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Lattice QCD

I A regularization of QCD (it is QCD, not a model of
QCD). The lattice spacing a is the UV cutoff.

I The only known consistent way to define QCD at all
energy scales: from the high-energy perturbative
regime all the way down to pion physics.

I When restricted to a finite box, suitable for numerical
calculation of the path integral.

I Limits to be taken in numerical calculations

a→ 0 , L→∞



Isospin-breaking effects

I Most numerical simulations neglect isospin-breaking effects (i.e. they treat the u and d
quarks as undistinguishable).

I The isosymmetric limit is a very good approximation of the real world. Yet, isospin breaking
effects are necessary to explain the stability of matter as we know it.

I Two equally-important sources of isospin breaking effects:

mu − md

Mp
' 0.3% αem = 0.7%

Mn −Mp

Mn
' 0.1%

I Lattice QCD+QED provides a way to calculate isospin breaking effects from first principles.

I Is this relevant? FLAG world average, isosymmetric limit:

FK/Fπ = 1.194(5) ∼ 0.4% FKπ
+ = 0.9661(32) ∼ 0.3%

Isospin breaking corrections, as estimated in χPT:

FK/Fπ ∼ 1% FKπ
+ ∼ [0.5, 3]%

Antonelli et al., An Evaluation of |Vus | and precise tests..., Eur.Phys.J. C69 (2010) 399-424.

Cirigliano et al., Kaon Decays in the Standard Model, Rev.Mod.Phys. 84 (2012) 399.



Two ways for QCD+QED on the lattice

I Expand observables with respect to αem and simulate QCD only.

de Divitiis et al. (RM123), Leading isospin breaking effects on the lattice, Phys.Rev. D87 (2013) 11, 114505.

Carrasco et al., QED Corrections to Hadronic Processes in Lattice QCD, Phys.Rev. D91 (2015) 7, 074506.

E.g. Cottingham formula for the mass correction:

∆m = −
e2

4m

∫
d4k

(2π)4

1

k2

∫
d4x e−ikx〈h|T{jµ(x)jµ(0)}|h〉c,QCD + O(e4)

Pros:
Only O(α0

em) observables.

Cons:
Complex observables (e.g. a 4-point functions for mass correction).
Fermionic disconnected diagrams.



Two ways for QCD+QED on the lattice

I Simulate QCD+QED on the lattice.

Borsanyi et al. (BMW), Ab initio calculation of the neutron-proton mass difference, Science 347 (2015)

1452-1455.
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Pros:
Simpler observables (e.g. 2-point functions for mass correction).

Cons:
Signal is typically O(αem).



QCD+QED in finite volume

I If we want to measure the mass of the proton on the lattice, we need to be able to put a
nonzero charge in a finite box.

I On a torus with periodic boundary conditions, the Gauss law forbids a nonzero charge.

∂kEk (x) = ρ(x) ⇒ Q =

∫
d3x ρ(t, x) =

∫
d3x ∂kEk (t, x) = 0

I I want to explore an old idea...

Wiese, C periodic and G periodic QCD at finite temperature, Nucl. Phys. B375, 45 (1992).

Kronfeld, Wiese, SU(N) gauge theories with C periodic boundary conditions. 1. Topological
structure, Nucl. Phys. B357 (1991) 521.

Kronfeld, Wiese, SU(N) gauge theories with C periodic boundary conditions. 2. Small
volume dynamics, Nucl. Phys. B401 (1993) 190.

Polley, Boundaries for SU(3)(C) x U(1)-el lattice gauge theory with a chemical potential, Z.
Phys. C59, 1993.

I C∗ boundary conditions provide a framework to describe a certain class of electrically-charged
states in a rigorous way. This class is wide enough to include most of the spectroscopic
applications.



C∗ boundary conditions

Aµ(x + Lk) = −Aµ(x) ψ(x + Lk) = C−1
ψ̄

T (x) ψ̄(x + Lk) = −ψT (x)C

Electric flux can escape the torus and flow into the mirror charge

Q(t) =

∫
d3x ρ(t, x) =

∫
d3x ∂kEk (t, x) 6= 0



Overview

I Other ways to deal with Gauss law in a finite box

I Symmetries of QED with C∗ boundary conditions (QEDC)

I Some finite-volume effects in QEDC



Charge particles and zero modes

QED + Feynman gauge ⇒ electron two-point function 〈ψ(x)ψ̄(y)〉
However in finite volume, large gauge transformations survive a local gauge fixing

Aµ(x)→ Aµ(x) +
2πnµ

L
, ψ(x)→ e

2πinµxµ
L ψ(x)

〈ψ(x)ψ̄(y)〉 → e
2πinµ(x−y)µ

L 〈ψ(x)ψ̄(y)〉 ⇒ 〈ψ(x)ψ̄(y)〉 = 0

Large gauge transformations shift the zero-modes of the photon field.

I Various constraints on some momentum components of the photon field. e.g. Hayakawa,
Uno, QED in finite volume and finite size scaling effect on electromagnetic properties of
hadrons, Prog. Theor. Phys. 120 (2008) 413-441.∫

d4x Aµ(x) = 0 , or −
π

L
<

∫
d4x Aµ(x) <

π

L
, or

∫
d3x Aµ(t, x) = 0

Widely used, but the constraint is non-local.

I Give a small mass to the photon. Endres, Shindler, Tiburzi, Walker-Loud, Massive photons:
an infrared regularization scheme for lattice QCD+QED, arXiv:1507.08916 [hep-lat].

Interesting recent proposal, local QFT.

I C∗ boundary conditions: the gauge field is antiperiodic (no zero-mode). Local QFT.
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Locality

I Microcausality

[A(t, x),B(t, y)] = 0 for x 6= y

I Equations of motion are local differential equations: time evolution of fields in x is
determined only by the value of fields in an arbitrarily small neighbourhood of x .

I Local action

Z =

∫
b.c.’s

local constraints

e−S
, S =

∫
d4x L(x)

Locality is a core property of QFT. It guarantees, e.g.

I Renormalizability by power counting
I Volume-independence of renormalization constants
I Operator product expansion
I Effective-theory description of long-distance physics
I Symanzik improvement program
I ...
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Symmetries of QEDC

L =
1

4
FµνFµν +

∑
f

ψ̄f (6Df + mf )ψf

Aµ(x + Lk) = −Aµ(x) ψ(x + Lk) = C−1
ψ̄

T (x) ψ̄(x + Lk) = −ψT (x)C

I Translations: momentum P is conserved.

I Charge conjugation: C is conserved. A translation by Lk concides with charge conjugation

e iLPk = C

Because of the b.c.s, and eigenstate of the Pk is automatically and eigenstate of C . Periodic
states have C = +1 and antiperiodic states have C = −1.

I Parity: P is conserved.

I Flavour symmetry is partially broken:

ψf → e iαψf ψ̄f → e−iα
ψ̄f

leaves the b.c.s invariant iff e iα = ±1. (−1)Ff is conserved.

I Electric charge is a linear combination of flavour charges

Q =
∑
f

nf qelFf

Electric charge Q is not conserved but (−1)Q/qel is.



Quantum numbers in QEDC

For simplicity, we consider only electrons and muons (qel = 1).

[Pk ,C ] = [Pk , (−1)Ff ] = [C , (−1)Ff ] = [Pk , (−1)Q ] = [C , (−1)Q ] = 0

Consider a Hamiltonian eigenstate with

P = 0 C = +1 (−1)Fe = −1 (−1)Fµ = 1 (−1)Q = −1

This state is a mixture of states with

Fe = ±1,±3,±5, . . . Fµ = 0,±2,±4, . . . Q = ±1,±3,±5, . . .

The ground state in this channel in the infinite-volume limit becomes the C -even combination of a
single electron and a single positron.

Finite-volume charged states = States with (−1)Q = −1

Messages:

I Ther residual symmetry is enough to construct single-electron and single-muon states, but
not e.g. two-electron states.

I The spurious mixing decays exponentially in the L→∞ limit.



Charge violation in QEDC

In infinite volume

〈ψ(x)ψ̄(y)〉 = x y
= S(x − y) ,

〈ψ(x)ψT (y)〉 = 0



Charge violation in QEDC

In finite volume with C∗ boundary conditions

〈ψ(x)ψ̄(y)〉 = x y
=

∑
〈n〉=0

S(x − y + L̂ini ) ,

〈ψ(x)ψT (y)〉 = x y
= −

∑
〈n〉=1

S(x − y + L̂ini )C
−1

,

n=(−1,−1)
〈n〉=0

n=(0,−1)
〈n〉=1

n=(1,−1)
〈n〉=0

n=(−1,0)
〈n〉=1

n=(0,0)
〈n〉=0

n=(1,0)
〈n〉=1

n=(−1,1)
〈n〉=0

n=(0,1)
〈n〉=1

n=(1,1)
〈n〉=0



Charge violation in QEDC

γ

e+

e+

e+

e+

e+

e−

I With C∗ b.c.s the following transitions are allowed

∆Ff = 0 mod 2 , ∆Q = 0 mod 2

A single-electron state can mix with a three-electron state but not with a single-photon state
or a single-muon state

I Flavour-violation processes involve flavourful particles (which are massive) traveling around
the torus and they are therefore exponentially suppressed in the volume



Flavour violation in QED + QCDC

I Conservation of each flavour number is violated in units of 2

Q =

Nf∑
f

qf Ff F =

Nf∑
f

Ff B =
F

3
∆Ff = 0 mod 2

I If L is large enough, only colourless particles can travel around the torus

∆Q = 0 mod 2 , ∆B = 0 mod 2 , ∆F = 0 mod 6

I Pseudoscalar mesons (the pions, the kaons, D and B) cannot mix with lighter states and are
therefore stable

I The proton cannot mix with states having B = 0 and it remains the lightest state with
(−1)B = −1

I The neutron cannot mix with states having B = 0 or Q = ±1 and it remains the lightest
state with (−1)B = −1 and (−1)Q = 1

I Flavour-violation processes involve flavourful particles (which are massive) traveling around
the torus and they are therefore exponentially suppressed in the volume



Flavour violation in QED + QCDC

Ξ− Λ0

K− K+

p

s
s
d

u
u
d

C(t; L) =
∑

x

〈Ξ+(t, x)†Ξ+(0)〉 = C<M
Ξ±

(t; L) + C≥M
Ξ±

(t; L)

C<M
Ξ±

(t; L) ' A(L)e−tMp (L) + . . . C≥M
Ξ±

(t; L) ' B(L)e
−tMΞ± (L)

+ . . .

The mixing with lighter states is generated by a loop of strange hadrons wrapping around the
torus, that cannot go on-shell ⇒ exponential suppression

|C<M
Ξ±

(t; L)| ≤ exp {−2µL +O(ln L)} e−tMp

' 10−10 × e−tMp for MπL = 4

µ =

[
M2

K± −
(

M2
Ξ− −M2

Λ0 + M2
K±

2MΞ−

)2]1/2
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Finite-volume corrections to hadron masses

∆m(L)

m
=

e2

4π

{
q2ξ(1)

2mL
+

q2ξ(2)

π(mL)2
−

1

4πmL4

∞∑
`=1

(−1)`(2`)!

`!L2(`−1)
T`ξ(2 + 2`)

}
+ . . .

I Very similar to BMW formula for QEDL, but some important differences

I The boundary conditions are encoded in the generalized zeta function ξ(s)

ξ(s) =
∑
n6=0

(−1)
∑

j∈C nj

|n|s

I The coefficients of the 1/L and 1/L2 are completely fixed by charge and mass (universal)

I Non-universal (i.e. spin- and structure-dependent) corrections are order 1/L4. Notice that

these are of order 1/L3 in QEDL. This extra suppression is a direct consequence of locality.

I The non-universal corrections are related to the forward Compton amplitude for the
scattering of a soft photon on the hadron at rest

T` =
d`

d(k2)`
Tµµ (|k|, k)

∣∣∣∣∣
k=0
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Summary

I QCD+QED with C∗ boundary conditions is a local QFT in finite volume, and provides a
framework to describe a certain class of electrically-charged states in a rigorous and
gauge-invariant way.

I C∗ boundary conditions partially break flavour (and charge) conservation. Ff is not

conserved but (−1)Ff is.

I Several interesting states are not affected by the finite-volume mixing (p, n, π±, K±, K0,

Λ0, D±, D0, D±s , B±, B0, Σ±, Σ0)

I Some states are affected by the finite-volume mixing, e.g. Ξ− or Ω−, but the mixing with
lighter states is exponentially suppressed with the volume (with a generally large exponent).

I Non-unversal finite-volume corrections to the masses of stable charged hadrons are 1/L4

rather than 1/L3 (thanks to locality).

I Operator mixing is not affected by breaking of flavour symmetry (thanks to locality).

I QCD+QED with C∗ boundary conditions can be formulated on the lattice with a compact
U(1). Charged states can be described in a gauge-invariant way.

I QCD+QED with C∗ boundary conditions has a mild sign problem with Wilson fermions (but
not with chiral fermions), analogous to the one of a single flavour with periodic boundary
conditions.



What’s next

I We are working on the numerical implementation of QCD+QED with C∗ boundary
conditions.

I We will start from pilot studies (QED in isolation, electroquenched aproximation, study of
finite volume effects...).

I If we convince ourselves that this is the best approach, we will consider simulations closer to
physics.

I We would like to derive a finite-volume formula for the matrix elements, in analogy to the
one for the mass.



Backup slides



Interpolating operators for electrically-charged states

Dirac interpolating operator:

Ψ(t, x) = e−ı
∫

d3y Φ(y−x)∂kAk (t,y)
ψ(t, x)

where Φ(x) is the electric potential of a unit charge in a box with C∗ b.c.’s

∂k∂kΦ(x) = δ
3(x)

Φ(x + Lk) = −Φ(x)

Nontrivial fact: such an electric potential exists!
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Φ(x + Lk) = −Φ(x)

Nontrivial fact: such an electric potential exists!

∫
d3x Ψ(t, x)|0〉

This state has the following properties

I invariant under infinitesimal gauge transformations

I P = 0

I C = +1

I (−1)Q = −1

The charged-particle mass is defined in a gauge-invariant fashion:

〈Ψ(t, x)Ψ̄(0)〉 ' A(x)e−tm


