) \right] \end{split}$$

$$\langle \pi(k) | \bar{u} \sigma^{\mu\nu} b | B(p) \rangle = -2i \frac{p^{\mu} k^{\nu} - p^{\nu} k^{\mu}}{M_B + M_{\pi}} f_T(q^2),$$

• The kinematic variable $q^2 = M_B^2 + M_\pi^2 - 2M_B E_\pi$.

Computing Hadronic Matrix Elements

• Use correlation functions ($x_4 = it$ is "Euclidean time"):

$$\langle \pi(x_4)J(x_4')B^{\dagger}(0)\rangle = \sum_{m,n} \langle 0|\hat{\pi}|\pi_n\rangle \langle \pi_n|\hat{J}|B_m\rangle \langle B_m|\hat{B}^{\dagger}|0\rangle e^{-M_{\pi_n}(x_4-x_4')-M_{B_m}x_4'}$$

in which desired matrix element lies in the middle (of leading term).

• Find other information from two-point correlation functions:

$$\langle \pi(x_4)\pi^{\dagger}(0)\rangle = \sum_{n} |\langle 0|\hat{\pi}|\pi_n\rangle|^2 e^{-M_{\pi_n}x_4}$$
$$\langle B(x_4)B^{\dagger}(0)\rangle = \sum_{n} |\langle 0|\hat{B}|B_n\rangle|^2 e^{-M_{B_n}x_4}$$

• Compute LHS with lattice QCD; use humans to analyze RHS.

Outline

- Motivation
- Lattice QCD Calculations
- $|V_{ub}|$ and $|V_{cb}|$
- Penguin Processes
- Outlook

arXiv:1510.02349 arXiv:1509.06235 arXiv:1507.01618 arXiv:1503.07839 arXiv:1503.07237 arXiv:1403.0635

Fermilab Lattice and MILC Collaborations

Jon Bailey, Alexei Bazavov, Claude Bernard, Chris Bouchard, Carleton DeTar, **Daping Du**, Aida El-Khadra, Elizabeth Freeland, Elvira Gámiz, Steve Gottlieb, Urs Heller, A.S.K., Jack Laiho, Ludmila Levkova, Yuzhi Liu, Paul Mackenzie, Yannick Meurice, Ethan Neil, Si-Wei Qiu, Jim Simone, Bob Sugar, Doug Toussaint, Ruth Van de Water, **Ran Zhou**

with special guest

Enrico Lunghi

Numerical Lattice QCD

Lattice Gauge Theory

$$\langle \bullet \rangle = \frac{1}{Z} \int \mathcal{D}U \mathcal{D}\psi \mathcal{D}\bar{\psi} \exp\left(-S\right) \left[\bullet\right]$$

$$= \frac{1}{Z} \int \mathcal{D}U \operatorname{Det}(\mathcal{D} + m) \exp\left(-S_{\text{gauge}}\right) \left[\bullet'\right]$$

- Infinite continuum: uncountably many d.o.f. (⇒ UV divergences);
- Infinite lattice: countably many; used to define QFT;
- Finite lattice: finite dimension ~ 10⁹, so compute integrals numerically.

 $L = N_{S}a$

Lattice Gauge Theory

$$\langle \bullet \rangle = \frac{1}{Z} \int \mathcal{D}U \frac{\mathcal{D}\psi \mathcal{D}\overline{\psi}}{\text{hand}} \exp(-S) [\bullet]$$

= $\frac{1}{Z} \int \mathcal{D}U \operatorname{Det}(\mathcal{D} + m) \exp(-S_{\text{gauge}}) [\bullet']$

- Infinite continuum: uncountably many d.o.f. (⇒ UV divergences);
- Infinite lattice: countably many; used to define QFT;
- Finite lattice: finite dimension ~ 10⁹, so compute integrals numerically.

 $L = N_{S}a$

Lattice Gauge Theory

$$\langle \bullet \rangle = \frac{1}{Z} \int \mathcal{D} \mathcal{U} \mathcal{D} \psi \mathcal{D} \overline{\psi} \exp(-S) [\bullet]$$

MC hand
 $= \frac{1}{Z} \int \mathcal{D} U \operatorname{Det}(\mathcal{D} + m) \exp(-S_{\text{gauge}}) [\bullet']$

- Infinite continuum: uncountably many d.o.f. (⇒ UV divergences);
- Infinite lattice: countably many; used to define QFT;
- Finite lattice: finite dimension ~ 10⁹, so compute integrals numerically.

 $L = N_{S}a$

Some algorithmic issues

e.g., ASK, hep-lat/0205021

- lattice $N_S^3 \times N_4$, spacing *a*
- memory $\propto N_{S}^{3}N_{4} = L_{S}^{3}L_{4}/a^{4}$
- $\tau_g \propto a^{-(4+z)}, z = 1 \text{ or } 2.$
- $\tau_q \propto (m_q a)^{-p}$, p = 1 or 2.
- Imaginary time:
 - static quantities

- size $L_S = N_S a$, $L_4 = N_4 a$;
- dimension of spacetime = 4
- critical slowing down
- especially dire with sea quarks
- thermodynamics: $T = 1/N_4 a$

$$\langle \bullet \rangle = \frac{1}{Z} \int \mathcal{D}U \mathcal{D}\Psi \mathcal{D}\overline{\Psi} \exp\left(-S\right) \left[\bullet\right]$$
$$= \operatorname{Tr}\{\bullet e^{-\hat{H}/T}\} / \operatorname{Tr}\{e^{-\hat{H}/T}\}$$

Numerical Lattice Gauge Theory

- The lattice provides a UV cutoff; a finite volume provides an IR cutoff; a finite Euclidean time leads to a nonzero temperature.
- Write a random number generator to create lattice gauge fields distributed with the weight e^{-S} .
- Fit correlations functions to get masses and matrix elements.
- Repeat several times while varying bare gauge coupling and bare masses.
- Find a trajectory with constant pion, kaon, D_s , B_s , masses (one for each quark) in dimensionless but physical units and obtain the continuum limit.
- Convert units to MeV.

Effective Field Theory

- The lattice provides a UV cutoff: Symanzik effective field theory.
- The finite volume provides an IR cutoff: effective field theory in a box:
 - loop integrals become finite sums;
 - these effects are either very small or very useful (absorptive parts).
- Sometimes the light quarks aren't light enough: chiral perturbation theory:
 - replace the computer's pion cloud with Nature's.
- Sometimes heavy-quark masses have $m_Q a \approx 1$: HQET or NRQCD.

asqtad Ensembles: 2+1

<i>a</i> (fm)	size	am'/am's	# confs	# sources	
≈ 0.15	16 ³ × 48	0.0097/0.0484	628	24	
≈ 0.12	20 ³ × 64	0.02/0.05	2052	4	
≈ 0.12	20 ³ × 64	0.01/0.05	2256	4	
≈ 0.12	$20^3 \times 64$	0.007/0.05	2108	4	
≈ 0.12	24 ³ × 64	0.005/0.05	2096	4	
≈ 0.09	$28^3 \times 96$	0.0124/0.031	1992	4	
≈ 0.09	$28^3 \times 96$	0.0062/0.031	1928	4	
≈ 0.09	$32^3 \times 96$	0.00465/0.031	984	4	
≈ 0.09	40 ³ × 96	0.0031/0.031	1012	4	
≈ 0.09	64 ³ × 96	0.00155/0.031	788	4	
≈ 0.06	48 ³ ×144	0.0072/0.018	576	4	
≈ 0.06	48 ³ ×144	0.0036/0.018	672	4	
≈ 0.06	56 ³ ×144	0.0025/0.018	800	4	
≈ 0.06	64 ³ ×144	0.0018/0.018	824	4	
≈ 0.045	64 ³ ×192	0.0028/0.014	800	4	

asqtad Ensembles: 2+1

Blue-Gene/Q at ALCF

Cluster at Fermilab

CKM: $|V_{ub}|$ and $|V_{cb}|$

Basic Formulas for $B \rightarrow \pi l \nu$

- Relevant term in effective Hamiltonian: $\mathscr{L}_i = \bar{b}\gamma^{\mu}(1-\gamma^5)u\,\bar{v}_{\ell}\gamma_{\mu}(1-\gamma^5)\ell$
- Differential decay rate:

$$\frac{d\Gamma}{dq^2} = \frac{G_F^2}{24\pi^3} |V_{ub}|^2 |k|^3 |f_+(q^2)|^2 + \mathcal{O}(m_\ell^2),$$

- Steps:
 - generate numerical data at several k, m_l , a;
 - chiral continuum extrapolation;
 - extend to full kinematic range with *z* expansion.

Semileptonic $B \rightarrow \pi l \nu$ for $|V_{ub}|$

arXiv:1503.07839

21

in region with lattice data

- The largest uncertainty, by far, comes from MC statistics, as **amplified** via the chiral-continuum extrapolation.
- Next (and independent of q^2) is matching from LGT to continuum QCD.
- Input parameters (m_l, m_s, \varkappa_b) & relative scale (r_1) disappear in quadrature sum.
- Challenge: extend reach to lower q^2 , without being killed by the (amplified) statistical error.

Error Budgets

vl decay

Analyticity and Unitarity

- The form factor is analytic in q^2 except a cut for $q^2 \ge (M_B + M_\pi)^2$ and (possibly) subthreshold poles $(M_B - M_\pi)^2 \le q^2 < (M_B + M_\pi)^2$.
- With $t_{+} = (M_B + M_{\pi})^2$, set

$$z = \frac{\sqrt{t_+ - q^2} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - q^2} + \sqrt{t_+ - t_0}}$$

which maps cut to unit circle and semileptonic decay to real $|z| \le 0.28$ for optimal t_0 .

- Much more precise than 2008.
- BLINDED PLOTS!!
- *z* variable extends range.
- Functional fitting method.
- Relative norm'n yields $IV_{ub}I$.
- Total error on $|V_{ub}|$: 4.1%.

- Much more precise than 2008.
- BLINDED PLOTS!!
- *z* variable extends range.
- Functional fitting method.
- Relative norm'n yields $IV_{ub}I$.
- Total error on $|V_{ub}|$: 4.1%.

- Much more precise than 2008.
- BLINDED PLOTS!!
- *z* variable extends range.
- Functional fitting method.
- Relative norm'n yields $IV_{ub}I$.
- Total error on $|V_{ub}|$: 4.1%.

- Much more precise than 2008.
- BLINDED PLOTS!!
- *z* variable extends range.
- Functional fitting method.
- Relative norm'n yields $IV_{ub}I$.
- Total error on $|V_{ub}|$: 4.1%.

Reconstructing Form Factors

- For additional applications, the *z* expansion provides a useful summary.
- Formulas (Bourrely, Caprini, Lellouch, arXiv:0807.2722):

$$f_{+}(z) = \frac{1}{1 - q^{2}(z)/M_{B^{*}}^{2}} \sum_{n=0}^{N_{z}-1} b_{n}^{+} \left[z^{n} - (-1)^{n-N_{z}} \frac{n}{N_{z}} z^{N_{z}} \right]$$
$$f_{0}(z) = \sum_{n=0}^{N_{z}} b_{n}^{0} z^{n}$$
$$t_{0} = (M_{B} + M_{\pi})(\sqrt{M_{B}} - \sqrt{M_{\pi}})^{2}$$

• Subthreshold 1⁻ pole in f_+ ; first 0⁺ excitation (for f_0) is unstable.

• Coefficients and correlations:

	b_0^+	b_1^+	b_2^+	b_{3}^{+}	b_{0}^{0}	b_{1}^{0}	b_{2}^{0}	b_{3}^{0}
	0.407(15)	-0.65(16)	-0.46(88)	0.4(1.3)	0.507(22)	-1.77(18)	1.27(81)	4.2(1.4)
b_0^+	1	0.451	0.161	0.102	0.331	0.346	0.292	0.216
b_1^+		1	0.757	0.665	0.430	0.817	0.854	0.699
b_2^+			1	0.988	0.482	0.847	0.951	0.795
$b_3^{\tilde{+}}$				1	0.484	0.833	0.913	0.714
b_0^0					1	0.447	0.359	0.189
$b_1^{\check{0}}$						1	0.827	0.500
$b_2^{\hat{0}}$							1	0.838
$b_3^{\overline{0}}$								1

• If you are interesting in semileptonic B decays, just take this table and the formulas from the last slide and use the resulting form factors.

Semileptonic $B \rightarrow Dlv$ for $|V_{cb}|$

arXiv:1503.07237

- Similar strategy as above:
 - compute sequence of form-factor values;
 - chiral continuum extrapolation;
 - combined *z*-expansion fit to obtain $|V_{cb}|$.
- Differences:
 - HQET control of cutoff effects more central [hep-lat/0002008, hep-lat/ 0112044, hep-lat/0112045];
 - use Boyd, Grinstein, Lebed form of *z* expansion [hep-ph/9508211].

New Physics in $B \rightarrow D^{(*)}\tau v$?

BaBar, arXiv:1205.5442; Belle, arXiv:1507.03233; LHCb, arXiv:1506.08614

- BaBar presented evidence for an excess in both channels:
 - 2.0 σ for R(D); 2.7 σ for $R(D^*)$; 3.4 σ combined.
- With Belle & LHCb:
 - 3.9σ combined.
- Estimated form factors w/
 - HQET;
 - quenched QCD.

Form Factors for $B \rightarrow D^{(*)} \tau v$

Fermilab/MILC, arXiv:1206.4992, arXiv:1503.07237; HPQCD, arXiv:1505.03925

R(D)

see also arXiv:1206.4977.

- R(D) values:
 - 0.297 ± 0.017 (est.);
 - 0.316 ± 0.014 (F/M '12);
 - 0.299 ± 0.011 (F/M '15);
 - 0.300 ± 0.008 (HPQCD).
- Lattice QCD work for $R(D^*)$ yet to come.

New Physics in $B \rightarrow \pi \tau \nu$?

- A charged Higgs mediating $b \rightarrow c$ could also mediate $b \rightarrow u$.
- SM prediction, including term $\sim m_{\tau}^2 |f_0|^2$.
- With the Fermilab/MILC form factors, we find

$$R(\pi) \equiv \frac{\mathscr{B}(B \to \pi \tau v_{\tau})}{\mathscr{B}(B \to \pi \ell v_{\ell})}$$
$$= 0.641(17)$$

graphic by Daping Du

Basic Formulas for $B^0 \rightarrow \pi^0 \nu \nu$, $K^0 \nu \nu$

• Relevant term in effective Hamiltonian:

$$\mathscr{H}_{\text{eff}} = \frac{4G_F}{\sqrt{2}} V_{tb} V_{tq}^* \frac{e^2}{16\pi^2} \frac{X_t}{\sin^2 \theta_W} \bar{q}_L \gamma_\mu b_L \sum_V \bar{v}_L \gamma^\mu v_L$$

• Differential decay rate:

$$\frac{d\mathscr{B}(B \to P \nu \bar{\nu})}{dq^2} = C_P \tau_B \left| V_{tb} V_{tq}^* \right|^2 \frac{G_F^2 \alpha^2}{32\pi^5} \frac{X_t^2}{\sin^4 \theta_W} |k|^3 |f_+(q^2)|^2$$
$$q = d \Rightarrow P = \pi^0, \quad C_{\pi^0} = \frac{1}{2}$$
$$q = s \Rightarrow P = K^0, \quad C_{K^0} = 1$$

• Thus, can use same form factor as above (and kaon counterpart).

SM Predictions for the Differential Rate

arXiv:1510.02349

• NB: charged counterparts receive contribution from the cascade $B \rightarrow \tau v$, $\tau \rightarrow \pi v$ (or Kv), with amplitude proportional to $|V_{ub}|f_B |V_{ud}|f_{\pi}$ (or $|V_{us}|f_K$) [Kamenik & Smith, arXiv:0908.1174].

Basic Formulas for $B \rightarrow \pi l^+ l^-$, $K l^+ l^$ *cf.*, arXiv:1510.02349, Sec. 2 & Appendix B

• One-loop effective Hamiltonian contains many operators (q = d, s):

• Matrix elements of Q_7 , Q_9 , Q_{10} yield form factors, including tensor f_T .

Other Matrix Elements

• Schematically,

$$\langle P\ell\ell|Q_i(y)|\bar{B}\rangle \sim (\bar{u}_\ell\gamma_\mu v_\ell) \int d^4x e^{iq\cdot(x-y)} \langle P|TJ^{\mu}_{\rm em}(x)Q_i(y)|\bar{B}\rangle$$

- Four regions:
 - when q^2 is close to M^2 of ρ , ω , ϕ : very challenging [arXiv:1506.07760];
 - when q^2 is near charmonium resonances: also very challenging;
 - low q^2 , between these two: SCET (aka QCD factorization);
 - high $q^2 \sim M_B^2$: OPE [Grinstein, Pirjol, hep-ph/0404250], leading back to the three form factors, f_+ , f_0 , & f_T .

Soft Collinear Effective Theory

hep-ph/9905312, hep-ph/0006124, hep-ph/0011336, hep-ph/0109045

The RHS of the equation on the last slide takes the form

 $\begin{array}{cccc} C_i \langle P\ell\ell | Q_i | \bar{B} \rangle \sim C_i & \begin{bmatrix} (1+\alpha_s)f_T + (1+\alpha_s)f_+ + \phi_B \star T \star \phi_P \end{bmatrix}, & i = 1, \dots, 6, \\ C_8 \langle P\ell\ell | Q_8 | \bar{B} \rangle \sim C_8 & \alpha_s f_T + (1+\alpha_s)f_+ + \phi_B \star T \star \phi_P \end{bmatrix}, & i = 1, \dots, 6, \\ C_7 \langle P\ell\ell | Q_7 | \bar{B} \rangle \sim C_8 & \alpha_s f_T + (1+\alpha_s)f_+ + \phi_B \star T \star \phi_P \end{bmatrix}, & i = 1, \dots, 6, \\ C_7 \langle P\ell\ell | Q_7 | \bar{B} \rangle \sim C_7 f_T \rightsquigarrow C_7^{\text{eff}} f_T, & \text{light-cone distribution} \\ C_9 \langle P\ell\ell | Q_9 | \bar{B} \rangle \sim C_9 f_+ & \sim C_9^{\text{eff}} f_+, & \text{amplitudes} \\ C_{10} \langle P\ell\ell | Q_{10} | \bar{B} \rangle \sim C_{10} f_+, & \text{hep-ph/0008255, hep-ph/0106067} \end{array}$

- We add the nonfactorizable terms to the amplitude using the known hardscattering kernel *T* and distribution amplitudes from the literature.
- SM C_7 , C_9 , C_{10} from Huber, Lunghi, Misiak, Wyler [hep-ph/0512066].

Coefficients and Correlations: $B \rightarrow Kl^+l^-$

arXiv:1509.06235

	b_{0}^{+}	b_{1}^{+}	b_{2}^{+}	b_{0}^{0}	b_{1}^{0}	b_{2}^{0}	b_0^T	b_1^T	b_2^T
mean	0.466	-0.885	-0.213	0.292	0.281	0.150	0.460	-1.089	-1.114
error	0.014	0.128	0.548	0.010	0.125	0.441	0.019	0.236	0.971
b_0^+	1	0.450	0.190	0.857	0.598	0.531	0.752	0.229	0.117
b_1^+		1	0.677	0.708	0.958	0.927	0.227	0.443	0.287
b_2^+			1	0.595	0.770	0.819	-0.023	0.070	0.196
$b_0^{\overline{0}}$				1	0.830	0.766	0.582	0.237	0.192
$b_1^{\check{0}}$					1	0.973	0.324	0.372	0.272
$b_2^{\hat{0}}$						1	0.268	0.332	0.269
$b_0^{ ilde{T}}$							1	0.590	0.515
$b_1^{\check{T}}$								1	0.897
b_2^{T}									1

• Corresponding information for $B \rightarrow \pi l^+ l^-$ in arXiv:1503.07839 and arXiv: 1507.01618.

Kinematic Distributions

 Experimental data from LHCb [arXiv:1403.8044, arXiv:1509.00414] and earlier experiments; right plot's theory preceded measurement:

• arXiv:1510.02349 also contains predictions for the ratio, the flat terms, etc.

Other Results in arXiv:1510.02349

- Tests of heavy-quark and SU(3)-flavor symmetries.
- Comparisons with LHCb over wide bins, $q^2 \in [1 \text{ GeV}^2, 6 \text{ GeV}^2]$, and $q^2 \in [15 \text{ GeV}^2, 22 \text{ GeV}^2]$).
- SM predictions for $B \rightarrow \pi \tau^+ \tau^-$, $B \rightarrow K \tau^+ \tau^-$
- SM contribution to lepton-universality violation ($q^2 \in [1 \text{ GeV}^2, 6 \text{ GeV}^2]$):

$$R_{K^{+}}^{\mu e}|_{\text{SM}} = 1.00050(43), \text{ vs. } R_{K^{+}}^{\mu e}|_{\text{LHCb}} = 0.745_{-82}^{+97}$$
$$R_{K^{+}}^{\mu e} = \int_{q_{\min}^{2}}^{q_{\max}^{2}} d\mathscr{B}(B \to K\mu\mu) \left[\int_{q_{\min}^{2}}^{q_{\max}^{2}} d\mathscr{B}(B \to Kee) \right]^{-1}$$

• Neutrino modes and $B \rightarrow \pi \tau \nu$, discussed earlier.

CKM: $|V_{td}|$ and $|V_{ts}|$

- Assume that there is no new physics buried in the Wilson coefficients.
- Then the combination of our calculations with experimental measurements yield the third row of the CKM matrix.
- We find

$$|V_{td}/V_{ts}| = 0.201(20)$$
$$|V_{tb}^*V_{td}| \times 10^3 = 7.45(69)$$
$$|V_{tb}^*V_{ts}| \times 10^3 = 35.7(1.5)$$

- The uncertainty here is commensurate from the neutral *B*-meson mixing.
- Result for $|V_{ts}|$ is 1.4 σ lower than that from mixing.

Wilson Coefficients

- Assuming no new physics is sad:
 - take the CKM matrix from a global fit;
 - determine best fit to Wilson coefficients C_9 and C_{10} .
- From the observables considered here, the SM is 2σ away from the best fit.
- Comparable but complementary to angular observables in $B \rightarrow K^* \mu \mu$.

Wilson Coefficients 2

- Add $B_s \rightarrow \mu\mu$, which also relies on lattice QCD $-f_{B_s}$.
- Favored region shrinks but only away from SM point.

• NB: assuming no new CPV and avoiding $b \rightarrow s\gamma$ constraints.

Outlook

- Perhaps too much information to summarize.
- The overarching take-home message:
 - we provide a convenient useful parametrization of the form factors, including correlations needed for joint fits, ratios, *etc.*;
 - the scope of application is not limited to what we've done;
 - just like collider physicists use CTEQ or MRSW parton densities, flavor physicists can use our (or other group's) form factors.
- Future work, e.g., on MILC HISQ ensembles, will improve the precision (over the coming few years).

¡Muchas gracias!