

Lessons and prospects from the past, present and future of \nu_e disappearance experiments

Stephen Parke Fermilab

some members of the Fermilab Theory Group 1974:

Ben Lee, Mary K Gaillard, Shirley Jackson & Tong Pagnamenta

"can live and work with pride and dignity without regard to such differences as race, religion, sex or national origin. In conflict between technical expediency and human rights, we will stand on the side of human rights." Wilson 1970

Interactions:

Neutrino Flavor or Interaction States:

ᅷ

Neutrino Mass EigenStates or Propagation States: $-i\,\left(rac{m_j^2L}{2E_{m u}} ight)$

Propagator $\nu_i \rightarrow \nu_k = \delta_{jk} e$

 $|\Delta m^2_{31}| pprox |\Delta m^2_{32}| \sim 2.5 imes 10^{-3} \ {
m eV^2}$

춖

ass EigenStates or Propagation

Stephen Parke

$u_3, \ \nu_1/\nu_2$ Mass Ordering:

꿏

-atmospheric mass ordering

Summary:

• Labeling massive neutrinos: $|U_{e1}|$

Fractional Flavor Content varying $\cos \delta$

 $\sin^2 \theta_{12} \sim \frac{1}{3}$ $\sin^2 \theta_{23} \sim \frac{1}{2}$ $\sin^2 \theta_{13} \sim 0.02$

 $0 \le \delta < 2\pi$

$$ert \Delta m_{21}^2 ert = ert m_2^2 - m_1^2 ert = 7.5 imes 10^{-5} \, \mathrm{eV}^2$$
 $L/E = 15 \, \mathrm{km/MeV} = 15,000 \, \mathrm{km/GeV}$
 $ert \Delta m_{31}^2 ert = ert m_3^2 - m_1^2 ert = 2.5 imes 10^{-3} \, \mathrm{eV}^2$ $L/E = 0.5 \, \mathrm{km/MeV} = 500 \, \mathrm{km/GeV}$

6 row/column plus 6 triangle conditions

2 row and 1 triangle, independent of $\,\,
u_{ au}$

$\nu_e ightarrow \nu_e$ and $\bar{\nu}_e ightarrow \bar{\nu}_e$

kinematic phase:

$$\Delta_{ij} \equiv \frac{\Delta m_{ij}^2 L}{4E}$$

Stephen Parke

IFT - UAM

Reactor θ_{13} **Experiments**

Stephen Parke

IFT - UAM

15

RENO uses this defn:

NPZ= Nunokawa, SP, Zukanovich Funchal hep-ph/0503283

춖

Daya Bay Saga:

Invisibles 2015 —> present

DB 1505.03456v1

DB 1505.03456v2 (PRL)

=> SP 1601.07464

Stephen Parke

How Does Daya Bay Define Δm^2_{EE} ?

(arXiv:1310.6732 and 1505.03456v1)

$$\sin^{2} \Delta_{EE} \equiv c_{12}^{2} \sin^{2} \Delta_{31} + s_{12}^{2} \sin^{2} \Delta_{32}$$
(1)
$$\Rightarrow \Delta m_{EE}^{2} = \left(\frac{4E}{L}\right) \arcsin\left[\sqrt{(c_{12}^{2} \sin^{2} \Delta_{31} + s_{12}^{2} \sin^{2} \Delta_{32})}\right]$$

Maladies:

$$\left[rac{E}{L}
ight] = M^2$$

- L/E dependent
- Discontinuous at Osc. Max./Min. $(L/E \approx 0.5, 1.0, ... \text{ km/MeV})$ 3% jump
- no simple physical meaning !

Why???

RHS (1) never gets exactly to 1, or back to 0 whereas LHS does !

eg $\sin^2(\frac{\pi}{2}\mp\epsilon) = 1 - \epsilon^2 + O(\epsilon^4)$ with $\epsilon = s_{12}c_{12}\Delta_{21}$

IFT - UAM

Δm_{21}^2

KamLAND:

KamLAND:

$$\Delta m_{21}^2 = 7.50 \,{}^{+0.20}_{-0.20} \times 10^{-5} \,\,\mathrm{eV}^2,$$

 $\nu_? + e \rightarrow \nu + e$

Which type of Neutrino dominates this image ?

Solar Neutrinos:

matter effect

D/N asymmetry + lack of observation of upturn.

Eur.Phys.J. A52 (2016) no.4, 87

Phys. Rev. D94, 052010 (2016)

$$\Delta m_{21}^2 = 5.1^{+1.3}_{-1.0} \times 10^{-5} \text{ eV}^2,$$

V

Tension between KamLAND and SNO/SK

챢

IFT - UAM

Nu-fit

D

Why do we care about

At oscillation maximum in vacuum:

$$P(\bar{\nu}_{\mu} \to \bar{\nu}_{e}) - P(\nu_{\mu} \to \nu_{e}) \approx \pi J \left(\frac{\Delta m_{21}^{2}}{\Delta m_{31}^{2}}\right)$$

where J is Jarlskog Invariant (1986):

 $J = \sin 2\theta_{12} \sin 2\theta_{13} \cos \theta_{13} \sin 2\theta_{23} \sin \delta \approx 0.3 \sin \delta$

T2K

 $\begin{array}{c} {\rm KamLAND} \\ \Delta m_{21}^2 \end{array}$

<u>T2K: L=295 km, <E>=0.62 GeV</u> 9 $|U_{e3}|^2 = 0.022$ NO I0 8 $|U_{\mu3}|^2 = 0.51 \pm 0.10$ 7 8 $-> \overline{\nu}_{e}$ 6 5 $P(\overline{\nu}_{\mu}$ 4 3 0 $\pi/2$ π $(-\pi)$ 2 $\delta =$ \diamond $\times 3\pi/2 (-\pi/2)$ 1 0 2 3 5 7 8 9 0 6 1 $P(\nu_{\mu} \rightarrow \nu_{e}) \%$

> $2 ext{x} ext{KamLAND}$ Δm_{21}^2

Can Short Baseline Reactor Neutrinos say anything about

$P(\bar{\nu}_e \to \bar{\nu}_e) = 1 - P_{13} - P_{12}$ with

 $P_{13} = 4|U_{e3}|^2(|U_{e1}|^2\sin^2\Delta_{31} + |U_{e2}|^2\sin^2\Delta_{32}) \quad (< 0.1)$ = $\sin^2 2\theta_{13} (\cos^2\theta_{12} \sin^2\Delta_{31} + \sin^2\theta_{12} \sin^2\Delta_{32}),$

 $P_{12} = 4|U_{e2}|^2|U_{e1}|^2\sin^2\Delta_{21} = \sin^2 2\theta_{12}\cos^4\theta_{13}\sin^2\Delta_{21}$

 $\Delta_{ij} \equiv \frac{\Delta m_{ij}^2 L}{4E}$

Dependence on Solar Parameters: S.H. Seo and SP arXiv: 808.09150 P_{12} 1.00 $1 \times$ **3**× 0.95 0.90 KamLAND value 0.2 0.6 0.8 1.0 0.4 L/E (km/MeV)

If Δm^2_{21} is 3 times bigger, P_{12} is 9 times larger !

dependence is on $\sin 2\theta_{12}\Delta m^2_{21}$

V

Daya Bay

S.H. Seo and SP arXiv:1808.09150

 $L/E \sim 0.5 \ km/MeV \ compared \ to \ KamLAND \ L/E \sim 50 \ km/MeV \ T2K \ is \ at \ 0.5 \ km/MeV$

Stephen Parke

Reinterpretation !

JUNO

Stephen Parke

JUNO precision ~2025

$$\sin^2 \theta_{12}, \ \Delta m_{21}^2 \ \text{and} \ |\Delta m_{ee}^2|$$

Λ	C 0/
U	.J /o

Ξ		Nominal	+ B2B (1%)	+ BG	+ EL (1%)	+ NL (1%)
	$\sin^2 \theta_{12}$	0.54%	0.60%	0.62%	0.64%	0.67%
-	Δm_{21}^2	0.24%	0.27%	0.29%	0.44%	0.59%
	$\left \Delta m_{ee}^2\right $	0.27%	0.31%	0.31%	0.35%	0.44%
-						

Table 3-2: Precision of $\sin^2 \theta_{12}$, Δm_{21}^2 and $|\Delta m_{ee}^2|$ from the nominal setup to those including additional systematic uncertainties. The systematics are added one by one from left to right.

Matter Effects in JUNO Li, Wang, Xing 1605.00900

Shift 1σ in Δm^2_{21} and 3σ in θ_{12}

Size of shift unexplained in 1605.00900:

Khan, Nunokawa, SP upcoming 1810.?? or 1811.??

Stephen Parke

JUNO and the Mass Ordering:

$$\Omega = 2|\Delta_{ee}| \pm \phi$$

ž

$$\Delta m_{ee}^2 \equiv \frac{\partial \Omega}{\partial (L/2E)} \Big|_{\frac{L}{E} \to 0} = \cos^2 \theta_{12} \Delta m_{31}^2 + \sin^2 \theta_{12} \Delta m_{32}^2$$
$$\phi = \left\{ \arctan(\cos 2\theta_{12} \tan \Delta_{21}) - \Delta_{21} \cos 2\theta_{12} \right\}$$

NO phase advance **IO** phase retardation

 $\phi(\Delta_{21} \pm \pi) = \phi(\Delta_{21}) \pm 2\pi \sin^2 \theta_{12},$

Hermann Helmholt:

1875

Neutrino Energy Reconstruction

- $\Omega = 2|\Delta_{ee}| + \eta \phi$
- (NO, oO, IO) given by $\eta = (1, 0, -1)$

$$\delta~(\Delta m^2_{ee}) \sim 0.5\%$$

Parke @ NOW 2008

#

Other Prospects:

Ultra-Short Baseline: 10 m baseline

Matter Effects:

Stephen Parke

Neutrino Propagation in Matter:

$$\begin{split} i\frac{d}{dx}\nu &= H\nu \qquad \nu \equiv \begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} \\ H &= \frac{1}{2E} \left\{ U \begin{bmatrix} 0 & 0 & 0 \\ 0 & \Delta m_{21}^2 & 0 \\ 0 & 0 & \Delta m_{31}^2 \end{bmatrix} U^{\dagger} + \begin{bmatrix} a(x) & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \right\} \\ a &= 2\sqrt{2}G_F N_e E \approx 1.52 \times 10^{-4} \left(\frac{Y_e \rho}{\text{g.cm}^{-3}}\right) \left(\frac{E}{\text{GeV}}\right) \text{eV}^2. \end{split}$$

$$if \ \rho Y_e = 1.5 \text{ g/cm}^3 \text{ and } E = 10 \text{ GeV then } a \approx \Delta m_{31}^2$$

E = 300~MeV then $a \approx \Delta m^2_{21}$

* *

2 flavor mixing in matter $ax^2 + bx + c = 0$

simple, intuitive, useful

3 flavor mixing in matter $ax^3 + bx^2 + cx + d = 0$

complicated, counter intuitive, ...

Hamiltonian:

H. Minakata + SP arXiv:1505.01826 P. Denton + H. Minakata + SP arXiv:1604.08167

$$H = \frac{1}{2E} \left\{ U \begin{bmatrix} 0 & 0 & 0 \\ 0 & \Delta m_{21}^2 & 0 \\ 0 & 0 & \Delta m_{31}^2 \end{bmatrix} U^{\dagger} + \begin{bmatrix} a & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \right\}$$

Rewrite as $H = H_0 + H_1$ solvable perturbation

where H_0 is diagonal

and H_1 is off-diagonal.

Neutrino Evolution in Matter (conti):

 $U_{23}^{\dagger}(\theta_{23},\delta) H U_{23}(\theta_{23},\delta) = H_D + H_{OD}$ D=diagonal OD= off-diagonal

 $(2E) H_D = \begin{bmatrix} a + s_{13}^2 \Delta m_{ee}^2 \\ (c_{12}^2 - s_{12}^2) \Delta m_{21}^2 \\ c_{13}^2 \Delta m_{ee}^2 \end{bmatrix} \qquad \frac{3}{2} \neq \frac{1}{2}$

 $\Delta m_{ee}^2 \equiv \cos^2 \theta_{12} \Delta m_{31}^2 + \sin^2 \theta_{12} \Delta m_{32}^2$

!!! level crossing !!!

$$(2E) H_{OD} / \Delta m_{ee}^{2} = s_{13}c_{13} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$0.15 + c_{13} s_{12}c_{12} \left(\frac{\Delta m_{21}^{2}}{\Delta m_{ee}^{2}}\right) \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$

$$0.015 - s_{13} s_{12}c_{12} \left(\frac{\Delta m_{21}^{2}}{\Delta m_{ee}^{2}}\right) \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$0.002$$

DMP 0th order in a nutshell:

Vacuum \Rightarrow Matter $P_{\nu_{\alpha} \to \nu_{\beta}}(\Delta m_{31}^2, \Delta m_{21}^2, \theta_{13}, \theta_{12}, \theta_{23}, \delta) \quad \Rightarrow \quad P_{\nu_{\alpha} \to \nu_{\beta}}(\Delta m_{31}^2, \Delta m_{21}^2, \widetilde{\theta}_{13}, \widetilde{\theta}_{12}, \theta_{23}, \delta)$ $\cos 2\widetilde{\theta}_{13} = \frac{\Delta m_{ee}^2 \cos 2\theta_{13} - a}{\Delta \widetilde{m}_{ee}^2} \text{ where } a = 2\sqrt{2}G_F N_e E_{\nu} \text{ and}$ $\widetilde{\Delta m}_{ee}^2 = \Delta m_{ee}^2 \sqrt{(\cos 2\theta_{13} - a/\Delta m_{ee}^2)^2 + \sin^2 2\theta_{13}}$ with $\Delta m^2 = -2$ (same function just use matter variables) $\cos 2\widetilde{\theta}_{12} = \frac{\Delta m_{21}^2 \cos 2\theta_{12} - a'}{\Delta \widetilde{m}_{21}^2} \quad \text{where} \quad a' \equiv (a + \Delta m_{ee}^2 - \Delta \widetilde{m}_{ee}^2)/2$ (the effective matter potential for 1-2 sector.) $\Delta \widetilde{m^2}_{21} = \Delta m_{21}^2 \sqrt{(\cos 2\theta_{12} - a'/\Delta m_{21}^2)^2 + \cos^2(\widetilde{\theta}_{13} - \theta_{13}) \sin^2 2\theta_{12}}$ $\Delta m_{31}^2 = \Delta m_{31}^2 + \frac{1}{4}a + \frac{3}{4}(\Delta m_{ee}^2 - \Delta m_{ee}^2) + \frac{1}{2}(\Delta m_{21}^2 - \Delta m_{21}^2)$

$$\begin{aligned}
\nu_e \to \nu_e \\
P_a(\nu_e \to \nu_e) &\approx 1 - \sin^2 2\theta_{13} \left(\frac{\Delta m_{ee}^2}{\Delta \widehat{m}_{ee}^2} \right)^2 \sin^2 \widehat{\Delta}_{ee}, \qquad \widehat{\Delta}_{ee} \equiv \Delta \widehat{m}_{ee}^2 L/(4E),
\end{aligned}$$

$$\widehat{\Delta m^2}_{ee} \approx \Delta m_{ee}^2 \sqrt{(\cos 2\theta_{13} - a/\Delta m_{ee}^2)^2 + \sin^2 2\theta_{13}},$$

#

New Perturbation Theory for Osc. Probabilities

systematic expansion

¥ ¥

Summary:

- Observation of Solar Neutrinos and Reactor Neutrinos have taught us a great deal the electron row of the PMNS matrix, about U_ei and Delta m² 's.
- the concept of an effective Delta m^2, Delta m^2_ee, is useful for the shape analysis of reactor neutrinos. $\Delta m^2_{ee} \text{ is } \nu_e \text{ average of } \Delta m^2_{31} \text{ and } \Delta m^2_{32}$
- Short baseline reactor experiments can constrain (maybe measure) Delta m²_21 at twice the KamLAND value.
- the generalization of Delta m²_ee into matter, is useful for understanding neutrino oscillations in matter for DUNE and T2HK(K)

$$\Delta m^2_{ee} \sqrt{(\cos 2 heta_{13} - a/\Delta m^2_{ee})^2 + \sin^2 2 heta_{13}}$$

6

By Ashutosh Jogalekar | August 30, 2013 |

Ernest Rutherford, emperor of the atomic domain (Image: Wikipedia Commons)

"theorists play games with their symbols while we discover truths about the universe". And yet

$$\sigma = \pi Z^2 \left(\frac{ke^2}{KE}\right)^2 \left(\frac{1+\cos\theta}{1-\cos\theta}\right)$$

he had an eye for theoretical talent that allowed him to nurture Niels Bohr, as dyed-in-the-wool a theoretician and philosopher as you could find.

extras

The set of the set of

 $\widetilde{s}_{12} \equiv \sin \widetilde{\theta}_{12}$, etc

After 2 rotations:

Stephen Parke

IFT - UAM

How Does Daya Bay Define Δm^2_{EE} ?

arXiv:1310.6732

 ν_j and ν_i . Since $\Delta m_{21}^2 \ll |\Delta m_{31}^2| \approx |\Delta m_{32}^2|$ [1], the shortdistance (~km) reactor $\overline{\nu}_e$ oscillation is due primarily to the Δ_{3i} terms and naturally leads to the definition of the effective mass-squared difference $\sin^2 \Delta_{ee} \equiv \cos^2 \theta_{12} \sin^2 \Delta_{31} + \sin^2 \theta_{12} \sin^2 \Delta_{32}$ [11].

1505.03456v1

[8] $\sin^2 \Delta_{ee} \equiv \cos^2 \theta_{12} \sin^2 \Delta_{31} + \sin^2 \theta_{12} \sin^2 \Delta_{32}$, where $\Delta_{ji} \equiv 1.267 \Delta m_{ji}^2 (\text{eV}^2) [L(\text{m})/E(\text{MeV})]$, and Δm_{ji}^2 is the difference between the mass-squares of the mass eigenstates ν_j and ν_i .