

Probing the Higgs boson

Ramona Gröber

Humboldt-Universität zu Berlin

Semínar IFT Madríd

03/12/2018

Motivation

• Theoretical predictions for di-Higgs production

- Higgs pair production beyond the Standard Model
 - Trílínear Híggs self-coupling
 - Resonant Higgs pair production

other processes can also be promising

[Dolan, Englert, Greiner, Nordström, Spannowsky, '15, Englert, Krauss, Spannowksy, Thompson '14, Nordström, Papaefstathiou '18, Bishara, Rojo, Contino '16, Arganda, García-García, Herrero '18, ...]

Rest of the talk: gluon fusion

Theoretical predictions for Higgs pair via gluon fusion

NLO QCD corrections large: K~1.9

[Dawson, Díttmaíer, Spíra '98]

Historically:

• NLO QCD corrections computed in large top mass limit [Dawson, Dittmaier, Spira '98] simplifies the integrals dramatically $\frac{1}{(p+q)^2 - m^2} \approx \frac{1}{p^2 - m^2} \left(1 - \frac{2p \cdot q + q^2}{p^2 - m^2} + \dots\right)$

Ramona Gröber — IPPP, Durham University

NLO QCD corrections large: K~1.9

[Dawson, Díttmaíer, Spíra '98]

Historically:

• NLO QCD corrections computed in large top mass limit [Dawson, Dittmaier, Spira '98] simplifies the integrals dramatically $\frac{1}{(p+q)^2 - m^2} \approx \frac{1}{p^2 - m^2} \left(1 - \frac{2p \cdot q + q^2}{p^2 - m^2} + \dots\right)$

valid for $\hat{s}, \hat{t}, \hat{u}, m_H^2 \ll 4m_t^2$

improvement by reweighting with full LO cross section

Bottleneck = virtual corrections

Estimation of finite top mass effects

- real corrections in full mass dependence
- higher orders in expansion in large mt

[Frederíx, et al '14, Maltoní, Vryonídou, Zaro '14]

[Grígo, Hoff, Melníkov, Steinhauser '13, Grígo, Hoff, Steinhauser '15, Degrassi, Giardino, RG '16]

Bottleneck = virtual corrections

Estimation of finite top mass effects

- real corrections in full mass dependence
- higher orders in expansion in large mt

• NLO result in full mass dependence fully numerical, available as a grid

 NNLO result in incorporating partially top mass dependence [Frederíx, et al '14, Maltoní, Vryonídou, Zaro '14]

[Grígo, Hoff, Melníkov, Steinhauser '13, Grígo, Hoff, Steinhauser '15, Degrassi, Giardino, RG '16]

[Borowka et al '16, Baglío et al '18]

[Heinrich, Jones, Kerner, Luísoní, Vryonidou '17]

[De Florian '13, Grigo et al '15, Grazzini et al '18]

Bottleneck = virtual corrections

Estimation of finite top mass effects

- real corrections in full mass dependence
- higher orders in expansion in large mt

• NLO result in full mass dependence

fully numerical, available as a grid

NNLO result in incorporating partially top

[Frederíx, et al '14, Maltoní, Vryonídou, Zaro '14]

[Grígo, Hoff, Melníkov, Steinhauser '13, Grígo, Hoff, Steinhauser '15, Degrassi, Giardino, RG '16]

[Borowka et al '16, Baglio et al '18]

[Heinrich, Jones, Kerner, Luisoni, Vryonidou '17]

[Þe Florían '13, Grígo et al '15, Grazzíní et al '18]

can we obtain a (semi-) analytical result incorporating the top mass dependence?

Advantages: faster, application to other processes and BSM, cross-check, ...

mass dependence

Bottleneck = virtual corrections

Estimation of finite top mass effects

- real corrections in full mass dependence
- higher orders in expansion in large mt

• NLO result in full mass dependence

fully numerical, available as a grid

[Frederíx, et al '14, Maltoní, Vryonídou, Zaro '14]

[Grígo, Hoff, Melníkov, Steinhauser '13, Grígo, Hoff, Steinhauser '15, Degrassi, Giardino, RG '16]

[Borowka et al '16, Baglío et al '18]

[Heinrich, Jones, Kerner, Luisoni, Vryonidou '17]

NNLO result in incorporating partially top [De Florian '13, Grigo et al mass dependence '15, Grazzini et al '18]

Can we obtain a (semi-) analytical result incorporating the top mass dependence?

Expansion in small p_{T} , m_{H} [Bonciani, Degrassi, Giardino, RG '18]High-energy limit[Davies, Mishima, Steinhauser, Wellmann '18]Expansion in small m_{H} [Xu, Yang '18]

Ramona Gröber — IPPP, Durham University

Padé approximants for top mass effects

• threshold expansion (around z=1)

[computed in RG, Maier, Rauh '17]

• Form factor vanishes for $\,z
ightarrow\infty$

"Trick":

• Conformal mapping z = -z

 $z = \frac{4\omega}{(1+\omega)^2}$

[Tarasov, Fleischer '94]

Padé approximants for top mass effects

Combine several expansions by using Padé approximants

Comparison with grid from [Heinrich, Jones, Kerner, Luisoni, Vryonidou '17]

Higgs pair production beyond the Standard Model

1. measurement of trilinear Higgs self-coupling

probes the Higgs potential

1. measurement of trilinear Higgs self-coupling

probes the Higgs potential

2. does the Higgs boson couple non-linearly?

Is there a correlation between couplings hxx and hhxx?

1. measurement of trilinear Higgs self-coupling

probes the Higgs potential

2. does the Higgs boson couple non-linearly?

Is there a correlation between couplings hxx and hhxx?

3. probing particles in the gluon fusion loop

Gluon fusion loop can contain new colored particles

1. measurement of trilinear Higgs self-coupling

probes the Higgs potential

2. does the Higgs boson couple non-linearly?

Is there a correlation between couplings hxx and hhxx?

3. probing particles in the gluon fusion loop

Gluon fusion loop can contain new colored particles

- 4. discovery mode for new resonances decaying to hh
 - í.e. heavy new scalar (or spín 2 particle) decaying to hh

1. measurement of trílínear Híggs self-coupling

probes the Higgs potential

2. does the Higgs boson couple non-linearly?

Is there a correlation between couplings hxx and hhxx?

3. probing particles in the gluon fusion loop

Gluon fusion loop can contain new colored particles

- 4. discovery mode for new resonances decaying to hh
 - i.e. heavy new scalar (or spin 2 particle) decaying to hh

Probing the trilinear Higgs selfcoupling

Measurement of trilinear Higgs self-coupling gives insight to the Higgs potential and hence electroweak symmetry breaking

[quantumdiaries.org]

Searches dífficult, require high luminosities

Current bounds $\mathcal{O}(\pm 10\lambda_{hhh}^{SM})$ [arXiv:1509.0467, arXiv: 1506.0028,

arXív: 1603.0689]

Prospects at HL-LHC for $b\bar{b}\gamma\gamma$ final state

 $-0.2 < \lambda_{HHH} / \lambda_{HHH}^{SM} < 6.9$ [talk by Delgove "Double-Higgs production at Colliders workshop" '18]

Searches dífficult, require high luminosities

Current bounds $\mathcal{O}(\pm 10\lambda_{hhh}^{SM})$ [arXiv:1509.0467, arXiv: 1506.0028,

arXív: 1603.0689]

Prospects at HL-LHC for $b\bar{b}\gamma\gamma$ final state

 $-0.2 < \lambda_{HHH} / \lambda_{HHH}^{SM} < 6.9$ [talk by Delgove "Double-Higgs production at Colliders workshop" '18]

Single Higgs to constrain trilinear Higgs self-coupling:

Enters in electroweak corrections to single Higgs

$$-9.4 < (\lambda_{hhh} / \lambda_{hhh}^{SM})_{2\sigma} < 17$$

[McCullough '14, Gorbahn, Haísch '16, Degrassí, Gíardíno, Maltoní, Paganí '16, Bízon, Gorbahn, Haísch Zanderíghí '16]

Searches dífficult, require high luminosities

Current bounds $\mathcal{O}(\pm 10\lambda_{hhh}^{SM})$ [arXiv:1509.0467, arXiv: 1506.0028,

arXív: 1603.0689]

Prospects at HL-LHC for $b\bar{b}\gamma\gamma$ final state

 $-0.2 < \lambda_{HHH} / \lambda_{HHH}^{SM} < 6.9$ [talk by Delgove "Double-Higgs production at Colliders workshop" '18]

Single Higgs to constrain trilinear Higgs self-coupling:

Global fit, taking into account differential measurements

$$0.1 < (\lambda_{hhh} / \lambda_{hhh}^{SM})_{1\sigma} < 2.3$$

[Dí Víta, Grojean, Paníco, Rímbau, Vantalon '17 see also: Maltoní, Paganí, Shívají, Zhao '18]

Trílínear Higgs self-coupling

Can the trilinear Higgs self-coupling be constraint theoretically?

And how large can it be in concrete models?

Vacuum stability

$$V^{(6)} = -\mu^2 |H|^2 + \lambda |H|^4 + \frac{c_6}{v^2} |H|^6$$

large field instability

small field instability

turns out that none of those instabilities can set bound on trilinear Higgs selfcoupling deviations

Large field instability

Toy model [for a similar argument see Burgess, Di Clemente, Espinosa '02]

$$V(h,\phi) = -\frac{1}{2}\mu^2 + \frac{1}{4}\lambda h^4 + \frac{1}{2}M^2\phi^2 + \xi h^3\phi + \kappa h^2\phi^2 + \frac{1}{4}\lambda'\phi^4$$

Electroweak vacuum is absolutely stable if

$$\kappa > 0$$
 and $\lambda > \frac{\xi^2}{\kappa}$ and $\lambda' > 0$

Large field instability

Toy model [for a similar argument see Burgess, Di Clemente, Espinosa '02]
$$V(h,\phi) = -\frac{1}{2}\mu^2 + \frac{1}{4}\lambda h^4 + \frac{1}{2}M^2\phi^2 + \xi h^3\phi + \kappa h^2\phi^2 + \frac{1}{4}\lambda'\phi^4$$

Electroweak vacuum is absolutely stable if

$$\kappa > 0$$
 and $\lambda > \frac{\xi^2}{\kappa}$ and $\lambda' > 0$

Integrating out $\phi\,$ and expanding in large M²

$$V_{EFT}(h) = -\frac{1}{2}\mu^2 h^2 + \frac{1}{4}\lambda h^4 - \frac{1}{2}\frac{\xi^2}{M^2}h^6 + \frac{\xi^2\kappa}{M^4}h^8 + \dots$$

he operator makes potential seem unstable!

for vacuum instability analysis full tower of EFT operators necessary

full models

Perturbative unitarity bound

Perturbative unitarity bound from partial wave analysis

15/24

Ramona Gröber — IPPP, Durham University

Perturbative unitarity bound

Ramona Gröber — IPPP, Durham University

Ramona Gröber — IPPP, Durham University

15/24

Perturbativity bound

Similar bound obtained by requesting that

How large can Juhh be?

In which models do we expect largest deviation?

How large can Juhn be?

In which models do we expect largest deviation?

If there is a tree-level contribution to $\mathcal{L}_6 = rac{c_6}{\Lambda^2} |H|^6$

In models with new scalars that couple with

$$\mathcal{L} = HH\Phi$$
 or $\mathcal{L} = HHH\Phi$

How large can Juhn be?

In which models do we expect largest deviation?

If there is a tree-level contribution to $\mathcal{L}_6 = rac{c_6}{\Lambda^2} |H|^6$

In models with new scalars that couple with

$$\mathcal{L} = HH\Phi$$
 or $\mathcal{L} = HHH\Phi$

Φ	\mathcal{O}_{Φ}
(1, 1, 0)	$\Phi H H^{\dagger}$
$(1, 2, \frac{1}{2})$	$\Phi H H^{\dagger} H^{\dagger}$
(1,3,0)	$\Phi H H^{\dagger}$
(1,3,1)	$\Phi H^{\dagger}H^{\dagger}$
$(1,4,\frac{1}{2})$	$\Phi H H^{\dagger} H^{\dagger}$
$(1,4,\frac{3}{2})$	$\Phi H^{\dagger}H^{\dagger}H^{\dagger}$

How large can Juhn be?

In which models do we expect largest deviation?

If there is a tree-level contribution to $\mathcal{L}_6 = rac{c_6}{\Lambda^2} |H|^6$

In models with new scalars that couple with

$$\mathcal{L} = HH\Phi$$
 or $\mathcal{L} = HHH\Phi$

How large can λ_{hhh} be, taking into account indirect constraints?

Singlet model

Singlet model

Singlet model allows for deviations of

$$-1.5 < \lambda_{hhh} / \lambda_{hhh}^{\rm SM} < 8.7$$

Triplet model

Loop induced λ_{hhh} modification

Connection vacuum stability trilinear Higgs self-coupling

study case of fermonic singlets RH neutrinos, inverse see-saw

[Mohapatra,(Valle)'86, Bernabeu et al '87]

$$\mathscr{L}_{ISS} = -Y_{\nu}^{ij}\bar{L}_{i}\tilde{\phi}\nu_{R,j} + M_{ij}\bar{\nu}_{R,i}X_{j} + \mu_{X}^{ij}\bar{X}_{i}^{C}X_{j} + h.c.$$

common mass scale M=10 TeV and $Y_{\nu} = |y_{\nu}| I_3$ [Baglio, weiland '16]

Loop induced λ_{hhh} modification

study case of fermonic singlets RH neutrinos, inverse see-saw

$$\mathscr{L}_{ISS} = -Y_{\nu}^{ij}\bar{L}_{i}\tilde{\phi}\nu_{R,j} + M_{ij}\bar{\nu}_{R,i}X_{j} + \mu_{X}^{ij}\bar{X}_{i}^{C}X_{j} + h.c.$$

common mass scale M=10 TeV and $Y_{\nu} = |y_{\nu}| I_3$ [Baglio, weiland '16]

 $y_{\nu} = 0.8$ requires UV-completion within 2 orders of magnitude due to instability [see also Delle Rose, Marzo, Urbano '15]

Loop induced λ_{hhh} modification

modífication of trilinear Higgs self-coupling

 $|\lambda_{hhh}/\lambda_{hhh}^{SM}| < 0.1 \%$

non-observable

Resonant dí-Higgs production

[many works in different models, e.g. Chen, Dawson, Lewis '14, Martin Lonzano, Moreno, Park '15, Huang et al '17,]

parameters $|c_H|, \phi_{c_H}, \Gamma_H, \lambda_{hhh}$

When is the interference between signal and background relevant?

Not considered in experimental searches

parameters $|c_H|, \phi_{c_H}, \Gamma_H, \lambda_{hhh}$

When is the interference between signal and background relevant? Not considered in experimental searches

$$\frac{d\sigma}{dm_{hh}} = \frac{d\sigma_S}{dm_{hh}} + \frac{d\sigma_I}{dm_{hh}} + \frac{d\sigma_B}{dm_{hh}}$$

Classification of interferences

$$\eta = \int_{m_{\phi}-10\Gamma_{\phi}}^{m_{\phi}+10\Gamma_{\phi}} dm_{F} \left(\frac{d\sigma_{S}}{dm_{F}} + \frac{d\sigma_{I}}{dm_{F}}\right) \bigg/ \int_{m_{\phi}-10\Gamma_{\phi}}^{m_{\phi}+10\Gamma_{\phi}} dm_{F} \left(\frac{d\sigma_{S}}{dm_{F}}\right)$$
$$\eta_{-} = \int_{m_{\phi}-10\Gamma_{\phi}}^{m_{F}^{I}} dm_{F} \left(\frac{d\sigma_{S}}{dm_{F}} + \frac{d\sigma_{I}}{dm_{F}}\right) \bigg/ \int_{m_{\phi}-10\Gamma_{\phi}}^{m_{F}^{I}} dm_{F} \left(\frac{d\sigma_{S}}{dm_{F}}\right)$$
$$\eta_{+} = \int_{m_{F}^{I}}^{m_{\phi}+10\Gamma_{\phi}} dm_{F} \left(\frac{d\sigma_{S}}{dm_{F}} + \frac{d\sigma_{I}}{dm_{F}}\right) \bigg/ \int_{m_{F}^{I}}^{m_{\phi}+10\Gamma_{\phi}} dm_{F} \left(\frac{d\sigma_{S}}{dm_{F}}\right).$$

[(Bagnaschí), Carvalho, RG, Liebler, Quevillon @LH and ongoing]

Ramona Gröber — IPPP, Durham University

Ramona Gröber — IPPP, Durham University

Conclusion

- Híggs paír production measurement allows to probe exciting new physics Híggs potential: probes trilinear self-coupling discovery channel for new Higgs bosons
- Dífficult measurement: Current límíts not strong yet

Conclusion

- Híggs paír production measurement allows to probe exciting new physics Híggs potential: probes trilinear self-coupling discovery channel for new Higgs bosons
- Dífficult measurement: Current límíts not strong yet
- Theory SM predictions:
 Difficult calculation but top mass effects incorporated at NLO numerically ξ analytically
- Trílínear Híggs self-coupling: Current límíts above perturbatívíty bound Concrete models can have deviations in trílinear Híggs self-coupling by a factor of a few
 - Resonant production:

Reaching the sensitivities where interference effects become important

Conclusion

- Híggs paír production measurement allows to probe exciting new physics Híggs potential: probes trilinear self-coupling discovery channel for new Higgs bosons
- Dífficult measurement: Current límíts not strong yet
- Theory SM predictions:
 Difficult calculation but top mass effects incorporated at NLO numerically ξ analytically
- Trílínear Híggs self-coupling: Current límíts above perturbatívíty bound Concrete models can have deviations in trílinear Híggs self-coupling by a factor of a few
 - Resonant production:

Reaching the sensitivities where interference effects become important

Bounds on neutrino model

constraínts from LFV decays, non-unitarity of PMNS matrix, Planck and neutrino oscillation data

Higgs non-linearities $H_{\Delta \mathcal{L}_{non-lin} \supset -m_t \bar{t} \bar{t} t} \left(c_t \frac{h}{v} + c_{tt} \frac{h^2}{2v^2} \right) - c_3 \frac{1}{6} \left(\frac{3M_h^2}{v} \right) h^3 + \frac{\alpha_s}{\pi} G^{a \, \mu \nu} G^a_{\mu \nu} \left(c_g \frac{h}{v} + c_{gg} \frac{h^2}{2v^2} \right)$ not independent in SMEFT in SMEFT

needs to be probed in multi-Higgs final states

Ramona Gröber — IPPP, Durham University

Ramona Gröber — IPPP, Durham University