
Universidad Autónoma de Madrid
Facultad de Ciencias

Departamento de F́ısica Teórica
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Abstract

Inflation is nowadays a well established paradigm consistent with all the observations, related
both to the background and to the matter perturbations in the Universe. The nature of
the inflaton, as well as the overall picture of the transition between the inflationary and
radiation eras, depend crucially on the different microphysics models in which inflation is
embedded. The absence of a suitable candidate in the usual formulation of the Standard
Model has motivated the search for alternatives in different extensions of the standard theory,
as Supersymmetry or String Theory. Unfortunately, the strength of the couplings among the
inflaton and the different matter species present in those models is generically unknown. This
fact makes difficult the determination of the dominant reheating mechanism at the end of
inflation and the associated efficiency of the reheating stage. In this PhD thesis we adopt a
very different and reductionist point of view. We study the possibility of inflation to be a
natural consequence of the Standard Model, rather than an indication of its weakness. The
role of the inflaton is played by the Higgs boson, non-minimally coupled to gravity. No new
degrees of freedom apart from those already present in the electroweak theory are initially
added. The non-minimal coupling rescues the Higgs field from the known difficulties for
generating inflation, being its value determined by cosmological observations. The novelty
and great advantage of the model is precisely its connection with a well-known microphysical
mechanism, hopefully accessible in the present accelerator experiments. All the couplings
among the Higgs and the Standard Model particles are known at the electroweak scale and
can be extrapolated to the reheating era through the renormalization group equations. For the
first time, the initial conditions of the hot Big Bang can be potentially determined, without
invoking new speculative physics beyond the electroweak scale. Some modest extensions of
the simplest Higgs Inflation model, based on scale invariance and Unimodular Gravity, are
able to accommodate not only the early but also the late time acceleration of the Universe.
Contrary to other beyond the Standard Model theories, they introduce just an extra degree of
freedom, the dilaton, which plays however a central role, tracking the present expansion rate of
the Universe. The close connection between the inflationary and dark energy dominated eras
leads to highly non-trivial consistency relations between the spectral tilt of CMB anisotropies
and the present equation of state of dark energy.





Resumen

Inflación es a d́ıa de hoy un paradigma bien establecido consistente con todas las obser-
vaciones. Su naturaleza, aśı como los aspectos globales de la transición entre el estado
inflacionario y la época dominada por materia, dependen en gran medida de los diferentes
modelos microscópicos en los que se implementa. La ausencia de un candidato a inflatón en
el Modelo Estándar ha motivado la busqueda de alternativas en extensiones de esta teoŕıa,
como Supersimetŕıa o teoŕıa de cuerdas. Desafortunadamente, desconocemos la intensidad de
los acoplos entre el inflaton y el contenido de materia de dicho modelos. Este hecho dificulta
la determinación del mecanismo de recalentamiento dominante y su eficiencia. En esta tésis
abordaremos el problema desde un punto de vista muy diferente y reduccionista. Estudiare-
mos el inflatón no como una indicación de la debilidad del modelo estándar, sino como una
consecuencia natural del mismo. Será el propio campo de Higgs, ya presente en el Modelo
Estándar, el que juege el papel de inflatón mediante un acoplo no mı́nimo a gravedad. No
se incorporarán inicialmente nuevos grados de libertad, más allá de los ya presentes en la
teoŕıa electrodébil. La novedad, y al mismo tiempo gran ventaja, de este modelo es precisa-
mente su conexión con un mecanismo microf́ısico bien conocido, y que podŕıa ser accesible
en los aceleradores de part́ıculas actuales. Todos los acoplos entre el Higgs y las part́ıculas
del Modelo Estándar se conocen a la escala electrodébil, pudiéndose extrapolar a la era del
recalentamiento mediante las ecuaciones del grupo de renormalización. La determinación de
las condiciones iniciales del Big Bang es por primera vez posible sin la necesidad de invocar
nueva y especulativa f́ısica más allá de la escala electrodébil. Algunas extensiones relativa-
mente modestas de Higgs Inflation, basadas en invarianza de escala y gravedad unimodular,
son capaces de acomodar no sólo el estad́ıo inflacionario, sino también la aceleración del
universo actual. Contrariamente a otros modelos, estas extensiones introducen solamente un
grado de libertad adicional, el dilatón, que juega sin embargo un papel central en el modelo,
determinando la tasa de expansión actual del mismo. La gran conexión entre el proceso
inflacionario y la enerǵıa oscura da lugar a relaciones de consistencia altamente no triviales
entre el tilte espectral de las anisotroṕıas del CMB y la ecuación de estado de enerǵıa oscura.
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Glossary and Notation

Conventions and Units

The signature of the metric is taken to be (−,+,+,+). Greek indices refer to coordinates in
the full spacetime, ranging from 0 to 4, while latin indices refer to coordinates in field space
or to spatial coordinates, depending on the context. Repeated indices are generally summed,
unless otherwise indicated. Colon and semicolon denote respectively ordinary and covariant
differentiation. Spatial three-vectors are indicated by letters in boldface. A tilde is used
for those quantities defined in the Einstein frame and the subscript 0 is usually preserved
for quantities evaluated at the present time. Dot denotes differentiation with respect to the
coordinate time.

Keeping the conventional system of units in cosmology and particle physics, the speed of light
c, the reduced Planck constant ~ and the Boltzmann constant kB are set to 1 throughout
this thesis. Masses and temperatures are therefore measured in energy units. Regarding the
gravitational interaction, we define the reduced Planck mass as

MP ≡
√

~c
8πG

= 2.436× 1018 GeV , (1)

and use it interchangeably with the gravitational Newton’s constant G, depending on the
context. The word reduced is frequently omitted in the text.

Cosmological Parameters

In Table 1 we summarize the value of the different cosmological parameters used in this work
[1]. Their value depends on the different data sets used and the number of parameters allowed
to vary. We choose a ΛCDM cosmology with a power-law initial spectrum, spatial flatness,
a cosmological constant. Tensor perturbations are assumed to be zero, except in quoting a
limit on them. The pivot scale is k∗ = 0.002 Mpc. Unless otherwise stated, the uncertainties
presented in the parameters are at the 68% confidence level and should not be extrapolated
to higher levels, without the knowledge of the assumed priors and non-gaussian likelihoods.



Parameter Symbol Value

Hubble parameter h 0.704± 0.013
Present Hubble constant H0 H0 = 100h km · s−1Mpc−1

Present critical density Ωcr Ωcrh
2 = 0.1123± 0.0035

Present total matter density ΩM ΩMh
2 = 0.1349± 0.0036

Present baryon density ΩB ΩBh
2 = 0.02260± 0.00053

Present Radiation Density ΩR ΩRh
2 = 2.42× 10−5

Present Cosmological constant ΩΛ ΩΛ = 0.728± 0.015
Density perturbation amplitude ∆2

ζ(k
∗) (2.44± 0.09)× 10−9

Density perturbation spectral index ns n = 0.963± 0.012
Tensor to scalar ratio r r < 0.24 (95% C.L)

Table 1: Cosmological Parameters for a ΛCDM cosmology with a power-law initial spectrum,
spatial flatness and cosmological constant [1].

Glossary

An attempt has been made to keep acronyms and abbreviations as standard as possible. The
following list will hopefully be a useful tool for clarifying the use of the non-standard ones. In
general, irrespectively of whether they have been included in this guide, they are also defined
at their first occurrence in the text and in all places where ambiguities may arise.

BAU Baryonic Asymmetry of the Universe
BBN Big Bang Nucleosynthesis
BOSS Baryon Oscillation Spectroscopic Survey
BSM Beyond the Standard Model
CMB Cosmic Microwave Background
dof degrees of freedom
eom equation of motion
DE Dark Energy
DES Dark Energy Survey
DM Dark Matter
EW Electroweak
FRW Friedmann-Robertson-Walker
GR General Relativity
GUT Grand Unified Theory
hBB hot Big Bang
ΛCDM Lambda Cold Dark Matter
LEP Large Electron-Positron collider
LHC Large Hadron Collider
LSS Large Scale Structure
νMSM Neutrino Minimal Standard Model



iii

PAU Physics of the Accelerating Universe
QCD Quantum Cromodynamics
QED Quantum Electrodynamics
QFT Quantum Field Theory
SEP Strong Equivalence Principle
SM Standard Model
SSB Spontaneous Symmetry Breaking
SUSY Supersymmetry
UG Unimodular Gravity
vev vacuum expectation value
WEP Weak Equivalence Principle
wrt with respect to
1PI One Particle Irreducible



iv



CHAPTER 1

Beyond the Standard Model

Ubi materia, ibi geometria.

Johannes Kepler

1.1 The Standard Models

It is an ancestral belief that the universe is composed of simple materials governed by a set of
universal and unified laws. Our current understanding of the structure of the universe, in the
absence of a unified theory for all the fundamental interactions, is based on two basic pillars
of Modern Physics: the Standard Model (SM) of particle physics and General Relativity
(GR).

The Standard Model [2, 3, 4], based on the SU(3)C×SU(2)L×U(1)Y gauge symmetry
group, unifies the strong, weak and electromagnetic interactions. The gauge symmetry is
spontaneously broken to SU(3)C ×U(1)EM by a weak isodoublet complex scalar field, giving
mass to the SM particles1. Intermediate gauge bosons acquire masses by absorbing three
of the four components of the scalar field, the so-called Goldstone bosons (see for instance
Ref. [5]). The remaining degree of freedom becomes a physical particle: the Higgs field, still
undiscovered. The many particle’s experiments in the 80’s and 90’s gave rise to a vast array
of data, which, with unprecedented precision, allowed to test the different interaction vertices
and masses of the model. The central theoretical principles of the SM have remained in place
for decades and it is nowadays understood as an extremely successful description of particle
physics at energies below TeV scales.

On the other hand, General Relativity [6], a classical geometrical theory, constitutes
a very elegant, comprehensive and coherent framework for the description of gravity and
matter at the macroscopic level. Its predictions and deviations from Newtonian gravity (in

1In the original formulation of the SM the neutrinos remain massless.
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its weak-field, small velocities limit) have been tested in and out the solar system, although
its consequences go far beyond these scales. Indeed it can be considered as the origin or seed
of Modern Cosmology. In General Relativity, space and time are promoted to dynamical
quantities, whose evolution is dictated by the matter and energy content. For the first time
in history the universe as a whole became a dynamical entity that can be modelled and
measured.

The symbiosis between GR and the SM is also surprising. Their combination gives
rise to the successful hot Big Bang (hBB) scenario, describing the evolution of the universe
and its content from the first fraction of a second till the present era. The expansion of the
universe [7, 8], the relative abundance of light nuclei [9, 10] or the discovery of the Cosmic
Microwave Background [11] give confidence in the basic picture, the expansion of a initial
primordial soup. Many of the key cosmological parameters describing the universe have
been accurately determined [1] (cf. also Table. 1 in the Glossary), which have led to the
establishment of a precision cosmological model known as ΛCDM. At the same time, these
parameters provide useful information for particle physics. The stringent limits on the sum
of neutrino masses [1, 12] and on the variations of the fundamental constants [13] clearly
illustrate the entanglement between cosmology and high-energy physics.

1.2 Troubles in paradise

In spite of the success of both theories for describing our observed universe, they are not
without shortcomings [14]; there are a handful of fundamental questions unanswered. Strong
experimental, observational and theoretical arguments lead us to believe that none of them
should be understood as complete theories of nature. Before considering extensions, it is
important to notice that we are facing different kinds of troubles.

On the one hand, there are well established facts, whose explanation is not satisfactory
within the SM. The first, and maybe the most evident one, is the existence of neutrino masses.
When the SM was formulated, the neutrinos were considered to be massless, and therefore,
the particle content of the model was chosen to forbid the mass terms. Nevertheless, the
situation changed dramatically with the discovery of neutrino oscillations, from which there
is nowadays overwhelming evidence [15]. These are transitions between neutrinos of different
flavours and can occur only if neutrinos have non-degenerate masses [16, 17]. The initial
version of the SM must be then extended in order to accommodate this fact. We will come
back to this point in Section 1.3.

Regarding also the particle content, one of the basic tenets of the SM is the symmetry
between matter and antimatter. According to the CPT theorem for any given particle exists
an antiparticle with opposite charges but identical masses and decay widths [18]. This basic
principle seems to be in contradiction with a variety of observations, ranging from the solar
system to the whole observable universe [19, 20, 21]. For some unknown reason, there are
many more protons than antiprotons and antimatter is indeed only detected in accelerators or
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cosmic rays. Moreover, the number of photons substantially exceed the number of protons2.
This fact is usually called the baryon asymmetry problem. As established on general grounds
by Sakharov [23] in 1967, to successfully create the primeval baryon asymmetry of the universe
(BAU), the particle processes violating baryon number conservation must take place out of
thermal equilibrium. Besides, C and CP symmetries must be violated. Although the SM
alone has a priori all the ingredients to generate the baryonic asymmetry, the absence of a
first order electroweak phase transition [24] and the smallness of the Jarlskog determinant
in the quark sector [25] excludes the possibility of generating the measured value within the
standard theory. For a review, see for instance [26].

Even if a satisfactory baryogenesis mechanism was known, the baryonic matter would
not be able to account for all the matter content in the universe. Several astrophysical
and cosmological observations, coming from many different scales, seem to suggest that our
universe should contain a new type of invisible or Dark Matter (DM) component. The new
species would help to explain processes so unrelated as primordial nucleosynthesis, large-scale
structure formation, or the galactic rotation curves (see Ref. [27] for a review). The concept
of Dark Matter does not find however a satisfactory explanation within the framework of
the Standard Model, since all the SM particles either emit photons or would have left an
imprint on nucleosynthesis. The now massive neutrinos would constitute a natural choice,
but they are essentially ruled out by observations. As relativistic species, neutrino erase
density fluctuations as scales below their free-streaming length , of order 40 Mpc ×mν/30
eV (see [12] for a review of this topic.). This erasing would imply a top-down process for
the structure formation in the universe. As a consequence, galaxies would only appear at
redshifts z ≤ 1, which is in clear contradiction with the observation of galaxies at redshifts
z > 4, cf. Ref [28]. A new dark candidate beyond the Standard Model matter content seems
therefore unavoidable.

This invisible matter is indeed not the only dark or unknown component in our universe.
In the concordance ΛCDM model, the redshift dependence of type Ia Supernovae [29, 30]
is interpreted as a consequence of a present accelerated expansion of the universe. The
present energy content is dominated by a cosmological constant term Λ, which, as happens
with Dark Matter, has been only inferred by its gravitational interaction on cosmological
scales. Although this term is a completely natural part of Einstein equations, it encounters
consistency or interpretation problems when particle physics, in its standard formulation,
is taken into account [31, 32, 33]. In the usual Quantum Field Theory (QFT) approach,
the Λ term cannot be distinguished from vacuum energy fluctuations. When the standard
renormalization procedure in flat space-time is applied, it fails to reproduce the observed value
by 120 orders of magnitude3. No explanation is neither known for the so called coincidence
problem, which wonders about why the cosmological constant started to dominate right now,

2This is usually defined in terms of the quantity η = nB/nγ where nB is the difference between the number
of baryons and antibaryons per unit volume and nγ is the photon number density at temperature T. The value
of η is severely constrained by nucleosynthesis, 5.1× 10−11 ≤ η ≤ ×6.5× 10−11 at 95% C.L. [22].

3The flat spacetime hypothesis does not apply if the bare (or renormalized) value of Λ is different from zero.
If this happens, Minkowsky spacetime is not a solution of Einstein’s equations [34]. This observation diminishes
the predictive power of the estimate, since perturbation theory is being performed around a spacetime that does
not satisfy the equations of motion. Although it can be argued that spacetime is locally flat, the observable
effects of the cosmological constant appear at very large scales, where clearly the spacetime is not flat.
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in our present epoch [35, 36, 37] (see also Ref. [34] for a critical point of view). These
difficulties have motivated the study of alternatives such as Modified Gravity [38], Extra
Dimensions, Dark Energy [39] or inhomogeneous Lemâıtre-Tolman-Bondi cosmologies [40]

Finally, we believe that the early universe also underwent a period of accelerated expan-
sion, as that it is experiencing in the present epoch. In the old hot Big Bang theory questions
such as the origin of the surprising flatness, homogeneity and isotropy of the present universe
remained unexplained. Our universe should have been originated from very unnatural and
non-generic initial conditions. As we will discuss below, naturalness is just a question of
taste. One could simply argue that the most symmetric or simple initial conditions are more
physical, but this is not very convincing from the point of view of the self-consistency of
the theory, specially if some of those conditions are unstable, as happens for instance in the
flatness problem. What singles out cosmology from the rest of sciences is the uniqueness of
our universe. The usual particle physics experimental control of the initial conditions cannot
be applied. A cosmological theory can claim to be a successful physical theory only if it can
explain the state of the observed universe using simple physical ideas and starting with the
most general initial conditions. The first attempts to solve these problems appeared in the
early 80s [41, 42, 43, 44]. These works were the shot heard around the world and initiated
what has become to be the most successful paradigm in modern cosmology: Inflation. The
new ideas revolutionized cosmology by introducing an early period of accelerated expansion
of the universe, ending in the radiation dominated epoch within which the usual hot Big
Bang model starts. Note that inflation is not a model, but rather a paradigm including hun-
dreds of particular models parametrizing the very simple idea (for a review of inflationary
models see for instance Ref. [45, 46, 47]). The beauty of inflation is that all these (beyond
the standard) models give rise to very similar predictions, which differs only in the details4.
As we will see in Section 3.2.1, the easiest way to violate the strong energy condition is by an
(effective or fundamental) homogeneous scalar field, evolving in a sufficiently flat potential.
Unfortunately, the only existing scalar field in the Standard Model, the Higgs field, is not able
to produce an early exponential expansion of universe. The lower bound on the Higgs mass
makes it incompatible with CMB constraints on inflation. The question about the origin of
the otherwise successful inflationary scenario remains therefore unexplained in the standard
theory.

Any fundamental or effective theory beyond the SM and GR should try to solve, or at
least alleviate, the previously described troubles. They clearly constitute a smoking gun for
physics Beyond the Standard Model. On the other hand, there are man-made or aesthetic
problems. The SM contains many parameters, which are unrelated, at least in the context
of the theory itself. In addition to the Yukawa couplings for quark and lepton masses,
one should specify three mixing angles and a complex phase in the CKM matrix, as well
as other CP violation parameters. Something similar happens in the neutrino sector. If
mass terms are allowed, three further mixing angles together with three phases must be
considered. This counting gives rise to 26 free parameters. The amount and strange hierarchy

4If the existence of so many candidates to be the inflaton based on unknown speculative physics is an
advantage or not for inflation is very researcher-dependent. From the point of view of the author the best
models are those with an unification character (as should happen always in physics) and with the least number
of assumptions based on unknown physics (simply Ockham’s razor). This is precisely the approach followed
in this thesis.
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of the parameters, or the non-unification of the gauge couplings [48], are usually invoked to
justify new physics beyond the SM, such as Grand Unified Theories [49]. The large set
of couplings is thought to be the dynamical outcome of a simpler and more fundamental
structure, as happens for instance with the transport coefficients of fluids. Although this is
a very interesting possibility, one should always keep in mind that, contrary to the troubles
described before, these parameters can be safely accommodated by the SM and do not express
an inconsistency of the underlying theory.

1.3 Beyond or not Beyond?

There is a large number of proposals for extending the Standard Model, commonly refers
to as Beyond the Standard Model (BSM) theories [14]. Inspired by the success of weak
interactions, they share the belief that new energy scales, and their associated physics, should
appear beyond the Electroweak (EW) scale. The new symmetries and particles introduced
would allow to partially alleviate some of the SM problems, providing candidates for Dark
Matter, new Baryogenesis mechanisms or flat inflationary potentials. Given the huge diffe-
rence between the weak and gravitational scales, the relevance of gravity in those theories is
usually neglected and new physics is expected to appear at energies well below the Planck
scale.

As an example, let us consider the generation of neutrino masses. The absence of
a singlet, νR(1, 1)0, under the SM gauge group excludes the generation of neutrino masses
via the usual Higgs mechanism. No Dirac mass term 〈φ〉ν̄LνR can be written. One could
consider the possibility of introducing neutrino masses a la Majorana5. Notice however that
the combination ν̄cLνL transforms as a SU(2) triplet. Since the SM does not contain scalar
triplets, ∆(1, 3)1, no invariant Majorana mass term 〈∆〉ν̄cLνL can then be constructed. The
situation changes dramatically if three right-handed neutrinos singlets are introduced. This
constitutes a very economical approach which restores the symmetry between quarks and
leptons in the SM. After all, there is no strong reason to banish this state, since there is an
appropriate right-handed partner to all the other fermions6. The new neutrinos behave as
pure singlets under the SM gauge symmetries, and therefore, Majorana mass terms can also
be added to the theory. In this case, the most general renormalizable lagrangian for neutrino
masses has the form

Lν = yijL̄iνjRH̃ +
Mij

2
νciRνjR + c.c . (1.1)

where yij are neutrino Yukawa couplings to the SM Higgs H̃ andMij are Majorana masses.
The resulting mass matrix M has the structure

M̂ =

(
0 m
mT M

)
, (1.2)

5Notice that Majorana terms ν̄cLνL break the accidental L symmetry in the SM by two units. Global
symmetries are not imposed at the level of the action and are just a consequence of the particular matter field
content of the theory. Indeed, lepton number symmetry is anomalous at the quantum level. Note however,
that B-L is conserved, even at the quantum level.

6Contrary to other right-handed particles interacting strongly or electromagnetically, right handed neutri-
nos were not originally included in the Standard Model particle content since they were not needed to explain
the electroweak phenomena.
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with Dirac mass matrices mij =
yij√

2
v coming from the Yukawa interactions. Let us now

assume a big hierarchy between the Dirac and Majorana masses, namely Mij � mij . In
this case, M̂ has approximately three heavy eigenvalues of order O(M), as well as three light
ones of order

mν ∼ y2 v
2

M
. (1.3)

According to the previous expression, the effective neutrino masses depends now not only
the Yukawa couplings, but also on the Majorana mass M. Although the absolute scale
of active neutrino masses has not yet been measured7, the simple assumption of a mass
hierarchy provide an upper cosmological bound on the sum of all neutrino species, namely∑

νmν < 0.58 eV at 95% C.L. [1] (see also [50]). If we take into account that the measured
differences between neutrino masses squared range from 10−3 to 10−5 eV [22], it is not
unreasonable to assume the largest neutrino mass mν to be of the same order of magnitude,
lets say about 0.1 eV. In order to reproduce this value via Eq. (1.3), we must first specify
the Yukawa couplings and Majorana masses. The standard Seesaw mechanism [51, 52, 53]
implicitly assumes neutrino Yukawa couplings of the same order as any other Yukawa in the
Standard model. This assumption gives rise to a big hierarchy between the EW scale and the
Majorana massM. Indeed, for y ∼ 1, Eq. (1.3) impliesM∼ 1014 GeV, close therefore to the
unification scale. In the standard approach, this scale is frequently interpreted as a physical
cutoff for the SM effective theory8. However, one should keep in mind that this result is
based on the assumption of large Yukawa couplings. It constitutes therefore an upper bound
for the scale at which new physics should appear, rather than an estimate of its value. For
sufficiently small Yukawa couplings, even Majorana masses at the EW scale would be enough
to generate the small masses of the active neutrinos.

1.4 The νMSM: an alternative approach

The Neutrino Minimal Standard Model (νMSM) proposed in Ref. [55] adopt precisely the
alternative approach described at the end of the previous section. As the usual Seesaw mecha-
nism described before, it introduces only three right-handed neutrinos, enlarging the SM with
a mass term (1.1) (for the total particle content of the νMSM cf. Table 1.1). Nevertheless,
the standard requirement of Yukawa naturalness is translated into scale naturalness. What is
now considered to be natural is to have Majorana masses of the same order of any other mass
term in the lagrangian, even if this implies very small Yukawa couplings for the neutrinos.
No intermediate scales between the EW and Planck scales are introduced9. The number of
additional degrees of freedom is therefore extremely restricted, contrary to what happens in

7Oscillation experiments provide only information about mass-squared differences between neutrino
flavours, but not about their absolute value.

8Indeed, when integrating out the Majorana masses one obtains the effective non-renormalizable Weinberg
operator [54]

Oν =
yij
M

(
L†iφ

c
)† (

L†jφ
c
)
. (1.4)

This operator is indeed the lowest dimensional operator compatible with gauge and Lorentz invariance that
can be constructed with the usual SM fields.

9Similar arguments can be also found in [56, 57].
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Fermions

Quarks Leptons(
u
d

)
L

(
c
s

)
L

(
t
b

)
L

(
νe
e

)
L

(
νµ
µ

)
L

(
ντ
τ

)
L

uR
dR

cR
sR

tR
bR

eR
νe,R

µR
νµ,R

τr
ντ,R

Vector Bosons Scalars

γ, W+, W−, Z0, g1...8 H, χ (Dilaton)

Table 1.1: Particle content of the Standard Model with a minimal Higgs sector (in black)
and the νMSM extensions (in blue). The number of degrees of freedom in the Standard
Model is 98, while there exist 28 bosonic degrees of freedom. The νMSM simply restores the
symmetry between quarks and leptons in the SM by adding three right handed neutrinos, or
equivalently 6 (3 × 2) fermionic degrees of freedom. In the scale-invariant extension of the
νMSM an extra scalar singlet χ (in brick red) is added.

other SM extensions such as Grand Unified Theories [48] or Supersymmetry [58, 59]. It is
precisely this restriction which makes the model extremely appealing and predictive, but at
the same time rather fragile. The success of the model depends on the outcome of a batch
of experiments. If any the predictions [60] of the νMSM is not verified the whole idea would
be ruled out. Given the absence of any intermediate scale, the νMSM should be able to
accommodate the SM problems. As shown in [61, 62, 63], it is possible to simultaneously
explain the dark matter abundance, the neutrino masses and the baryon asymmetry of the
universe within the considered model, albeit with non-trivial conditions on the sterile neu-
trino masses and relatively fine-tuned parameters. In the νMSM dark matter is accounted by
a keV-scale sterile neutrino, while baryogenesis occurs via leptogenesis due to sterile neutrino
oscillations. As a bonus, the anomaly cancellation procedure in the new model gives rise to
charge quantization [64], not present in the usual Standard Model. Other SM problems such
as the Landau pole of the Higgs self-coupling [65, 66] are still present in the νMSM. Notice
that some of those problems could be due to a misunderstanding of the gravitational theory
and its relations with the SM. Moreover, the merging between gravitation and the SM could
not even occur in the framework of Quantum Field Theory (QFT). Perhaps QFT is just an
emergent approximation of a deeper framework, like String Theory [67]. The νMSM adopts
a conservative point of view, postponing the solution of the Landau pole of the Higgs till the
Planck scale. For a restricted value of Higgs masses10, the position of the pole is beyond the
Planck mass [72, 73, 74], leaving therefore the ultraviolet completion of the SM to a quantum
theory of gravity.

10For very small masses the Standard Model vacuum is believed to be unstable [68, 69, 70]. For arguments
again this perturbative claim based on lattice simulations see for instance [71].
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1.5 Higgs Cosmology

The νMSM must also provide an inflationary mechanism, able to give rise to the surprising
flatness, homogeneity and isotropy of the universe. This mechanism should incorporate a
graceful exit, able to recover the hot Big Bang scenario. This constitutes a priori a difficult
task, since, as we pointed out in Section 1.2, the usual SM does not contain any suitable
candidate to be the inflaton. However, this situation changes dramatically when gravity
comes into play. In Chapter 2 we introduce a non-minimal coupling between the Higgs field
and gravity. Again, in the philosophy of the νMSM, no new scales between the EW and
Planck scales are introduced. In this new scalar-tensor framework, the metric is not the only
gravitational degree of freedom coupled to local matter. Contrary to what happens in GR
any measurements of the inertial mass of a given object would depend, through the Higgs
field, on the surrounding matter distribution. The Higgs field seems therefore to unify the
concept of mass in particle physics with the Mach’s principle, which inspired Einstein to
construct GR.

This unified description of the origin of the masses in gravity and particle physics,
becomes somehow obscured by the presence of scales completely unrelated to the Higgs
mechanism. Scales such as ΛQCD appear through dynamical transmutation, a process that
has nothing to do with the spontaneous symmetry breaking mechanism, responsible for the
masses of the quarks, leptons, or gauge bosons. Other scales, such as the vacuum expectation
value (vev) of the Higgs or the Planck mass, are just dimensional parameters in the action.
A unified description of all the masses in the universe, within the present understanding of
the SM and gravity, seems therefore unlikely. Among the three ways of generating mass, a
spontaneous symmetry breaking mechanism seems unavoidable, given the gauge character of
the SM. From this point of view, an interesting possibility is to consider a scale-invariant
extension of the νMSM [75, 76]. This is also done in Chapter 2. In this case, the Higgs’ vev
is promoted to a dynamical field, the dilaton, which also couples to gravity. All the scales,
including the Planck mass, are now generated by spontaneous symmetry breaking of the
underlying scale invariance. As a consequence, the dilaton field becomes exactly massless,
as corresponds to a Goldstone boson. As we will show in Chapter 3, the existence of the
non-minimal interaction between the Higgs field and the metric can give rise, in both models,
to a successful inflationary stage with a graceful exit. All the parameters of the theory,
except the Higgs mass, turn out to be determined by CMB observations, making the models
extremely predictive. The similarities between the two models are indeed noticeable. As
we will see in Chapter 4, the production of gauge bosons and fermions take place, up to
some small corrections, in the same way in the two models. The explosive production of
particles by parametric resonance is however diminished by the perturbative decay of the
created quanta into lighter particles. This gives rise to a very complicated process, that
we called Combined Preheating [77] in which perturbative and non-perturbative effects are
mixed. Eventually, the energy stored in the light particles will dominate, recovering the
standard hot Big Bang picture. The scale-invariant extension of the SM is nevertheless not
free of caveats. The otherwise so useful scale-invariance of the theory forbids the existence
of a cosmological constant at the level of the action, which is in contradiction with the
observed accelerated expansion of the late universe. This term can be recovered at the level
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of the equations of motion, if we allow for a slight modification of GR. The combination
of Unimodular gravity and non-minimal couplings described in Chapter 5 gives rise to a
runaway dark energy potential for the dilaton [75, 76]. This makes the Higgs-Dilaton scenario
unique. For the first time, a single well motivated particle physics model is able to explain
simultaneously the Early and Late universe in a consistent way, recovering the standard hot
Big Bang picture and the late time acceleration of the universe, after a successful inflationary
period11. The common origin of these three stages allows to derive extra bounds on the initial
inflationary conditions, as well as potentially testable relations between the Early and Late
universe observables [76].

11Related unifying ideas have been proposed in the literature in the context of Quintessential Inflation (see
for instance [78, 79, 80, 81]), but never within the well-known Standard Model and therefore without the
knowledge of the couplings among the inflaton and matter fields.
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CHAPTER 2

The Higgs field and Gravity

The Higgs mechanism is just a
reincarnation of the Communist
party: it controls masses.

V.I. Ulyanov

2.1 Inertia here arises from mass there

This chapter explores the close relation between the Higgs, General Relativity and the concept
of mass. Where does the mass of the particles come from? Mass is such a fundamental
property of matter that an explanation of its origin seems not to be needed. However, when
examining the problem in detail, one realizes that it is difficult to find descriptions of mass
compatible with other ideas of modern physics. From the particle physics point of view,
the naive inclusion of masses within the Standard Model turns out to be incompatible with
the gauge symmetry. A new scalar field, the Higgs, and a spontaneous symmetry breaking
mechanism, are needed to account for the masses of the Standard Model particles. The
dimensional Fermi coupling constant GF becomes, in the light of the new electroweak (EW)
theory, not fundamental. It rather corresponds to a low energy effective coupling, that
depends on the dimensionless couplings of the SU(2)L × U(1)Y group and on the vacuum
expectation value (vev) of the Higgs field. The weakness of the EW interactions is translated

now to the largeness of the Higgs’ vev, v ∝ G−1/2
F .

On the other hand, from the gravitational point of view, the inertial mass of an ob-
ject, understood as a measure of its resistance to changes in its motion, is thought to be
a consequence of its gravitational interaction with the rest of matter in the Universe. This
idea is known as Mach’s principle [82]. Einstein, strongly influenced by Mach, proposed
General Relativity, the first theory with a dynamical background depending on the matter
distribution. A detailed analysis of GR reveals however almost no observable effects of how
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distant matter affects local measurements1, except gravitomagnetism or frame dragging [85].
In fact, if we take into account that the metric field can always be locally transformed to the
Minkowsky metric

gµν(x) = ηµν +O (Rµσνη(x− x0)σ(x− x0)η) , (2.1)

then, neglecting gravitational tidal fields, the laws of physics are locally identical throughout
the spacetime. As Brans and Dicke realized [86], the previous reasoning changes dramatically
if the metric is not the only field coupled to local matter. If extra fields are present, they will
generally vary in space and time and, even if the metric field is made locally Minkowskian.
Any measurements of an object’s mass will be influenced by the local value of these new fields,
permeating all of space. In this new picture, not only the active gravitational masses, but
also the Newton’s gravitational ”constant” G or passive mass, will be a function determined
by the matter distribution in the Universe. Similarly to the EW case, the weakness of
the gravitational constant would be related to the vev of these fields. In order to preserve
Lorentz invariance and isotropy of local physical laws [87, 88], no vector or second order fields
should be introduced, unless they were extremely weak as to avoid appreciable preferred-frame
effects. Therefore, we are just left with a scalar “arena”. The new scalar field could of course
belong to a new theory beyond the Standard Model, but, if we do not want to introduce new
highly speculative degrees of freedom apart from those already in the standard theory, we are
just left with one possibility: The Higgs field. The idea of unifying the Higgs and Brans-Dicke
fields in an unique field, responsible both for the gravitational and EW interaction is known
as Induced Gravity (IG) [89, 90].

But, is it natural to consider the Higgs field as a gravitational degree of freedom? The
Higgs mechanism lies precisely in the same direction of the original Mach’s idea of producing
mass by a gravitational-like interaction. The Higgs boson couples to all the particles in the
Standard model in a very specific way, with a strength proportional to their masses, and
mediates a scalar Yukawa type gravitational interaction [91, 92]. The masses act as the
source of the scalar Higgs field and the Higgs field backreacts by its gradient on the masses
in the momentum law. According to the Equivalence Principle, it seems natural to identify
the gravitational and particle physics approaches to the origin of the masses. From this point
of view, the Induced Gravity theory could be considered as an indication of a connection
between the Higgs, gravity and inertia.

On the other hand, choosing the Higgs field implies that, not only all the masses in
the Standard Model would be due to their interactions with the Higgs field, but also the
Planck mass, which seems to contradict the standard lore that gravity does not play any role
in elementary particle physics. Somehow, the hierarchy between the EW and gravitational
scales should be maintained in order to avoid undesirable effects. The standard way, within
models of symmetry breaking with several fields, is to assume that the different fields have
very different expectation values, but similar values of the coupling constants, in order to
keep the theory perturbative at all scales. However, if the vev of the Higgs field is chosen
to be responsible both for the Planck and EW scales, we are compelled to consider another
possibility to preserve the hierarchy: the coupling constants must be widely different. The
important physical question is not if the value of the couplings constant is natural or not,
but if the model is indistinguishable from the Standard Model at low energy.

1Some of their solutions as the Gödel universe [83] of the exact pp-waves [84] are indeed clearly anti-Machian
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2.2 The Minimal Non-Minimally Coupled Standard Model

Let us apply now the previous arguments to the Standard Model. The Glashow-Weinberg-
Salam lagrangian density [2, 3, 4] is divided into four parts: a fermion sector (F ) which
includes the kinetic terms for the fermions and their interaction with the gauge bosons, a
gauge sector (G), including the kinetic terms for the intermediate bosons as well as the gauge
fixing and Faddeev-Popov terms, a Spontaneous Symmetry Breaking sector (SSB), with a
Higgs potential and the kinetic term for the Higgs field including its interaction with the
gauge fields, and finally, a Yukawa sector (Y ), with the interaction among the Higgs and the
fermions of the Standard Model,

LSM = LF + LG + LSSB + LY . (2.2)

In the presence of gravity, the previous lagrangian density is supplemented with extra terms,
containing the usual Einstein-Hilbert term, possible extensions of GR and/or non-minimal
couplings of the Higgs field to gravity. The simplest versions of this lagrangian in curved
spacetime follows the principles of general covariance and locality, for both matter and gravi-
tational sectors. To preserve the fundamental features of the original theory in flat space-time,
one must also require the gauge invariance and other symmetries in flat space-time to hold
for the curved space-time theory. The number of possible terms in the action is unbounded
even in this case and some additional restrictions are needed. A natural requirement could
be renormalizability and simplicity. Following this three principles (locality, covariance and
restricted dimension), and the previously motivated requirement of not introducing new dy-
namical degrees of freedom, the lagrangian density L involving the Higgs field and gravity is
fixed to be of the form

L√
−g

= f(h)R− 1

2
(∂h)2 − U(h)− Λ , (2.3)

where we have neglected all matter fields for the time being and allowed for a possible
cosmological constant Λ. Here

U(h) =
λ

4

(
h2 − v2

)2
, (2.4)

is the usual Higgs potential of the Standard Model in the unitary gauge, 2H†H = h2. The
direct measurement of the intermediate gauge bosons masses, m2

W = 80.398±0.025 GeV and
m2
Z = 91.1876± 0.0021 GeV, sets the value of vacuum expectation value of the Higgs field at

a value v ' 246 GeV, that we will use throughout this thesis. The function f(h) includes only
terms up to second order in the the Higgs field h. Including a direct coupling of the Higgs field
to matter we are opening the door not just to a possible violation of the Strong Equivalence
Principle (SEP), but also to a violation of the Weak Equivalence Principle (WEP). Notice
however that the terrestrial and solar system experimental bound of the WEP [93] do not
necessarily apply at high energies, so this kind of arguments do not apply here. Indeed, the
WEP is guaranteed once the Higgs reaches its vacuum expectation value v, since, from there
on, it will take the same value all over the space.

In the pure Induced Gravity scenario this function depends only on the Higgs field and
therefore, no bare Planck mass is included in the action. In this case, the Higgs-Gravity
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sector takes the form
L√
−g

=
1

2
ξhh

2R− 1

2
(∂h)2 − U(h)− Λ , (2.5)

where the non-minimal coupling ξh must have a very large value in order to reproduce the huge
hierarchy between the electroweak and Planck scales, ξh ∼ M2

P /v
2 ∼ 1032. The lagrangian

density (2.5) is, at least at the classical level and for Λ = 0, just a different representation of
the first inflationary proposal2, the Starobinsky’s model [97, 98, 99, 100],

Lg√
−g

=
1

2κ2

(
R− R2

6M2

)
, (2.6)

where inflation is entirely a property of the gravitational sector. Here κ = M−1
P , with

MP ≡
√

8πG = 2.436 × 1018 GeV the reduced Planck mass. Both representations of the
same theory are simply related by a Legendre transformation [101, 102]. The Higgs field φ
plays therefore the role of the scalaron in the Starobinsky model of inflation. This means
that all the results obtained in Starobinsky inflation can be also applied to Induced Gravity.
In particular, the IG scenario will present inflationary solutions. This is very interesting,
because, apart from the motivated connection between the Higgs sector and gravity, we
obtain an inflationary solution as a bonus, without imposing any ad hoc requirements to
the potential or explicitly introducing a new field parametrizing the inflaton. This is not
very common and makes the model extremely appealing. Notice, that the naturalness of
inflation is directly related to the origin of the inflaton. Most of the Quantum Field Theory
based inflationary models proposed so far require the introduction of new degrees of freedom

2The original motivation of the model was however not related to the modern concept of inflation. It was
conceived to solve the singularity problem taking into account one loop corrections

〈Tµν〉 = k1 H
(1)
µν + k3 H

(3)
µν + H(4)

µν ,

of conformally invariant fields (which are indeed a good approximation of realistic matter fields in the high-
curvature limit) to the semiclassical Einstein equations of motion

Gµν ≡ Rµν −
1

2
gµνR = κ2〈Tµν〉 .

Here

H(1)
µν = 2

(
∇µ∇ν − gµν∇2)R+ 2RRµν −

1

2
gµνR

2 ,

H(3)
µν = R λ

µ Rλν −
2

3
RRµν −

1

2
gµνR

ρσRρσ +
1

4
gµνR

2 ,

are purely geometric terms expressed through invariants of the curvature tensor and H
(4)
µν is a traceless bound-

ary term that cannot be written in terms of curvature tensors. H
(1)
µν is identically conserved and can be

obtained by varying a local action

H(1)
µν = − 2√

−g
δ

δgµν

∫
d4x
√
−gR2 ,

while the term H
(3)
µν , although conserved, cannot in general be obtained from a local lagrangian density. The

constants k1, k3 are fixed by the number of matter fields considered, and then just by microphysical conditions
(see for instance Ref.[94, 95]). The local action for H

(1)
µν admits a certain class of non-singular, homogeneous

and isotropic solutions of de Sitter type. As shown in Ref. [96], the existence of such solutions is a rather
common phenomenon in effective theories of gravity involving arbitrary functions of the Riemann and Ricci
tensors in 4 dimensions.
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to drive inflation. The nature of the inflaton is completely unknown, and its role could be
played by any candidate able to imitate a scalar condensate (typically in the slow-roll regime),
such as a fundamental scalar field, a fermionic or vector condensate [103, 104], or even higher
order terms of the curvature invariants, as in the Starobinsky’s model (2.6). The number of
particle physics motivated candidates is as big as the number of extensions of the Standard
Model (Grand Unified Theories, Supersymmetry, Extra Dimensions, etc.), where it is not
very difficult to find a field able to play the role of the inflaton [46]. Even minimal models
as that recently proposed in Ref. [105] for solving the dark matter and baryon asymmetry
problems with a matter content identical to that in the νMSM introduce new inflationary
fields. The non-minimal coupling of the Higgs field to gravity in the IG scenario rescues the
Higgs field from the known difficulties3, without introducing new highly speculative degrees
of freedom.

Regarding preheating after inflation the previous scenario is also appealing. Given an
inflationary model we must find a graceful exit to inflation as well as a mechanism to bring
the Universe from a cold and empty post-inflationary state to the highly entropic and thermal
Friedmann Universe, cf. Chapter 4. Unfortunately, the theory of reheating is far from being
complete, since not only the details, but even the overall picture, depend crucially on the
different microphysical models. From this point of view, it is very difficult to single out a
given model of inflation, and even more difficult to understand the details of the reheating
process via the experimental access to the couplings. Notice that the situation is completely
different in the Induced Gravity scenario. All the couplings between the Higgs field and the
SM particles are known and no new highly speculative degrees of freedom, apart from those
already present in the usual Standard Model, are introduced.

Unfortunately, in spite of its many advantages, the Induced Gravity model cannot be
accepted as a satisfactory inflationary scenario [107, 108, 109]. To see this, consider for
instance the masses of the Z and W bosons (at tree level)

mW =
g2h

2
, mZ =

mW

cos θw
, (2.7)

with θw the weak mixing angle, defined as θW = tan−1(g1/g2), and g1 and g2 are the coupling
constants corresponding to the U(1)Y and SU(2)L gauge groups respectively. The length
scales are conventionally defined in such a way that elementary particle masses are the same
for all times and in all places. This implies that, if under a conformal transformation4

g̃µν = Ω2gµν , the lagrangian of a free particle transforms as

L1P =

∫
mds −→ L̃1P =

∫
m

Ω
d̃s , (2.8)

the mass should be accordingly redefined as m̃ ≡ m
Ω to express it in the new system of units.

Therefore, under a conformal transformation to the Einstein frame, the gauge boson masses

3Models of inflation in terms of a Higgs-like quartic self-interaction potential λh4 need an extremely small
coupling constant λ ∼ 10−13 [44], incompatible with the lower bounds on the Higgs mass [22]. Besides, they
are also nowadays excluded at around 3σ by the present observational data (non observation of tensor modes)
[106].

4For a review of conformal transformation and their properties cf. Appendix B.
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(2.7) are redefined as

m̃W =
mW

Ω
=

g2

2ξ1/2
MP , m̃Z =

m̃W

cos θW
, (2.9)

where we have used Ω2 = ξhh
2/M2

P . As can be seen in the previous equations the gauge
bosons acquire a constant mass in the Einstein frame and are therefore totally decoupled
from the Higgs (inflaton) field, excluding the possibility of successful reheating.

Notice however that the lagrangian density (2.5) is not the most general one that can
be written in a nontrivial background. As shown in [110, 111], the simultaneous existence of
a reduced bare Planck mass MP and a non-minimal coupling of a symmetry breaking field to
the scalar curvature

L√
−g

=
M2
P + ξhh

2

2
R− 1

2
(∂h)2 − U(h)− Λ , (2.10)

avoid the decoupling of the gauge bosons and can give rise to an inflationary expansion of
the Universe together with a potentially successful reheating. In this case, the non-minimal
coupling ξh must have a value large enough as to reproduce the interesting inflationary
features of the Induced Gravity scenario, but sufficiently small as to allow for the decay of
the Higgs field after that period, 1� ξh � 1032. We will come back to this model in Section
3.2.

2.3 The No-Scale scenario

The non-minimally coupled Standard Model (2.10) accounts, as the usual Standard Model,
for the masses of all the elementary particles induced by the vev of the Higgs field. It also
provides a nice connection with the Mach’s principle and therefore, with the concept of inertia.
However, the model contains, at the classical and quantum level, dimensional parameters or
scales, such as the Newton’s constant G, the vev of the Higgs field or ΛQCD. These scales
are a priori completely unrelated to the Higgs mechanism, and questions such as the origin
of the Planck, the Higgs or the proton mass remain unexplained. Would it be feasible that
all the scales were generated dynamically from one and the same source? To explore this
possibility, let these scales be dynamical and consider a theory invariant under global scale
transformations,

gµν(x) 7→ gµν(ω x) , Ψ(x) 7→ ωd Ψ(ω x) , (2.11)

where Ψ(x) stands for the different particle physics fields, d is their associated scaling dimen-
sion and ω is an arbitrary real parameter. In order to induce all the scales and masses in
the theory, this symmetry is required to be spontaneously broken by a symmetry breaking
classical ground state5. The choice of scale invariance among all other possible symmetries
is very tempting from the quantum point of view. If the classical theory including gravity
remains scale invariant at the quantum level to all orders in perturbation theory, several
fine-tuning problems of the Standard Model, such as the quadratic corrections to the Higgs

5Scale symmetry might be also broken by the pure presence of a time-dependent cosmological background
[112, 113].
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mass [114, 115] or the cosmological constant problem would be automatically solved. In what
follows we will assume that quantization procedure does not spoil the essential features of
the classical theory. We will come back to this point in Section 3.6.

As before, the most natural choice, without introducing new degrees of freedom, would
be to let the Higgs field be responsible for all the physical scales. The corresponding la-
grangian density is quite similar to the Induced Gravity lagrangian (2.5), but does not include
the dimensional constants v and Λ, now forbidden by scale-invariance,

LSI√
−g

=
1

2
ξhh

2R− 1

2
(∂h)2 − λ

4
h4 . (2.12)

Notice that those terms would be neither generated dynamically if the quantization procedure
respects the exact scale invariance of the theory [116, 117]. As required, the lagrangian
density (2.12) possesses a continuous family of classical ground states satisfying h2 = h2

0

and R = 4λh2
0/ξh, where h0 is an arbitrary constant. A non-zero background value of h0

is enough to generate the Planck scale together with the masses all the Standard Model
particles. However, as occurred in the Induced Gravity model, these particles are completely
decoupled from the Higgs field, which makes the model phenomenologically non viable from
an inflationary point of view. Besides, it is excluded by EW constraints [22], since the
Higgs field itself becomes massless, as corresponds to the Goldstone boson associated to the
spontaneous breakdown of scale invariance. This can be easily proved by noting the shift
symmetry displayed by the lagrangian density (2.12) when it is transformed to the Einstein-
frame

L̃SI√
−g̃

=
M2
P

2
R̃− 1

2
g̃µν∂µφ∂νφ−

λM4
P

4ξ2
h

, (2.13)

where φ = φ(h) is a new field defined to make the kinetic term canonical.

The next simplest possibility is to add a new singlet scalar field to the theory [75]. We
will refer to it as the dilaton χ. Similar extensions to the Minimal Non-Minimally Coupled
Standard Model (2.10) have been suggested in Ref.[118, 119], although with a very different
physical motivation and without the requirement of an exact scale-invariance at the level of
the action. In our case, the scale-invariant extension of the minimal non-minimally coupled
Standard Model reads

LSI√
−g

=
1

2

(
ξχχ

2 + ξhh
2
)
R− 1

2
(∂h)2 − 1

2
(∂χ)2 − U(h, χ) , (2.14)

where the scalar potential is given by

U(h, χ) =
λ

4

(
h2 − ϑ

λ
χ2

)2

+ βχ4 . (2.15)

We will only consider positive values for ξχ and ξh, for which the coefficient in front of the
scalar curvature is positive, whatever values the scalar fields take, e.g. conformally invariant
scalar fields in 4 dimensions have ξ = 1/6. The chosen parametrization of the scalar potential
assumes that λ 6= 0. This only excludes the phenomenologically unacceptable case where a
quartic term λh4 is absent. As before, we will require the theory to possess a symmetry
breaking classical ground state. To have a theory with electroweak symmetry breaking we
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imposed h = h0 6= 0. The condition χ0 6= 0 is also needed in order to avoid the case of a
massless Higgs described above. The classical ground states for β 6= 0 are given by

h2
0 =

ϑ

λ
χ2

0 +
ξh
λ
R , (2.16)

with R =
4βλχ2

0
λξχ+ϑξh

. Notice that if gravitational interactions are neglected the previous set
of ground states corresponds to the minimum of the potential. The solutions with χ0 6= 0
spontaneously break scale invariance. All mass scales are therefore induced and proportional
to χ0. It is important to notice however, that physical observables will be independent of the
particular value of χ0, since they correspond to ratios between scales or masses. The model
does not however address the origin of the differences among these scales. For instance, the
hierarchy between the electroweak and gravitational interaction v2/M2

P ∼ 10−32 is translated
into the value of the ϑ parameter, while the ratio between the cosmological constant and the
electroweak scale Λ/v4 ∼ 10−56 determines the value of β. In terms of the couplings these
ratios are given by v2/M2

P ∼
ϑ
ξχ

and Λ/v4 ∼ β
ξ2
χ

. To reproduce the hierarchy the parameters

must satisfy ϑ� β � ξχ.

Depending on the value of β, the background corresponds to flat spacetime (β = 0),
de Sitter (β > 0) or Anti-de Sitter (β < 0) spacetime of constant curvature R. From
the cosmological point of view, the Anti-de Sitter case is clearly disfavoured, since it can
not explain the present accelerated expansion of the Universe. One should be tempted to
think that, as happens in GR, the only plausible choice would be the de Sitter β > 0 case.
Nevertheless, if slight modifications of the fundamental theory of gravity are allowed, even
the case β = 0 can be phenomenologically satisfactory. Indeed, as we will see in Chapter 5,
scalar-tensor theories formulated in the framework of Unimodular Gravity are able to produce
a dynamical dark energy component, even if β = 0. In this new setup, the choice β = 0 seems
favoured from a pragmatical point of view, since only in that case the dark energy component
becomes purely dynamical. This choice would increase the predictive power of the model,
providing important relations between the observables in the Early and Late Universe that we
will describe in detail in Chapter 5. Besides, the β = 0 case allows to successfully break scale
invariance, even in the absence of gravity, allowing for a flat spacetime with (h0, χ0, ) 6= (0, 0).
On the other hand, the β = 0 choice does not present any of the instability problems for
massless degrees of freedom usually associated to the de Sitter and Anti-de Sitter backgrounds
[98, 120, 121, 122, 123, 124].

2.4 A very useful Noether’s Current

To finish this chapter let us notice an important point that will be extremely useful in
the following developments. By construction, all terms in the action associated to the la-
grangian (2.14) are invariant under continuous scale transformations and therefore, according
to Noether’s Theorem [125], there must exist an almost conserved Noether’s current associ-
ated to this symmetry. Note that under infinitesimal scale transformations the metric and
scalar fields transform respectively as

gµν → gµν + ω∆gµν , ϕa → ϕa + ω∆ϕa , (2.17)
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where again, we have introduced an infinitesimal real parameter ω. Here, latin indices
a, b, ... = 1, 2 are used to label, in a compact notation, the two real scalar fields present
in the model: the dilaton field, ϕ1 = χ, and the Higgs field in the unitary gauge, ϕ2 = h.
The Noether’s current associa- ted to (2.17) is given by

√
−gJµ =

∂L
∂ [∂µgαβ]

∆gαβ +
∂L

∂ [∂µϕa]
∆ϕa . (2.18)

The explicit expressions for ∆gµν and ∆ϕa depend on the field variables chosen. In terms of
the Higgs and dilaton fields, h and χ, we have ∆gµν = −2gµν , ∆χ = χ and ∆h = h. Note
that in order apply the Noether’s theorem (2.18) to the gravitational part of the Lagrangian
(2.14), it must contain only terms up to first order derivatives. Let us therefore write the
Ricci scalar as the sum of two contributions R = R1 +R2, given respectively by

R1 = gµν
(
∂λΓλµν − ∂νΓµ

)
, R2 = ΓλC

λ +
1

2
Γλρσ∂λg

ρσ , (2.19)

with

Γµ ≡ Γρρµ =
∂µ
√
−g√
−g

=
1

2
gρσ∂µgρσ , Cλ ≡ gµνΓλµν = −∂σgλσ − gλνΓν , (2.20)

The quantities R1 and R2 are indeed related by

√
−gR1 = ∂λ

(√
−gGλ

)
− 2
√
−gR2 . (2.21)

where we have defined Gλ ≡ Cλ − gλµΓµ. Inserting this quantity into the action (2.14)
and integrating by parts we obtain an expression for the Ricci scalar containing only first
derivatives of the metric tensor

f(ϕ)R = −Gλ∂λf − fR2 , (2.22)

with 2f(ϕ) ≡ (ξhh
2 + ξχχ

2). Taking into account (2.22) and performing the variation of the
lagrangian with respect to the metric and scalar fields, the conservation law for the current
(2.18) can be rewritten as

DµJ
µ = 0 , (2.23)

where
Jµ = gµν

∑
a

(1 + 6ξa)∂νϕ
2
a . (2.24)

Notice that the previous expression is not independent of the equations of motion. Indeed,
it can be also obtained directly from the Friedmann equations

3H2f(ϕ) =
1

2
ϕ̇aϕ̇a +

1

2a2
∂iϕ

a∂iϕa + U(ϕ) +
(
∂i∂i − 3H∂0

)
f(ϕ) , (2.25)

f(ϕ)R = 32f(ϕ) + (∂ϕa)2 + 4U(ϕ) . (2.26)

and the equations of motion for the scalar fields

ϕ̈a + 3Hϕ̇a + U,a −
1

2
f,aR = 0 . (2.27)
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Combining Eqs. (2.27) and (2.26) we obtain

∑
a

(1 + 6ξa)2ϕ
2
a = 2

(∑
a

ϕaU,a − 4U(ϕ)

)
, (2.28)

which, for the scale invariant potential (2.15), reduces to (2.23). As we will see in Chapter 3,
this conservation law will have important consequences for the study of the inflationary tra-
jectories, since it effectively reduces by one the number of independent dynamical variables.



CHAPTER 3

The Higgs boson in the Sky

Entia non sunt multiplicanda
praeter necessitatem.

William of Ockham

3.1 The Higgs field as the inflaton

Inflation is nowadays a well established paradigm, consistent with all the observations. It
solves most of the puzzles of the hot Big Bang Model in a very simple and elegant way. The
inflationary paradigm is able to explain not only the homogeneity and isotropy of the present
universe on large scales, but also the causal generation of an almost scale invariant spectrum
of primordial perturbations [126] that give rise to the observed large scale structure. This
perturbations arise from the amplification of vacuum fluctuations, which become a highly
two-mode squeezed state during inflation [127]. Therefore, inflation can be considered as a
link between the large scale structure of the universe and its microphysics. As pointed out in
the previous chapter, the Higgs field strongly non-minimally coupled to gravity is able to give
rise to an inflationary stage. This chapter is devoted to the detailed study of that epoch in
the minimal non-minimally coupled extension of the Standard Model and its scale-invariant
version, and to the determination of the free parameters of the theory from Cosmic Microwave
Background physics.

Although the model was originally formulated in the so-called Jordan frame, in which
the non-minimal coupling to gravity is explicit, we will perform the analysis in another
conformally-related representation of the theory. Choosing a representation is equivalent to
choosing the physical variables used to describe the problem. The frame dependence of the
spacetime curvature is accompanied by a change in the matter lagrangian, and therefore in
the definition of ideal clocks used to measure the curvature. The change from one frame
to another does not correspond to a change in the physics and different representations are
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completely equivalent at the classical level. Useful discussion of this equivalence can be found
in [128]. The inevitable arbitrariness in choosing the physical variables will of course affect the
clarity of the predictions in the representation. Purely gravity phenomena in a given frame
could be interpreted as matter effects in another, and vice versa. We choose to perform the
study in the so-called Einstein frame. This frame is defined as that in which the gravity
sector takes the usual Einstein-Hilbert form. This will simplify considerably the computation
of the measurable quantities and their comparison with those in the literature.

This chapter is organized as follows. In Section 3.2 we transform the Higgs Inflation
model to the Einstein frame and derive an approximate inflationary potential, from which
we determine the corresponding slow-roll parameters and attractor solutions. Similarly, the
scale-invariant Higgs-Dilaton extension, is studied in detail in Section 3.3. The inflation-
ary trajectories are classified making use of the conserved current associated to the scale-
invariance of the model. A general treatment of the cosmological perturbations produced
during inflation and the inflationary observables is presented in Section 3.4. The derivation
of their specific form in Higgs-driven inflationary models is left for Section 3.5, where we
derive observational constraints on the value of the non-minimal couplings for both Higgs
and Higgs-Dilaton models. Finally, in Section 3.6, we comment on the different quantum
aspects that might modify the previous classical treatment.

3.2 Higgs Inflation

We start by considering the lagrangian density (2.10) for the non-minimally coupled Higgs
introduced at the end of Section 2.2

L√
−g

= f(h)R− 1

2
(∂h)2 − U(h) , (3.1)

where the function f(h) is defined as

f(h) =
M2
P + ξhh

2

2
, (3.2)

and U(h) is the standard Higgs potential (2.4) in the unitary gauge 2H†H = h2,

U(h) =
λ

4

(
h2 − v2

)2
. (3.3)

A possible cosmological constant term has been omitted, since its effects during the inflatio-
nary period under consideration are completely negligible. Motivated by the Induced Gravity
scenario (cf. the end of Section 2.2), we will assume the non-minimal coupling of the Higgs
field to gravity to be in the region 1 � ξh � 1032. This range avoids the decoupling of the
Standard Model particles from the Higgs field and allows for an inflationary stage.

As mentioned in the previous section, we will work in the Einstein frame. In order to
get rid of this non-minimal coupling to gravity, we perform a conformal transformation [129]

g̃µν = Ω2(h)gµν , (3.4)
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which, contrary to standard coordinate transformations, alters the curvature of spacetime
by mixing the gravitational and matter degrees of freedom. This conformal transformation
allows us to obtain the lagrangian density in the Einstein frame1 ,

L̃√
−g̃

=
f(h)

Ω2

(
R̃+ 3g̃µν∇̃µ∇̃ν ln Ω2 − 3

2
g̃µν∇̃µ ln Ω2∇̃ν ln Ω2

)
− g̃µν∂µh∂

µh

2Ω2
− U(h)

Ω4
, (3.5)

where we can recover the standard Einstein-Hilbert term by simply identifying the prefactor
of the Ricci scalar with the Planck mass, i.e.

f(h)

Ω2
≡
M2
P

2
. (3.6)

This step implies the following relation between the conformal transformation and the Higgs
field

Ω2(h) = 1 +
ξhh

2

M2
P

, (3.7)

which allows us to write the Einstein-frame lagrangian density (3.5) completely in terms of h

L̃√
−g̃

=
M2
P

2
R̃− 1

2

(
Ω2 + 6ξ2

hh
2/M2

P

Ω4

)
g̃µν∂µh ∂νh−

U(h)

Ω4
. (3.8)

Here we have neglected a boundary term that does not contribute to the equations of motion.
As we will be working in the Einstein frame, from now on, we will skip over the tilde in all
the variables to simplify the notation.

Notice that the conformal transformation (3.4) leads to a non-minimal kinetic term
for the Higgs field. However, it is possible to get a canonically normalized kinetic term by
introducing a new field φ via the field redefinition

dφ

dh
≡

√
Ω2 + 6ξ2

hh
2/M2

P

Ω4
=

√
1 + ξh(1 + 6ξh)h2/M2

P

(1 + ξhh2/M2
P )2

. (3.9)

In terms of it the lagrangian density (3.8) becomes

L̃√
−g̃

=
M2
P

2
R− 1

2
gµν∂µφ∂νφ− V (φ) , (3.10)

with

V (φ) ≡ U(φ)

Ω4(φ)
, (3.11)

the Higgs potential in the Einstein frame. To find the explicit form of this potential in term
of φ, we must find the expression of h in terms of φ. This can be done by integrating (3.9),
whose general solution is given by

√
ξh

MP
φ(h) =

√
1 + 6ξh sinh−1

(√
1 + 6ξhu

)
−
√

6ξh sinh−1

(√
6ξh

u√
1 + u2

)
, (3.12)

1The detailed relations between the Ricci scalar in two different frames can be found in Appendix B.
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with u ≡
√
ξhh/MP . Since ξh � 1, we can take 1 + 6ξh ≈ 6ξh and, using the identity

sinh−1 x = ln(x+
√
x2 + 1) for −∞ < x <∞, we can approximate (3.12) by

√
ξh

MP
φ(h) ≈

√
6ξh ln(1 + u2)1/2 , (3.13)

or, equivalently,

Ω2 = eακφ , (3.14)

where α =
√

2/3 and κ = M−1
P . The φ field is therefore directly related in this approximation

(just in the limit ξh � 1 and far from u = 0) to the conformal transformation Ω2 in a very
simple way. The inflationary potential (3.11) is just given by

V (φ) = Ω−4U(h) = V0

[
eακφ −

(
1 + ξh

v2

M2
P

)]2

e−2ακφ . (3.15)

where we have defined an amplitude V0 ≡
λM4

P

4ξ2
h

. Given the large hierarchy between the

electroweak and Planck scales, v � Mp, the term in parenthesis in the previous expression

becomes2 1 + ξh
v2

M2
P
≈ 1, which implies that we can safely ignore the vev of the Higgs field

for the evolution during inflation and (p)reheating, and simply consider the potential

V (φ) = V0

(
1− e−ακφ

)2
. (3.16)

Notice however that (3.16) only parametrizes partially the original potential (3.3), as can
be seen in Fig. 3.1, where we compare the exact solution (red continuous line) obtained
parametrically from (3.12), with the analytic formula (3.16) (blue dashed line). Although
both solutions agree very well in the region of positive φ, they substantially differ for negative
values of the Higgs field, φ < 0. The conformal transformation is even ill-defined in the
negative field region. From (3.7) and (3.14) we have

ξhh
2

M2
P

= Ω2 − 1 = eακφ − 1 = (1− e−ακφ)eακφ , (3.17)

which is inconsistent, since the left-hand side of this equation is positive definite, while the
right hand is negative definite for φ < 0. Taking this into account will turn out to be
important for the study of the different (p)reheating mechanisms of the post-inflationary
regime, where the field oscillate around the minimum of the potential. In what follows, we
will then use the parametrization

V (φ) = V0

(
1− e−ακ|φ|

)2
, (3.18)

which correctly describes the potential obtained from (3.12), for the whole field range of
interest. In Fig. 3.1, this parametrization (green dotted line) is again compared to the exact
solution (red continuous line) obtained from (3.12).

2Note that the non-minimal coupling is chosen to be in the region 1� ξh �M2
P /v

2.
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Figure 3.1: Comparative plot of the exact solution (red continuous line) obtained parametri-
cally from (3.12), the analytic formula (3.16) for the potential (blue dashed line), and their
parametrization (3.18) (green dotted line). Although the three different expression nicely
agrees for positive values of the Higgs field, it can be clearly seen that the analytic formula
(3.16) substantially differs from the parametric exact solution.

3.2.1 Slow-roll inflation and attractor solutions

In the new representation (3.10) the Klein-Gordon equation for the Higgs takes the form

φ̈+ 3Hφ̇− ∇
2φ

a2
+ V ′(φ) = 0 , size (3.19)

where prime denotes derivative with respect to the field. We have implicitly assumed a flat
Friedmann-Robertson-Walker (FRW) metric

ds2 = −dt2 + a2(t)dx2 , (3.20)

and defined the Hubble rate H ≡ ȧ
a . Dots denotes derivatives wrt the previous coordinate

time. Equation (3.19) should be understood as a semiclassical evolution equation for the
Higgs field, where the quantum fluctuations (of typical size H/2π) are considered as small
perturbations above the classical background. Regarding the evolution of the scale factor, in
the context of a perfect fluid description on General Relativity, we have

H2 =
ρφ

3M2
P

,
ä

a
= −

ρφ + 3pφ
6M2

P

. (3.21)

where the energy and pressure densities associated to the Higgs condensate are simply given
by

ρφ =
1

2
φ̇2 + V (φ) +

(∇φ)2

2a2
, pφ =

1

2
φ̇2 − V (φ)− (∇φ)2

6a2
. (3.22)

Note that, although we have included the spatial gradient terms for completion, they rapidly
decrease with the expansion of the universe for wavelengths & H−1, and quickly become
negligible.
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In order to explain the present homogeneity and flatness of the observable universe on
large scales the only ingredient needed is an early period of accelerated expansion, previous to
the radiation and matter dominated eras. Such a stage is known as inflation [46]. Obtaining
the benefits of such an accelerated expansion, ä > 0, requires an unusual negative pressure
density

pφ < −
1

3
ρφ , (3.23)

as can be seen from the second Friedmann equation in (3.21). Taking into account (3.22), we
realize that this condition can be easily satisfied in the Higgs Inflation model. Notice that the
potential (3.18) is exponentially flat for large field values3. If the initial value of the Higgs
condensate is sufficiently large4, then, according to the first Friedmann equation in (3.21),
the Hubble parameter would be also large. This translates into an important friction term
(3Hφ̇� φ̈) in the Klein-Gordon equation for the Higgs field, cf. (3.19), that slows down its
motion in the potential (φ̇2 � V (φ)), so that (3.21) and (3.19) become respectively

H ' 1√
3MP

V (φ)1/2 , φ̇ ' −MP√
3

V ′(φ)

V 1/2(φ)
. (3.24)

As can be seen from (3.22) the slow rolling (φ̇2 � V (φ)) gives rise to an effective equation
of state of vacuum-energy type for the inflaton, pφ ' −ρφ, which automatically satisfies the
inflationary condition (3.23).

The previous considerations are usually encoded in the smallness of the so-called potential
slow roll parameters (PSR) [130]

ε =
M2
P

2

(
V ′(φ)

V (φ)

)2

� 1 , η = M2
P

V ′′(φ)

V (φ)
� 1 , (3.25)

characterizing the flatness and curvature of the potential. Taking into account the explicit
form of the Einstein frame potential (3.18), they become

ε =
2α2

(eακφ − 1)2
, η =

2α2(2− eακφ)

(eακφ − 1)2
, (3.26)

which, as expected, agree with those for the scalaron potential in the Starobinsky model of
inflation [97, 98, 99, 100]. Inflation comes to an end when the ε parameter reaches unity,
ε ' 1, due to the rolling of the Higgs down to the minimum of the potential. Using the exact
expression (3.26) this corresponds to a field value

φend =
1

ακ
ln

(
1 +

2√
3

)
. (3.27)

Note that the slow roll parameter η is then negative, ηend = 1 − 2√
3
< 0, so there is a small

region of negative curvature in the potential just after the end of inflation. The effective

3We implicitly assume that quantum corrections do not spoil the classical flatness of the potential. We will
come back to this point at the end of this chapter, cf. Section 3.6.

4It must be larger than the Planck scale, but its value is otherwise arbitrary.
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curvature of the potential will be negative until φ∗ = 1
ακ ln 2, which corresponds to the

inflection point, given by η∗ = 0. As we will point out in Section 4.5, this region might have
dramatic effects on particle production after inflation.

We end this section by noticing that the slow-roll conditions (3.26) only restrict the
shape of the potential. They are necessary but not sufficient conditions for inflation. Recall
that the evolution equations for the Higgs must be supplemented with a specification of the
initial conditions [130]. In particular the value of φ̇ in (3.24) could be chosen in such a way
that (3.26) becomes violated. Contrary to what happens in other fields of physics, we don’t
have the opportunity of repeating the experiment of creation. The inflationary paradigm will
be predictive only if our observed universe can be explained from simple ideas and the most
generic initial conditions. Fortunately, in the case of Higgs Inflation (as in any other scalar
single field inflationary scenario) there exist a slow-roll attractor solution [131, 130]. This can
be easily seen in the Hamilton-Jacobi formulation [131], in which the Higgs field φ itself is
taken as the evolution clock. In this formalism the Friedmann equation (3.21) takes the form[

H ′(φ)
]2 − 3

2M2
P

H2(φ) = − 1

2M4
P

V (φ) . (3.28)

A linear homogeneous perturbation5 δH(φ) above a general solution of (3.28),

H(φ) = H0(φ) + δH(φ) (3.29)

satisfies
d log δH

dφ
' 3

2M2
P

H0

H ′0
= − 1

2M4
P

. (3.30)

The general solution of the previous differential equation can be expressed in terms of the
number of e-folds

∆N ≡
∫ t

ti

Hdt = − 1

2M2
P

∫ φ

φi

dφ (3.31)

to obtain
δH(φ) = δH(φi)e

−3∆N . (3.32)

with φi the initial value of the Higgs field. The attractor behaviour (3.32) clearly shows
that any inflationary solution, independently of the initial conditions, will end up in a single
trajectory in field space, becoming therefore all trajectories equivalent up to unmeasurable
global time shifts.

3.3 Higgs-Dilaton Inflation

In this section we extend the results of the Higgs Inflation model described above to its scale
invariant version (2.14). For doing it, let us rewrite that lagrangian density in the compact
notation

L√
−g

= f(ϕ)R− 1

2
gµνδab∂µϕ

a∂νϕ
b − U(ϕ) , (3.33)

5Linear perturbations are chosen for simplicity. The final conclusion remains unchanged if non-linear
perturbations are taken into account.
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with the non-minimal coupling f(ϕ) now given by

f(ϕ) ≡ 1

2

∑
a

ξaϕ
a2 . (3.34)

Greek indices µ, ν, ... = 0, 1, 2, 3 denote spacetime coordinates, while latin indices a, b, ... = 1, 2
are used to label the two real scalar fields present in the model: the dilaton field, ϕ1 = χ, and
the Higgs field in the unitary gauge, ϕ2 = h. The abstract notation in terms of ϕi will allow
us to interpret the scalar fields as the coordinates of a two-dimensional σ-model manifold. We
will be able to write expressions and equations that are covariant under changes of variables
ϕ 7→ ϕ′(ϕ).

As before, whenever the non-minimal coupling is non-zero, f(ϕ) 6= 0, one can define a
new conformal metric

g̃µν = Ω2(ϕ)gµν , (3.35)

and identify, as in the Higgs Inflation case, the prefactor of the Ricci scalar in the Einstein
frame with the Planck mass MP to obtain

L̃√
−g̃

=
M2
P

2
R̃− 1

2
γabg̃

µν∂µϕ
a∂νϕ

b − V (ϕ) , (3.36)

where γab is the non-diagonal and non-canonical field space metric given by

γab =
1

Ω2

(
δab +

3

2
M2
P

Ω2
,aΩ

2
,b

Ω2

)
. (3.37)

The Einstein frame potential is defined as V (ϕ) ≡ U(ϕ)
Ω4 and given explicitly by

V (h, χ) =
λ

4

(
h2 − ϑ

λχ
2
)2

+ βχ4

(ξχχ2 + ξhh2)2 M4
P . (3.38)

We will assume all the parameters in the previous expression to be positive, i.e. ϑ, λ, ξχ, ξh >
0. Note that the Einstein frame potential becomes singular for χ = h = 0, where the confor-
mal transformation (3.35) is ill-defined and the change to the Einstein frame is forbidden. Let
us qualitatively discuss the shape of the potential for the different values of the parameters
and its consequences, cf. Fig. 3.2. For sufficiently large values of the fields, the potential
(3.38) is sufficiently flat as to allow for a slow-roll inflationary phase. On the other hand,
as happened in the Jordan frame, the previous potential displays two degenerate classical
ground states, reminiscent of those at ±v in the no-scale invariant Higgs potential (3.3).
Those valleys, h2 ' ϑ

λχ
2 are located at very small angles θ ≈ ± arctan(ϑ) with respect to

the χ-axis. The value of the potential along them depends on the value of the β parameter.
In the absence of a quartic dilaton term in the Jordan frame, β = 0, the potential vanishes
at its minimum, while a non-zero β gives rise to a classical ground state with dS or AdS
background. As we pointed in Section 2.3, given its implications for further developments,
only the β = 0 case will be considered here. After the inflationary and reheating period the
scalar fields will eventually come to rest in the valley due to effective dissipation produced
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Figure 3.2: Shape of the Higgs-Dilaton potential in the Einstein frame (3.38) for the β = 0
case (not to scale). The potential displays asymptotic flat regions that can give to inflation.
It also possesses two completely degenerate classical ground states that spontaneously break
the scale invariance of the corresponding action.

by the expansion of the Universe and possible decays. Perturbations around this constant
background can be interpreted as Standard Model particles, as is done with the perturbations
above the Higgs vev in the Standard Higgs procedure. Apart from them, there will exist an
extra massless degree of freedom, the dilaton, completely decoupled from the Standard Model
particles.

3.3.1 Slow-roll inflation and attractor solutions

This section is devoted to the study of the different inflationary trajectories in Higgs-Dilaton
inflation. Since inflation will take place very far away from the minima of the potential, we
can safely ignore the small angle formed by them with respect to the χ axis, and set ϑ = 0
for the rest of this chapter. As pointed out in the previous section, an ideal inflationary
scenario will be completely successful only if the physical outcome is independent of the
initial conditions. Unfortunately, no slow-roll attractor solution generically exist in the two-
field case. However, in the present Higgs-Dilaton scenario, the corresponding inflationary
trajectories are not completely undetermined, thanks to the Noether’s current associated to
the scale-invariance. To show this, let us consider the Einstein’s field equations corresponding
to the lagrangian density (3.36)

G̃µν = −γab
(
∂µϕ

a∂νϕ
b − 1

2
g̃µν g̃

ρσ∂ρϕ
a∂σϕ

b

)
+ Ṽ g̃µν , (3.39)

where G̃µν is the Einstein tensor computed from the Einstein frame metric g̃µν , which we will
assume to be of FRW type. On the other hand, the Klein-Gordon type equations of motion
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for the Higgs and dilaton scalar fields are given by

2̃ϕc + g̃µνΓcab∂µϕ
a∂νϕ

b = γcdṼ,d , (3.40)

where the action of the d’Alambertian 2̃ on the scalar field is given by

2̃ϕc =
1√
−g̃

∂µ
(√− g̃g̃µν∂νϕc) (3.41)

and Γcab is the affine connection computed from the field space metric γab

Γcab =
1

2
γcd (γda,b + γdb,a − γab,d) . (3.42)

Note that (3.39) and (3.40) are covariant under scalar field redefinitions ϕ 7→ ϕ′(ϕ). Assuming
the scalar fields to be homogeneous during inflation, ϕi = ϕi(t), they reduce to the Friedmann
and coupled Klein-Gordon equations

H2 =
1

3M2
P

(
1

2
γabϕ̇

aϕ̇b + Ṽ

)
, (3.43)

ϕ̈c + Γcabϕ̇
aϕ̇b + 3Hϕ̇c = −Ṽ c , (3.44)

where as before dots stand for derivative wrt the coordinate time t. As we pointed out in
Section 2.4, there must exist an almost conserved current associated to the scale-invariance
symmetry of the theory, which can be obtained from the Noether’s theorem or directly derived
from the equations of motion. For homogeneous fields, we have

1

a3

d

dt

(
a3γabϕ̇

a∆ϕb
)

= 0 . (3.45)

As a consequence, the quantity a3γabϕ̇
a∆ϕb is exactly conserved. Rewriting it as

γabϕ̇
a∆ϕb =

cst.

a3
, (3.46)

we realize that, in those cases in which the scale factor grows large, as happens during the
considered inflationary stage, the right-hand side of the previous equation vanishes and the
quantity

γabϕ̇
a∆ϕb ' 0 . (3.47)

becomes approximately conserved. The previous equation can be understood as an effective
dynamical constraint that reduces by one the number of independent dynamical variables. To
identify the normal modes let us consider the first two slow-roll parameters in the generalized
two field case [132]

ε =
M2
Pγ

abṼ,aṼ,b

2Ṽ 2
, Nab =

M2
P Ṽ;ab

Ṽ
. (3.48)

with Ṽ;cb = Ṽ,cb − Γabc(ϕ)Ṽ,a. Note that in the two-field case the curvature of the potential
along the different field directions is encoded in the eigenvalues ηi of the matrix Na

b .
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The system describes an inflating universe as long as the slow-roll parameters satisfy
the conditions ε � 1 and ηi � 1. In that case, the Friedmann (3.43) and Klein-Gordon
(3.44) equations reduce to

H̃2 ' Ṽ

3M2
P

, 3H̃ϕ̇c ' −Ṽ c . (3.49)

Combined them we obtain a parametric equation for the slow-roll trajectories

dχ

dh
= − (1 + 6ξh)h

(1 + 6ξχ)χ
, (3.50)

that can be solved exactly to get

r2 ≡ (1 + 6ξχ)χ2 + (1 + 6ξh)h2 = cst . (3.51)

The above solution describes an ellipse in field space. In spite of having being derived in the
slow roll approximation, these trajectories are a good approximation, even beyond the slow-
roll approximation as can be seen in Fig. 3.3. The existence of r2 leads us to the definition
of new polar variables6

ρ =
MP

γ
ln

(
r

MP

)
, θ = arctan

(√
1 + 6ξh
1 + 6ξχ

h

χ

)
, (3.52)

with γ =
√

ξχ
1+6ξχ

. As the initial r the new radial coordinate ρ is conserved by the evolution.

On the other hand, the angular variable θ satisfies the equation

θ′ = − 4ξχ
1 + 6ξχ

cot θ

(
1 +

6ξχξh

ξχ cos2 θ + ξh sin2 θ

)
. (3.53)

As a consequence of the scale-invariance, the previous equation is independent of the precise
value of ρ. The radial coordinate does not move during the whole inflationary period and
can be in practice excluded from the discussion. The evolution of the number of e-folds N as
a function of θ can be obtained by simply integrating (3.53) to get

N =
1

4ξχ

[
ln

(
cos θend

cos θ

)
+ 3ξχ ln

(
ξχ cos2 θend + ξh sin2 θend + 6ξχξh

ξχ cos2 θ + ξh sin2 θ + 6ξχξh

)]
. (3.54)

Here θend stands for the value of angular variable θ at the end of inflation. Inflation will end
when the ε parameter equals one, ε = 1, which implies

8ξ2
χ(1 + 6ξh)

1 + 6ξχ

cot2 θend

ξχ cos2 θend + ξh sin2 θend
= 1 . (3.55)

The previous equation will be important to derive a lower bound on the initial conditions
for inflation θinitial > θmin for a minimal number of e-folds N = Nmin. For doing this we
need before to derive bounds on the non-minimal couplings ξχ and ξh from cosmological
observables. This is the purpose of the following sections.

6We would like to notice, that, although it is not the first time that a similar change of variables is proposed
[133, 134], an explicit relation with the conservation law associated to the scale invariance (2.23) has been
never pointed out.
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Figure 3.3: Numerically computed trajectories of Higgs and Dilaton fields in the Einstein-
frame. The lower and upper curves correspond to slow-roll initial conditions. From the
very beginning the fields satisfy the constraint r2 = (1 + 6ξh)χ2 + (1 + 6ξχ)χ2 = const.,
represented by the dotted line above the lower curve. On the other hand, the initial values
for the velocities of the intermediate solid curves have been chosen to be highly non-slow
roll. Although the trajectory is initially influenced by the initial conditions, the fields end up
describing an ellipse of constant radius in field space.
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3.4 Cosmological Perturbations

In this section we review the inflationary observables for a general multiple field case [135],
particularizing when needed to the single field case. Notice that the Higgs and Higgs-Dilaton
lagrangian densities, given by (3.10) and (3.36) respectively, are invariant under general
coordinate transformations. This gauge freedom on the unperturbed spacetime background
will influence the perturbed physical spacetime. Cosmological perturbations are not unique
and the theory is generically plagued by gauge or non-physical modes. The problem can be
solved by defining how the points in the perturbed manifold relate to those in the unperturbed
manifold, i.e. by fixing a gauge, or by working with gauge invariant quantities, with a clear
geometrical meaning. The latter are invariant under infinitesimal coordinate transformations
and can be obtained by simply requiring them to have vanishing Lie derivative along every
infinitesimal vector field.

The independent components of the metric perturbations can be reduced to 6 gauge
independent degrees of freedom, classified according to their behaviour under the rotation
group SO(3). The reasons for this classification are twofold. From a mathematical point
of view, it turns out that the scalar, vector and tensor perturbations decouple and evolve
independently, at least at the level of first order perturbed Einstein equations. From the
physical point of view, these components give rise to different phenomena. Scalar perturba-
tions are the only ones that can give rise to gravitational collapse, while vectors and tensor
perturbations give rise to vorticity and gravitational waves respectively. In what follows we
will only consider scalar and tensor perturbations, since vector perturbations rapidly decay
with the expansion of the Universe (for a general review see for instance [136]).

In particular, two gauge-invariant scalar quantities – the Bardeen potentials Φ and Ψ
[137] – can be constructed. Any combination of gauge invariant quantities will be also scale
invariant. Among all the possible combinations, we will consider the comoving curvature
perturbation [137, 138]

ζ ≡ Ψ− H
H′ −H2

(
Ψ′ +HΦ

)
. (3.56)

Here H is the comoving Hubble parameter H ≡ aH and primes stand for derivative with
respect to comoving time η.

The comoving curvature perturbation is especially interesting given its properties out-
side the horizon. In the single Higgs inflation case its temporal evolution is given by

ζ ′ =
1

εH
∇2 , (3.57)

which implies that the comoving curvature perturbation is constant for adiabatic superhorizon
modes k � aH. As a consequence, the amplitude of the perturbations (3.56) expelled out
of the horizon by the inflationary mechanism remains frozen during the radiation or matter
eras, until they eventually reentry in the horizon. This constancy of super-horizon modes is
crucial for testing inflation, since it directly relates the scalar and tensor perturbations seeding
the CMB anisotropies and LSS matter distribution to the the primordial power spectrum of
fluctuations at the end of inflation. The reconstruction of the inflationary potential becomes
then independent of the (p)reheating details. The influence of subsequent reheating stage on
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metric perturbations produced during inflation was considered in Refs. [139, 140, 141, 142,
143, 144, 145]. In the single field case under consideration, no instability of adiabatic metric
perturbations is produced during the (p)reheating stage [141]. Related numerical studies
beyond the linear regime can be found in Refs. [146, 147, 148, 149, 150, 151].

Contrary to the single field case, in generic multiple-field models, as Higgs-Dilaton
inflation, the curvature or adiabatic perturbation might evolve on super-horizon scales. At
linear order in perturbations we have

ζ ′ =
2H
σ′2

∆Ψ− 2H
σ′2

P cda
2Ṽ,cδϕ

d , (3.58)

where δϕd are the perturbations to the background field trajectory and Pab is the projector
orthogonal to the trajectory Pab = γab − uaub, with ua ≡ ϕ′a

σ′ = ϕ̇a

σ̇ . In the long wavelength
limit, the previous equation reduces to7

ζ ′ = −2H
σ′2

P cda
2Ṽ,cδϕ

d . (3.59)

Therefore, the amplitude of the curvature perturbation ζ at re-entry cannot be longer equated
with that at horizon crossing. It must be rather integrated along the whole subsequent
trajectory. Even if we assume an initial slow-roll regime, there will exist many inequivalent
inflationary trajectories, given the absence of general attractor solutions in the multifield
case.

Should we consider the evolution of the curvature perturbation in the two-field Higgs-
Dilaton inflationary model? To answer this question let us write the conservation equation
(3.46) in term of the polar variables (ρ, θ), cf. (3.52) . We obtain

d ρ

dN
=

cst

Hγρρ
· e−3N . (3.60)

with N the number of e-folds in the Einstein frame. The constant in the previous expression
depends on the initial conditions. The explicit form of the bounded metric component γρρ
is irrelevant for the discussion, although the reader can easily deduce it from the lagrangian
density (4.11). During inflation the factor H−1 in (3.60) is generically nearly constant, but
grows at most like eN at the end of inflation. For instance, for matter domination we have
H−1 ∼ e

1
2
N , while for radiation domination H−1 ∼ e

2
3
N . Therefore, ρ̇ = 0 acts like an

attractor of the equations of motion, which reduces the dynamical degrees of freedom to one,
corresponding to the fluctuations back and forth the angular variable θ. We then recover the
single field case, where the comoving curvature perturbation is conserved for superhorizon
modes. As shown in Ref. [145] (see also [154] for a general perspective) the large scale
suppression of entropy perturbations during inflation avoid the resonant growth of these
fluctuations also during the (p)reheating stage.

To describe the nature of perturbations in the Universe we make use of statistical
descriptors such as the dimensionless scalar power spectrum Pζ(k) or two-point correlation

7An explicit computation of this quantity for the Higgs-Dilaton model written in terms of the variables
used in (4.11) can be found in Ref. [152, 153].
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function in Fourier space

〈0|ζ̂kζ̂∗k′ |0〉 ≡
Pζ(k)

4πk3
(2π)3δ2

(
k− k′

)
, (3.61)

which provides a complete description of the properties of Gaussian perturbations8. To the
first non-trivial order in the slow-roll parameters it can be expressed as [126, 155, 135]

Pζ(k) ' ∆2
ζ(k
∗)

(
1− 2(C + 3)ε∗ + 2Cη∗eff − (6ε∗ − 2η∗eff) ln

k

k∗

)
, (3.62)

where C = 2− ln 2− γ and we have defined

ηeff ≡ pabNab , pab =
Ṽ,aṼ,b

γcdṼ,cṼ,d
, (3.63)

corresponding to the projection of the matrix Nab in (3.48) on the background trajectory.
Quantities marked with a star * are evaluated at the moment when the pivot scale k∗ leaves
the Hubble horizon, k∗ = a(N∗)H(N∗). This scale k∗ is given by the statistical center of the
range of scales explored by the data. The amplitude ∆2

ζ(k∗) of the power spectrum is given
by

∆2
ζ(k
∗) ≡ κ2

2ε∗

(
H∗

2π

)2

. (3.64)

Notice that, due to the approximate constancy of the Hubble rate H during inflation, the
power spectrum (3.62) is expected to be nearly scale-invariant, i.e Pζ(k) ∝ kns−1, with ns
very close to one. Therefore, it is customary to perform a Taylor expansion of logP2

ζ to
obtain

logP2
ζ (k) = log ∆2

ζ(k
∗) + (ns(k

∗)− 1) log
k

k∗
+

1

2

dn

d log k

∣∣∣
∗

log2 k

k∗
+ · · · , (3.65)

where ns and dns
d log k

∣∣
∗ are often called the spectral index and therunning respectively. In terms

of the slow-roll parameters, they are given by

ns(k
∗)− 1 ≡

d lnPζ
d ln k

∣∣∣∣∣
k=k∗

' −6ε∗ + 2η∗eff . (3.66)

and
dns
d log k

|∗ = −16ε∗η∗eff + 24ε∗2 + 2ξ∗eff . (3.67)

Let us consider now the metric perturbations over the Friedmann-Robertson-Walker per-
turbed metric

ds2 = −a2dη2 + (δij + hij) dx
idxj (3.68)

where hij is a divergenceless and traceless tensor perturbation

∇ihij = δijhij = 0 . (3.69)

8For Gaussian perturbations we mean the property of the initial seeds produced during inflation. Non-
Gaussianities can of course appear in the posterior structure formation stage trough gravitational instabilities.
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The associated equation of motion is given by

h′′ij + 2Hh′ij −∇2hij = 0 . (3.70)

As we did for scalar perturbations, we define the primordial dimensionless spectrum tensor
perturbations with all polarizations Pg(k) as

∑
i

〈0|hk,ihk,i|0〉 ≡
Ph(k)

4πk3
(2π)3δ2

(
k− k′

)
(3.71)

To first order in the slow-roll approximation, it becomes [126, 155]

Pg(k) ' ∆2
g(k
∗)

(
1− 2(C + 1)ε∗ − 2ε∗ ln

k

k∗

)
, (3.72)

where we have defined an amplitude

∆2
g(k
∗) ≡ 8κ2

(
H∗

2π

)2

(3.73)

As the scalar power-spectrum, the gravitational power spectrum Pg(k) is expected to be
nearly scale invariant. The associated tensorial spectral index

ng(k
∗) ≡ d lnPg

d ln k

∣∣∣
k=k∗

' −2ε∗ , (3.74)

is always smaller than zero. Since both scalar and gravitational perturbations are generated
from the same inflationary mechanism, there exist a consistency condition between them,
defined by the ratio of the tensor and the scalar dimensionless spectra, namely,

r∗ ≡ Pg
Pζ
' 16ε∗ = −2n∗g , (3.75)

to first order in slow-roll. If contrary to what happens in Higgs-Dilaton inflation, the comoving
curvature perturbation evolved outside the horizon, then the previous equality would become
an inequality r∗ ≤ −2n∗g. The consistency condition (3.75) show that the tensor-to scalar
ratio r and the tensor tilt ng are not independent parameters. For this reason, from now
on, we will take ∆2

ζ , ns, dns/d log k
∣∣
k∗

and r at the pivot scale k∗ as the parameters to be
compared with the inflationary predictions

3.5 CMB constraints on parameters

In this section we will study the primordial perturbations in the Higgs-driven inflationary
models and derive approximate analytical results for different inflationary observables as
functions of the couplings ξχ, ξh, λ.

Let us solve (3.55) to obtain θend = θend(ξχ, ξh). Although this cannot be done analyti-
cally, numerical evaluation shows that for the spectral parameters to lie in the region allowed
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for CMB constraints, the non-minimal couplings to gravity must satisfy ξχ � 1 and ξh � 1
(cf. Fig. 3.6), which allow us to derive an approximate solution

θend ' 2× 3
1
4

√
ξχ , (3.76)

at the leading order in ξχ and 1/ξh. Inserting this small quantity into (3.54) we can obtain
the value of the angular variable θ∗ = θ∗(ξχ, ξh, N

∗) for a number of e-folds N∗ between the
moment at which a given scale k∗ exits the horizon and the end of inflation. Neglecting the
small contribution on the second term in the right hand side of (3.54) we get9

cos θ∗ ' e−4ξχN∗ . (3.77)

Combining (3.77) with (3.66), (3.75) and (3.64) we obtain the following analytical expressions
for the inflationary observables

ns (k∗) ' 1− 8ξχ coth (4ξχN
∗) , (3.78)

∆2
ζ(k
∗) ' λ sinh2 (4ξχN

∗)

1152π2ξ2
χξ

2
h

, (3.79)

r(k∗) ' 192ξ2
χ sinh−2 (4ξχN

∗) , (3.80)

at leading order in the couplings ξχ, 1/ξh. In the relevant parameter range (see below) the
accuracy of the approximate formula for ns(k

∗) is of the per mill level, while that r(k∗) are
good at the percent level. The comparison between the previous expressions and observational
WMAP7 bounds can be found in Fig. 3.4. To make explicit the connection with the Higgs
Inflation model, let us notice that, although the quantity 4ξχN

∗ might be of the order one,
4ξχN

∗ ∼ O(1), the series expansions of the hyperbolic functions converge rapidly and we can
further approximate

ns (k∗) ' 1− 2

N∗

(
1 +

1

3
(4ξχN

∗)2 + ...

)
, (3.81)

∆2
ζ(k
∗) ' λN∗2

72π2ξ2
h

(
1 +

1

3
(4ξχN

∗)2 + ...

)
, (3.82)

r(k∗) ' 12

N∗2

(
1− 1

3
(4ξχN

∗)2 + ...

)
. (3.83)

The scalar spectral index predicted by the present model has therefore an absolute maximum,

ns(k
∗) < 0.967 ' 1− 2

N∗
. (3.84)

This extreme value is obtained ξχ → 0, and corresponds to the value predicted by the Higgs-
Inflation model [111]. The differences between the two models are completely encoded in the
value of the non-minimal coupling ξχ. The predicted tensor-to-scalar ratio has also a strong
upper bound, i.e.

r(k∗) < 0.0035 ' 12

N∗2
, (3.85)

9Although a more accurate result could be obtained iteratively, it becomes rather complicated, so we stick
to the first order approximation.
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Figure 3.4: The approximate expressions (3.78) and (3.80) for the spectral tilt (left) and
the tensor-to-scalar ratio (right) respectively as a function of the non-minimal coupling ξχ.
The red dashed curve is evaluated at N∗ = N∗max, corresponding to the fast reheating case,
ρrh = ρmaxrh . On the other hand, the blue solid curve represents the slow reheating case
ρrh = ρminrh with N∗ = N∗min. The green diagonal line correspond to the limiting case
ns = 1 − 8ξχ. The dot-dashed horizontal line and the shaded regions correspond to the
absolute maximum (3.84) and the observational 1σ and 2σ WMAP7 bounds for the scalar
tilt respectively, cf. (3.90).
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Figure 3.5: The allowed WMAP5 1σ and 2σ regions in the (r, ns). The prediction of Higgs
Inflation (green box) are compared with those of the standard m2φ2 and λφ4 chaotic models
and the Harrison-Zeldovich spectrum.

much smaller than the current observational constraint, r < 0.24 (95% C.L.), cf. Ref. [1].
Also here, the extreme value agrees with that of Higgs Inflation [111]. The obtained values lie
well inside the 2σ WMAP7 allowed region in the (r, ns) plane, as can be seen in Fig. 3.5. For
completion we compare them with the predictions of the standard chaotic models and the
Harrison-Zeldovich spectrum. At this point, it is interesting to notice that the predictions
of Higgs inflation with φ � v and large coupling ξh � 1 coincide with those obtained in a
scalar tensor theory with φ < v and negative coupling ξh < 0. This duality was pointed out
in Ref. [156].

The value of N∗ in the previous expressions depends on the post-inflationary evolution
of the universe, including not only the radiation and matter dominated eras, but also the
details of (p)reheating. As we will see in the next chapter, this stage turns out to be extremely
complicated. However, an estimation of the number of e-folds N∗ can be obtained as follows.
We will assume, as is indeed the case (cf. Chapter 4), that the evolution of scale factor
during (p)reheating is that of a matter dominated universe, a ∼ t2/3, and that the transitions
between the different eras are instantaneous. In this case, one can derive the following relation
[155]

N∗ ' 59− ln
k∗

a0H0
− ln

(
ρcr/ΩR

Ṽ (θ∗)

)1/4

+ ln

(
Ṽ (θ∗)

Ṽ (θend)

)1/4

− 1

3
ln

(
Ṽ (θend)

ρrh

)1/4

, (3.86)

where a0, H0, ρcr and ΩR stand for present values of the scale factor, the Hubble param-
eter, the critical density and the present radiation density respectively. Numerically this
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corresponds to

N∗ ' 59− ln
k∗Mpc

0.002a0
− ln

1016GeV

Ṽ (θ∗)1/4
+ ln

(
Ṽ (θ∗)

Ṽ (θend)

)1/4

− 1

3
ln

(
Ṽ (θend)

ρrh

)1/4

. (3.87)

with ρrh the radiation energy density at the end of reheating. It is clear that the maximum
energy density transferred into radiation ρmax has to be smaller than the energy scale at the
end of inflation. This case corresponds to what we have called fast reheating approximation,
where almost all the energy density of the inflaton is converted into relativistic matter. The
lower value of the energy transfer ρmin is dictated by the transition value φt ∼ MP /ξh (cf.
Section 4.2), below which the non-minimal coupling of the Higgs field to gravity can be
neglected and we recover the standard Higgs quartic behaviour. This second case is referred
as long reheating. We then have ρmax ≤ ρrh ≤ ρmin, with

ρmaxrh = V (θend) '
(

7− 4
√

3
) λM4

P

ξ2
h

, ρminrh '
λM4

P

4ξ4
h

. (3.88)

In these two limits,

N∗max ' 64.55− 1

2
ln

ξh√
λ
, N∗min ' 64.55− 1

12
lnλ− 2

3
ln

ξh√
λ
, (3.89)

where we have taken into account the approximate expressions (3.76) and (3.77).

The approximate formulas (3.78)-(3.80), as well as (3.89), are useful to understand the
parametric dependence of the observables. In the slow reheating case ρrh = ρmaxrh , all of them
depend on the different couplings only through the ratio ξh/

√
λ, while in the fast reheating

case ρrh = ρminrh , there appears an explicitly on the Higgs self-coupling λ through Nmin, cf.
(3.89). Changes in the value of λ, for fixed ratio ξh/

√
λ, give therefore rise to a shift in the

minimal number of e-folds N∗min. However, the influence of this small shift (∆N ∼ 0.2) on
the observables can be completely neglected for values of λ in the range 0.1 < λ < 1. It is
therefore sufficient to discuss their dependence on ξχ and ξh/

√
λ. In Fig. 3.4 we plot the

approximate expressions (3.78) and (3.80) for the scalar spectral tilt and the tensor-to-scalar
ratio respectively as functions of the coupling ξχ for both the fast and slow reheating cases.
The horizontal line in the left plot corresponds to the upper bound on the spectral tilt (3.84).

Accurate predictions for the parameter regions yielding the observables ns(k
∗), ∆2

ζ(k
∗)

and r(k∗) in the allowed CMB range can be found numerically by combining (3.55), (3.54)
and (3.87). Since the amplitude of tensor perturbations are expected to be very small, cf.
(3.85), we will consider as observational bounds for the scalar tilt, and the amplitude of the
scalar power spectrum those of the concordance ΛCDM model without tensor perturbations10

ns(k
∗) = 0.963± 0.012 , ∆2

ζ(k
∗) = (2.44± 0.09)× 10−9 , (3.90)

where k∗/a0 = 0.002 Mpc−1 is the pivot scale. The previous bounds take into account data
from WMAP 7-year results, Baryonic Acoustic Oscillations (BAO) [157] and the value of the
Hubble constant H0 [158]. Errors indicate the 68% confidence level. The results are plotted
in Fig. 3.6. The band-shape of the two regions (associated to the fast and slow reheating
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Figure 3.6: Parameter regions for which the values of the scalar tilt ns(k
∗) and the amplitude

of the scalar spectrum ∆2
ζ(k
∗), lie in the observationally allowed range 3.90, for 0.1 < λ < 1.

The red area is obtained for ρrh = ρmaxrh (fast reheating), while the blue one corresponds to
ρrh = ρminrh (slow reheating). The fact that the bands are cut on the right hand side is due to
the constraint on the scalar tilt ns(k

∗), cf. (3.78). On the other hand, the band-shape comes
from the constraint on the scalar perturbation amplitude ∆2

ζ(k
∗), cf. (3.79).

Fast reheating 0 < ξχ < 0.0052 46200 <
ξh√
λ
< 63100

Slow reheating 0 < ξχ < 0.0051 44900 <
ξh√
λ
< 59900

Table 3.1: Bounds from the CMB observables on the non-minimal couplings of the Higgs (h)
and dilaton fields to gravity (χ) for fast (ρrh = ρmax) and slow (ρrh = ρmax) reheating stages.



42 The Higgs boson in the Sky

cases) is due to the constraint on the spectrum amplitude (3.79), depending both on ξh and
ξχ. On the other hand, the cut on the right of the bands comes from the constraint on scalar
tilt (3.78), which only depends on ξχ. The associated bounds on parameters are shown in
Table 3.1.

We derive this section by computing the constrains on the region of initial conditions
for the scalar fields which lead to successful inflation. The initial conditions for inflation have
to be such that θin ≥ θ∗, where θ∗, given by (3.77), is the field value close to which the
observable scales exit the Hubble horizon during inflation. In terms of the original variables
this condition reads

hin
χin
≥

√
1 + 6ξχ
1 + 6ξh

tan θ∗ . (3.91)

For typical values of the parameters, ξχ = 0.003, ξh = 50000 and N∗ = 60, we have θ∗ ∼
1.2, or equivalently hin

χin
>∼0.004. We will come back to the initial conditions for inflation

in Chapter 5, where considerations related to the late evolution of the universe will yield
additional constraints on the initial conditions.

3.6 Quantum Corrections

The study of the cosmological aspects of Higgs-driven scenarios throughout this chapter
have mostly remained at the level of classical field theory. However, both inflation and the
subsequent reheating stage, cf. Chapter 4, take place at energies well above the electroweak
scale. Some important assumptions, such as the validity of the effective theory at the scales
involved or the flatness of the potential during inflation, strongly depend on the quantum
theory. Although a complete study of the quantum aspects of Higgs inflationary models goes
clearly beyond the scope of this thesis, we would like to summarize the state of the art and
clarify the controversies between the different approaches to the problem [159, 160, 161, 162,
163, 164, 165, 166, 167]. The discussion closely follows that in Ref. [167], although other
discussions have been also taken into account.

Let us start by noting that Higgs–driven inflationary models are clearly non-renormalizable,
due to the non-minimal coupling to gravity in the Jordan frame or to the non-linear inter-
actions of the Einstein frame potential. Therefore, they should be understood as effective
field theories valid up to a given cutoff scale Λc . At this scale the theory becomes either
inconsistent or strongly interacting, making it impossible to apply the standard QFT tech-
niques. The usual criterion for determining the cutoff of the theory is based on the violation
of tree level unitarity, whose lower value is frequently estimated by simple power counting.
This is precisely the approach adopted in [164, 165], where it was claimed that the tree level
amplitudes of scattering of scalars above the EW vacuum in Higgs inflation hit the unitarity
bounds at energies Λc ∼ MP

ξh
. This point is however rather subtle. In order to clarify it, let us

decompose the Higgs field and the Jordan frame metric around their corresponding vacuum

10These numbers are taken from http://lambda.gsfc.nasa.gov/product/map/current/params/lcdm_sz_

lens_wmap7_bao_h0.cfm.

http://lambda.gsfc.nasa.gov/product/map/current/params/lcdm_sz_lens_wmap7_bao_h0.cfm
http://lambda.gsfc.nasa.gov/product/map/current/params/lcdm_sz_lens_wmap7_bao_h0.cfm
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solutions

h = v + δĥ , gµν = hµν +
δĝµν
MP

, (3.92)

where δĥ are the quantum excitations of the Higgs field and hµν is a canonically normalized
metric perturbation. At the leading order one obtains a dimension 5 operator

ξh
MP

(δĥ)22δĝ , (3.93)

arising from the non-minimal coupling to gravity in the Jordan frame ξhh
2R. As correctly

pointed out in [164], the contribution of the previous term to tree level amplitudes is of order

M∼
ξ2
hE

2
cm

M2
P

, (3.94)

with Ecm the typical center of mass energy of the process. Then, taking into account just the
naive power counting mentioned before, one should be tempted to say that the effective field
theory (EFT) description breaks down at an scale Λc ∼ MP /ξh. Notice however that this
kind of reasoning can be misleading, since there can exist non-trivial cancellations between
the different channels involved that could give rise to a higher cutoff. As an example of this
we can consider the hh → hh scattering via graviton exchange with on-shell external legs.
Summing over all the possible intermediate channels (s,t,u) one obtains [168, 169]

Mtotal ∼
E2
cm

M2
P

, (3.95)

which, rather than to to the GUT scale Λc ∼ MP /ξh, points directly to the Planck scale
as the true cutoff of the theory. Although one could argue that this kind of cancellations
might not take place for other scattering processes, recovering therefore the original cutoff,
there exist additional arguments in favour of a higher scale. As always the devil is in the
details. It is very important to notice that the cutoff Λc is not a static quantity, but rather
depends on the background h̄ above the instantaneous expectation value of the Higgs field.
During the inflationary and reheating stages the system is not described by perturbations
above the vacuum solutions. Let us illustrate how this is applied to Higgs Inflation. Let us
assume the background to be approximately static, which is indeed a good approximation
compared with the temporal scale of the relevant high-frequency excitations δĥ appearing
in non-renormalizable operators as (3.93). Expanding the metric and the Higgs field around
their corresponding background values

h = h̄+ δĥ , gµν = ḡµν + δĝµν , (3.96)

we obtain (after diagonalizing and redefining the Higs field) the leading order term

ξh

√
M2
P + ξhh̄2

M2
P + ξh(1 + 6ξh)h̄2

(δĥ)22δĝ , (3.97)
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which corrects the dimension 5 operator (3.93). Note that the associated cutoff

Λc(h̄) =
M2
P + ξh(1 + 6ξh)h̄2

ξh

√
M2
P + ξhh̄2

, (3.98)

reduces indeed to the previous one in the low energy limit h̄�MP /ξh. However, they clearly
differ for large values of the Higgs field, h̄�MP /ξh, as those that occur during inflation. In
that case, the power counting cutoff scale (3.98) reduces to Λc ∼

√
ξhh̄, or in other words, to

the approximate effective Planck mass in the Jordan frame M2
P,eff = M2

P + ξhh̄
2 ' ξhh̄2.

A similar analysis can be performed in the Einstein frame [167]. After doing the field
redefinition (3.9), the non-linearities in the Einstein frame kinetic term are translated into
the potential

V (φ) =
λM4

P

4

h4(φ)(
M2
P + ξhh2(φ)

)2 , (3.99)

which expanded around the background, φ̄+ δφ̂, becomes

V (φ̄+ δφ̂) = V (φ̄) +
∞∑
n=1

1

n!

dnV

dφn

(
δφ̂
)n

, (3.100)

The specific form of the operators with n > 4 and the associated cutoff in the previous
expression depend, as before, on the value of the background field, and therefore on the
position of the Higgs field in the inflationary potential. As we saw in Section 3.2 the relation
φ(h) simplifies considerably during the inflationary stage, φ̄�MP /

√
ξh and (3.99) becomes11

V (φ) = V0

(
1− e−ακφ

)2
, (3.101)

where we have assumed the field φ to be positive and omitted the absolute value in (3.18).
Expanding around the background, the non-renormalizable terms in (3.100) have the form

V0
e−ακφ̄

Mn
P

(
δφ̂
)n

. (3.102)

The exponential factors in the previous expression effectively extend the cutoff of the theory
up to the Planck scale, Λc ∼MP , in clear agreement with the results obtained in the Einstein
frame. All the relevant scales during inflation are parametrically well below this cutoff, which
justifies the semiclassical approximation used in this thesis. The conclusion can be extended
to the subsequent (p)reheating and hot Big Bang stages [167].

Note that the Einstein frame potential (3.101) displays, for large field values, an ap-
proximate shift symmetry φ→ φ+ c, respected also by the minimally coupled gravitational
interaction. As is known from the works on Natural inflation [170], an approximate shift
symmetry is enough to preserve the flatness of the Einstein frame potential from radiative

11A similar analysis, albeit much more tedious, can be of course performed for the remaining parts of the
potential [167].



3.6 Quantum Corrections 45

corrections. Quantum corrections can indeed be computed with the standard renormaliza-
tion prescriptions and taken into account in a consistent way [171, 167]. For the perturbation
theory to make sense, the counterterms must be chosen such that the effective potential has
a flat direction to allow for the spontaneous breaking of scale invariance. This conclusion
also holds upon the inclusion of fermion and gauge fields, provided that their couplings also
obey shift symmetry [167], as indeed happens in Higgs Inflation.

The previous ideas about field dependent cutoffs can be also applied to the computation
of quantum effective inflationary potential. Note that the large field region of Higgs Inflation
in the Einstein frame displays an approximate scale-invariance symmetry, which becomes ex-
act for all field values in the Higgs-Dilaton model. All the standard regularization procedures
[125] (cutoff, Pauli-Villars, dimensional regularization, lattice regularization) introduce a new
scale in the theory, breaking this scale-invariance at the quantum level. We have seen above
that a fixed renormalization point or cutoff in that frame corresponds to a field-dependent
one in the Jordan frame. This suggest to modify the standard regularization prescriptions in
the Jordan frame to make them depend on the fields. For the case of cutoff or Pauli-Villars
regularizations this can be done by simply choosing the cutoff scale or the Pauli-Villars masses
to be field dependent [172]. Similarly, the t’Hooft-Veltman parameter12 µ2ε [173] appearing
for instance in the standard dimensional regularization of the Higgs’ self-coupling13 λ [125]

λ = µ2ε

(
λR +

∞∑
i=1

ai
εi

)
, (3.103)

should be promoted to [116]

µ2ε →
(
ξhh

2 + ξχχ
2
) ε

1−ε , (3.104)

in order to solve the dimensional mismatch between the bare (λ) and renormalized (λR) cou-
plings constants. Notice that the previous schemes are completely perturbative and indeed
make sense only if there exist a spontaneously broken ground state over which perform the
perturbative expansion. The use of a dynamical lattice could extend the previous pertur-
bative treatments to the non-perturbative regime [117]. Using the above renormalization
prescriptions it is possible to compute the effective potential in the inflationary region with
the normalization point chosen in order to minimize higher order terms. The values of the
coupling constants must be evaluated at the energy scale of inflation, making use of the renor-
malization group equations. The effective potential obtained in this way can be used to put
constraints on the Higgs mass through the known value of the cosmological parameters. A
detailed computation of the two loop14 quantum corrections to the Higgs Inflation potential
can be found in Ref. [162]. Higgs Inflation turns out to be possible only in an specific interval
of Higgs masses, namely mmin < mH < mmax, with

mmin =

[
126.1 +

mt − 171.2

2.1
× 4.1− αs − 0.1176

0.002
× 1.5

]
GeV , (3.105)

12We use the convention d = 4− 2ε.
13The parameters an are the coefficients of the Laurent series in ε (counterterms) and must be fixed by

requiring finite renormalized Green’s functions at every order in perturbation theory.
14The main effect of the 2-loop computation is widening the window for the Higgs field wrt the one-loop

computation.
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Figure 3.7: Reconstructed Higgs inflationary potential from the WMAP+SN+BA0 dataset
as a function of the Higgs mass mH , the spectral tilt ns and the tensor to scalar ratio r. The
different contours correspond to quark pole masses mt = 168 GeV (green), mt = 171.3 GeV
(blue), mt = 173 GeV (magenta) at 68% and 95% C.L. Taken from [174].

mmax =

[
193.9 +

mt − 171.2

2.1
× 0.6− αs − 0.1176

0.002
× 0.1

]
GeV . (3.106)

The theoretical uncertainty is about ±2.2 GeV [162]. Here mt and αs stand for the top
mass and strong coupling constant respectively. It is important to understand the differences
among the computation procedure of the previous bounds and others in the literature. The
results obtained in Ref. [159] are particularly controversial, since they imply a significantly
different Higgs mass, mH ' 230 GeV. However, it should be mentioned that in that work
the running of the coupling constants up to the inflationary scale MP /ξh was not taken into
account and the mass of the Goldstone boson was overestimated, due to the approximation
m2
G = λv2, which clearly differs from the real one

m2
G =

λv2(
1 + ξhv2

M2
P

)3 � λv2 . (3.107)

On the other hand, the results obtained in [163, 160] are in good numerical agreement (at
the one and two-loop level respectively) with the cited bounds (3.105) and (3.106), in spite
of the fact that the formalism used in [160] is not gauge invariant. This translates into a
different running of the coupling constants and gauge dependent matching conditions at the
EW scale.

The values (3.105) and (3.106) are just based on the mapping between the renormal-
ization group equations and the spectral index. These results can be further refined by using
Markov Chain Montecarlo (MCMC) techniques to reconstruct the inflationary potential [174].
The WMAP7 data are complemented with geometric probes from Type Ia Supernovae (SN)
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and baryon acoustic oscillations (BAO). The dependence of the reconstructed Higgs potential
at 68% and 95% C.L. for several top quark pole masses is shown in Fig. 3.7. Note that an
accurate reconstruction of the Higgs potential requires a precise determination of the top
quark mass15. A value of the top quark pole mt = 171.3 GeV and effective QCD coupling
constant αs(mZ) = 0.1176 provide a bound for the Higgs mass [174]

143.7GeV ≤ mH ≤ 167.0GeV (3.108)

at 95 % C.L. It is interesting to compare this window with the direct experimental constraints
on the Higgs mass, coming from e+e− and pp̄ experiments at LEP and Tevatron (CDF and
D0) respectively [22]. The final mass limit16 arrived by LEP2 through the channel e+e− → hZ

mH > 114.4 GeV , (3.109)

at 95% C.L., while that obtained by the combined effort of CDF and D0 through channels
such as gg → h∗ →WW or qq̄ →Wh→ lνbb̄ excludes the intermediate region

160 GeV < mH < 170 GeV . (3.110)

also at 95% C.L. We conclude therefore that there still exist an experimentally allowed (al-
though narrow) window of Higgs masses able to provide us with a successful inflationary
stage. These experimental bounds together with the upper limits on the Higgs mass ob-
tained from CMB observables place Higgs Inflation to the reach of the LHC, which will allow
to verify or falsify the prediction.

15A summary of the present experimental status can be found in http://www-cdf.fnal.gov/physics/new/

top/public_mass.html.
16We only consider the direct lower bounds. For a review of the theoretical upper bounds on the Higgs mass

the reader is referred for instance to Ref. [175].

http://www-cdf.fnal.gov/physics/new/top/public_mass.html
http://www-cdf.fnal.gov/physics/new/top/public_mass.html
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CHAPTER 4

The Higgs field and (P)reheating

I believe there are 136× 2256

protons in the universe and an
equal number of electrons.

Philosophy of Physical Science
Sir Arthur Eddington

4.1 From Inflation to the hot Big Bang

The key ability of inflation to homogenize the universe also means that it effectively leaves
the cosmos empty of particles and at zero temperature. Any particle content previous to
the inflationary era is diluted away by the inflationary expansion. For the minimal num-
ber of e-folds needed to obtain the observed homogeneity and flatness of the universe [46],
N ∼ 60, the dilution factor of any primordial number density becomes at least as large as
e−3N ∼ e−210. Thus, the universe at the end of inflation is in a cold, low-entropy state with
few degrees of freedom, very much unlike the present hot and highly-entropic universe. The
energy density of the universe is locked up in a combination of kinetic and potential energy,
stored in the zero-momentum mode of the inflaton field. To recover the standard hot Big
Bang picture, this energy has to be somehow converted into the Standard Model particles.
The diverse perturbative or non-perturbative mechanisms to defrost the universe are known
as reheating [176, 177, 178] and preheating [179, 180, 181, 182, 183] respectively, and con-
stitute one of the most important applications of the quantum theory of particle creation.
A review of the different preheating mechanism can be found in Ref. [184, 185]. Whatever
the mechanism of particle production, the created particles interact among themselves and



50 The Higgs field and (P)reheating

eventually reach an approximate state of thermal equilibrium1. This is understood as a deco-
herent distribution of particles with small occupation numbers for all momentum modes. It is
the state of maximum uniformity and highest entropy and is completely characterised by the
temperature and the chemical potentials associated to the existing conserved charges. The
maximal temperature at this stage is called the reheating temperature. A viable (p)reheating
scenario must lead to a radiation-dominated universe at least at a temperature above a few
MeV, when nucleosynthesis begins. From there on, the universe expands and cools down, in
the way described by the standard hot Big Bang.

(P)reheating is not at all a generic process. The overall picture of the transition be-
tween the quasi -inflationary and radiation dominated eras depends crucially on the inflaton
amplitude and the strength of the interactions involved, and therefore on the different mi-
crophysics models in which inflation is embedded. The study of the details of (p)reheating
in each concrete model without the experimental access to the couplings among the inflaton
and the matter fields is a very difficult task. Most of the works on (p)reheating are therefore
focused on the generic features of the different mechanisms that could play a role in the
process, without considering any specific model. The novelty and great advantage of Higgs
inflationary models is their connection with a well-known microphysical mechanism, hope-
fully accessible in the near future accelerator experiments. The measurement of the Higgs
mass will complete the list of the couplings of the Standard Model and. Known the couplings,
one should be able to study all the (p)reheating details and determine from them the ini-
tial conditions for the hot Big Bang. This makes the models under consideration extremely
interesting and, potentially, predictive.

As we did in Chapter 3, we choose to work in the Einstein frame, where the action
takes the usual Einstein-Hilbert form and the familiar (p)reheating techniques can be directly
applied. Different perturbative and non-perturbative aspects of reheating in the context on
induced gravity [186, 187, 188] and general scalar-tensor theories [189, 190, 191, 192, 193, 194,
195] have been previously considered in the literature, but not with the Higgs field playing
the role of the inflaton. The main features of the following analysis will be common to both
Higgs and Higgs-Dilaton Inflation. Indeed, as we will show in Section 4.2, the Higgs-Dilaton
model can be reduced, with a proper choice of variables, to the single field case studied in
Ref. [77]. All the relevant physical scales, including the effective gauge and fermion masses
presented in Section 4.3, agree, up to small corrections, with those of Higgs Inflation. Given
the strength of the interactions between the Higgs and the Standard Model particles, we
will start by considering the perturbative decay of the Higgs field right after the end of
inflation. As we will show in Section 4.4, the process turns out to be not efficient enough,
and non-perturbative effects must be taken into account. Among the different possibilities,
the shape of the potential in the Einstein frame suggests the study of tachyonic preheating
[196, 197, 198] and parametric resonance [179, 181, 182, 183], which are presented in Sections
4.5 and 4.6 respectively. Once created, the Standard Model particles would decay into lighter
states, as happens for instance in instant preheating [199]. This analysis is presented in
Section 4.7, leaving for Section 4.8 the study of the combined effect of parametric resonance

1Properly speaking, a precise thermal equilibrium does not exist in an expanding universe. However, this
state constitutes a good approximation if the rate of change of the quantities describing the system is much
smaller than the expansion rate.
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and perturbative decays, that we called Combined Preheating [77]. The backreaction of the
produced particles on the Higgs oscillations and the end of inflation are finally considered in
Section 4.9.

4.2 Higgs-Dilaton Inflation meets Higgs Inflation

In this section we make explicit the similarities between Higgs and Higgs-Dilaton Inflation
during (p)reheating. Let us start by considering the single field Higgs Inflation case presented
in Section 3.2 and study its evolution around the minimum of the potential. For small field
values, the potential (3.18) can be approximated as

V (φ) =
1

2
M2φ2 + ∆V (φ) , (4.1)

where M =
√

λ
3
MP
ξh
∼ O(1013 GeV) is the typical frequency of oscillation and ∆V are some

corrections to the quadratic approximation

∆V (φ) = −β1

3
|φ|3 +

β2

4
φ4 +O(|φ|5) , (4.2)

with β1 = λMP /
√

6ξ2
h and β2 = 7λ/27ξ2

h. As we will see at the end of this section, they soon
become negligible after the end of inflation. The potential around the minimum behaves
therefore, to very good approximation, as an standard quadratic chaotic potential. Note,
nevertheless, that the approximation (3.13), and as a consequence the parametrized potential
(3.18), does not properly describe the shape of the potential in the region v � φ�MP /ξh.
For these small values, |φ| � φt ≡ MP /ξh, the effect of the non-minimal coupling becomes
irrelevant and we recover the minimally coupled case, in which the Jordan and Einstein frames
agree, Ω2 ≈ 1. This translates into a transition in the inflationary potential from (4.1) to
V (φ) ≈ λ

4φ
4. As will be argued in Section 4.6, this region will turn out to be irrelevant for

the analysis of the preheating stage. Therefore, from now on, we will neglect the change in
the behaviour of the potential (from 1

2M
2φ2 to λ

4φ
4) in this “small” field region.

To make explicit the connection of (4.1) with the scale invariant Higgs-Dilaton extension
presented in Section 3.3, let us rewrite the lagrangian density (3.36) in the appropriate
variables. The tilde over all Einstein frame variables will be skipped to simplify the notation.
Unlike in the single-field case, the non-canonical kinetic term in (3.36) cannot be recasted in
canonical form by simply redefining the scalar field. In fact, in the present two-dimensional
manifold case, the Ricci scalar2 associated to the field space metric γab,

Rγ = (ξχ − ξh)
2

MP

ξ2
χ(1 + 6ξχ)χ4 − ξ2

h(1 + 6ξh)h4

(ξh(1 + 6ξh)h2 + ξχ(1 + 6ξχ)χ2)2 , (4.3)

does not identically vanishes, unless ξχ = ξh. This case is however not allowed by observations,
cf. Section 3.5. Nevertheless, it is possible to write the kinetic term in a quite simple diagonal

2In two dimensions, the Riemann tensor has only one independent component and therefore, it is enough
to consider the Ricci scalar.
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form. As pointed out at the end of Section 3.3, the conserved quantity (3.51) suggests to
introduce the polar decomposition (3.52), in terms of which the lagrangian density (3.36) for
the β = 0 case can be written as

L√
−g̃

=
M2
P

2
R− 1

2
KD − V (θ) . (4.4)

Here KD is a diagonal, although non-canonical, kinetic term

KD =
σ

sin2 θ + σ cos2 θ
(∂ρ)2 +

M2
Pσ

ξχ

tan2 θ + µ

cos2 θ (tan2 θ + σ)
2 (∂θ)2 . (4.5)

and we have defined

µ ≡ ξχ
ξh
, σ ≡ (1 + 6ξh) ξχ

(1 + 6ξχ) ξh
. (4.6)

Recall that the CMB bounds in Table 3.1 imply µ� 1, which allows to simplify the second
term in (4.5) to obtain

KD =
σ

sin2 θ + σ cos2 θ
(∂ρ)2 +

M2
P σ

ξχ

sin2 θ(
sin2 θ + σ cos2 θ

)2 (∂θ)2 . (4.7)

The potential term in (4.4) is given by

V (θ) = V0

(
sin2 θ

sin2 θ + σ cos2 θ

)2

, (4.8)

where we have neglected the contribution of the dilaton χ, given the small value of ϑ. Notice
that this is analogous to neglect the vacuum expectation value v in the single field case,

cf. (3.15). The amplitude V0 is defined as V0 ≡
λM4

P

4ξ2
h

, which agrees with that of the Higgs

Inflation potential (3.18). Let us finally perform an extra field redefinition to write the angular
dependence of the kinetic term (4.7) in a simpler form. We set

tanh [ᾱκ (φ0 − |φ|)] =
√

1− σ cos θ , (4.9)

with κ = M−1
P and ᾱ =

√
ξχ (1− σ) /σ. The constant quantity φ0 is defined by

cosh2 (ᾱκφ0) =
1

σ
. (4.10)

As we will see below, this choice simply sets the minimum of the potential at φ = 0.
Notice that, as happened in Higgs Inflation, the absolute value in the left hand-side of (4.9)
is required for φ to maintain the symmetry of the initial angular variable θ around the
minimum. In terms of the new variables the lagrangian density in the Einstein frame can be
written in a very simple form

L̃√
−g̃

=
M2
P

2
R− e2b(φ)

2
(∂ρ)2 − 1

2
(∂φ)2 − V (φ) , (4.11)
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Figure 4.1: Numerical evolution of the radial coordinate ρ during the (p)reheating stage. The
field displays the shift symmetry ρ→ ρ+ c, associated to the conservation of the dilatational
current. This fact reduces the background evolution during preheating to the single field
Higgs inflationary case.

previously studied in the literature [152, 200, 153]. As shown in Fig. 4.1 the radial variable
ρ displays an exact shift symmetry ρ→ ρ+ c. The function b(φ) is defined as

b(φ) =
1

2
ln
[
σ cosh2 (ᾱκ(φ0 − |φ|)

]
, (4.12)

while the potential V is given by

V (φ) = Ṽ0

[
1− σ cosh2 (ᾱκ(φ0 − |φ|)

]2
, (4.13)

where we have defined a new amplitude Ṽ0 ≡ V0

(1−σ)2 . As shown in Fig. 4.2, the shape of

the Higgs-Dilaton potential in these new variables clearly resembles that of the simplest
Higgs Inflation scenario (3.18). In spite of the slight differences, both of them present an
exponentially flat region for large field values and nicely agree for small ones. Indeed, the
relation between them becomes explicit if we approximate (4.13) around its minimum, to
obtain

V (φ) ' 1

2
M2
HDφ

2 + ∆VHD(φ) . (4.14)

where
M2
HD = (1 + 6ξχ)M2 , ∆VHD(φ) ' (1 + 6ξχ)∆V (φ) . (4.15)

The comparison between the previous expression and the exact potential (4.13) is shown in
Fig. 4.3. The small value of ξχ allows us to identify M2 ' M2

HD and ∆V ' ∆VHD and
study, simultaneously for the two models, the evolution of the inflaton around the minimum
of the potential. Let us start by considering the Klein-Gordon equation for the inflaton,

φ̈+ 3Hφ̇+ V ′(φ) = 0 , (4.16)
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Figure 4.2: Comparison between the Higgs-Dilaton inflationary potential (blue continuous
line) obtained from (4.13) and the corresponding one for the Higgs Inflation model (3.18) (red
dotted line). In spite of the slight differences in the upper inflationary region, they nicely
agree in the lower part, where the (p)reheating stage takes place.
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Figure 4.3: Comparison among the exact inflationary potential (4.13) in Higgs-Dilaton infla-
tion (solid black line) and the quadratic approximation in (4.14) with (red dashed line) and
without (blue dotted line) taking into account the corrections ∆VHD. Similar results can be
found for Higgs Inflation.
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which, for a power-law evolution a ∝ tp, can be written as

φ̈+ 3
p

t
φ̇+M2[1 + δM2(φ)]φ = 0 , (4.17)

with δM2 ≈ −β1|φ| + β2φ
2 + O(φ3). As we will justify a posteriori, these non-linear terms

will be negligible from the very beginning of (p)reheating, |δM2(φ)| � 1. Notice that the
interactions with the Standard Model fields are also neglected. As we will see in Section
4.9, the backreaction of these fields into the Higgs’ dynamics will only be relevant once their
occupations numbers have grown sufficiently.

The general solution of the evolution equation (4.17) in the |δM2(φ)| � 1 case can be
expressed as

φ(t) =
1

(Mt)ν
[C1 Jν(Mt) + C2 J−ν(Mt) ] , (4.18)

with C1 and C2 constants depending on the field values at the end of inflation, and J±ν(x)
Bessel functions of order ±ν, with ν = (3p − 1)/2. For a reasonable power index3, p > 1/3,
the second term in the right-hand side of (4.18) diverges in the limit Mt→ 0 and therefore
should be discarded on physical grounds. The physical solution is then simply given by

φ(t) = C1 (Mt)−νJν(Mt) , (4.19)

which making use of the large argument expansion (Mt � 1) of fractional Bessel func-
tions [201], can be approximated by a cosine function

φ(t) ≈ A (Mt)−
3p
2 cos (Mt− (3p/2)(π/2)) . (4.20)

where A ∝ C1 is a normalization constant that will be fixed later. The energy and pressure
densities associated to the general solution (4.19) are given, after averaging over several
oscillations, by

ρφ ≈
〈

1

2
φ̇2 +

1

2
M2φ2

〉
≈ 1

2
M2X2[

〈
cos2(Mt− 3πp/4)

〉
+
〈
sin2(Mt− 3πp/4)

〉
] =

1

2
M2X2 ,

pφ ≈
〈

1

2
φ̇2 − 1

2
M2φ2

〉
≈ 1

2
M2X2[

〈
cos2(Mt− 3πp/4)

〉
−
〈
sin2(Mt− 3πp/4)

〉
] = 0 .

where we have neglected the change in X(t) ≡ A(Mt)−3p/2, since M � H. The equation of
state for the inflaton is then that of presureless non-relativistic matter, pφ ≈ 0. Taking into
account the conservation equation ρ̇φ + 3H(ρφ + pφ) = 0, we obtain ρφ ∼ a−3. The inflation
behaves therefore as a wave of particles at rest, oscillating coherently with conserved number
of particles per comoving volume

d

dt

(
a3nφ

)
= 0 , (4.21)

or in other words, as a Bose condensate. In this case, the scale factor evolves as a(t) ∝ t2/3,
which allows to express the final physical solution as

φ(t) =
φend

Mt
sin(Mt) . (4.22)

3This condition includes both the matter p = 2/3 and radiation p = 1/2 dominated cases.
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Figure 4.4: Numerical evolution during the preheating of the field φ in (4.11). The amplitude
of the oscillations decreases with time due to the expansion of the Universe. The blue solid
line corresponds to the evolution on the exact Higgs-Dilaton potential (4.13), while the red
dashed line comes from simple quadratic potential (4.14). The curves nicely agree from the
very beginning of the preheating stage.

where we have assumed that the oscillatory behaviour starts just at the end of inflation,
A = φend. Rewriting the previous equation in terms of the number of times the inflaton
crosses zero, j = (Mt)/π, we get

φ(t) ≈ φend

jπ
sin(πj) = X(j) sin(πj) . (4.23)

The Higgs condensate oscillates with a decreasing amplitude X(j) ≡ φend
jπ . We can obtain an

upper bound, ακ|φ| < 0.122/N , on the amplitude of the Higgs field after N = j/2 oscillations,
which in terms of the correction of δM2 to 1, see (4.17), implies |δM2| < 0.122, 0.0615 or
0.0244, after the first N = 1, 2 and 5 oscillations, respectively. Thus, from the very beginning,
the effective potential of the Higgs field tends very rapidly to that of a harmonic oscillator,
which justifies a posteriori the approximation |δM2| � 1 used in the derivation of (4.18) and
(4.23). This fact can be observed in the numerical result displayed in Fig. 4.4

If we neglect the presence of other fields and consider the Higgs-condensate as a free
field, only damped by the expansion of the universe, then we can easily estimate the number
of semi-oscillations before the amplitude of the field becomes smaller than the transition
value φt ∼Mp/ξh. For |φ| < φt, the conformal transformation (3.7) equals one and ceases to
distinguish between Jordan and Einstein frames. In this case, the Higgs potential will not be
anymore approximated by the quadratic potential (4.1), but rather by a quartic interaction
(λ/4)φ4. This will happen when

X(jt)/φt ∼
ξhκφend

πjt
< 1 , (4.24)
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or equivalently after

j ≥ jt ≡
ξhκφend

π
≈ (104) (4.25)

semi-oscillations. If before such a time, the energy stored in the Higgs condensate has not
yet been transferred into the Standard Model fields, the transition in the behaviour of the
potential will change the expansion rate from matter-like to radiation-like, characteristic of
quartic potentials.

4.3 The Standard Model in the Einstein frame

The efficiency of the energy transfer from the Higgs field to the Standard Model particles will
depend on their mutual couplings, and therefore, on the specific form of the Standard Model
lagrangian in the Einstein frame. Let us start by considering the spontaneous symmetry
breaking sector, responsible of the masses of the intermediate gauge W and Z bosons, i.e.

LSBB√
−g
⊃ m2

WW
+
µ W

µ− +
1

2
m2
ZZµZ

µ . (4.26)

Contrary to what happens in the usual Standard Model, where the constant vev of the Higgs
field makes the masses of the SU(2) bosons independent of time, the dynamical evolution
during inflation gives rise to variable effective masses that depend on the instantaneous value
of the Higgs condensate

mW (t) =
g2h(t)

2
, mZ =

mW

cos θw
. (4.27)

The weak mixing angle θw = tan−1(g1/g2) depends on the coupling constants g1 and g2 of
the U(1)Y and SU(2)L groups respectively. Notice that these couplings must be evaluated
at the scale M , where all the relevant physical processes during preheating will take place.
Making use of the renormalization group equations it can be shown [202, 77] that numerically
this corresponds to g2

1 ≈ g2
2 ≈ 0.30, or equivalently, sin2 θw = cos2 θw ≈ 1/

√
2. From now on

we will use these values for numerical estimates.

In agreement with the prescription for transforming masses and fields firstly introduced
in Section 2.2, the lagrangian density (4.26) preserves its form under a generic conformal
transformation, g̃µν = Ω2gµν ,

L̃SBB√
−g̃
⊃ m̃2

W W̃
+
µ W̃

µ− +
1

2
m̃2
ZZ̃µZ̃

µ , (4.28)

if the fields and masses are redefined with the corresponding conformal weights as

W̃±µ ≡
W±µ
Ω

, Z̃µ ≡
Zµ
Ω

, m̃2
W =

m2
W

Ω2
, m̃2

Z =
m̃2
W

cos2 θw
. (4.29)

The same procedure can be applied to the Yukawa sector. As before, the specific form of the
action is maintained in the new frame if the conformal factors coming from the transformation
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of the metric determinant are incorporated in the definition of fields and masses. In particular,
for fermionic fields ψ, we must require ψ̃ ≡ ψ

Ω3/2 and m̃f ≡ mf/Ω.

It is interesting to notice that, not only the masses, but also the form of the interactions
between the Standard Model particles, remain invariant under conformal transformations.
Let us consider for instance the interactions between gauge bosons and fermions

LF√
−g
⊃ g2√

2
W+
µ J
−
µ +

g2√
2
W−µ J

+
µ +

g2

cos θw
ZµJ

µ
Z , (4.30)

where

J−µ ≡ d̄LγµuL , J+
µ ≡ ūLγµdL , (4.31)

are the charged currents carrying the information about the couplings of the W±, and

JµZ ≡
1

2
ūLγ

µuL −
1

2
d̄Lγ

µdL −
2 sin2 θw

3
ūLγ

µuL +
sin2 θw

3
d̄Lγ

µdL , (4.32)

is the neutral current with the information of the couplings of the Z boson. Under a generic
conformal transformation, we obtain

L̃F√
−g̃
⊃ g2√

2
W̃+
µ J̃
−
µ +

g2√
2
W̃−µ J̃

+
µ +

g2

cos θw
Z̃µJ̃

µ
Z , (4.33)

where we have redefined the currents as

J̃µZ ≡
JµZ
Ω3

, J̃±µ ≡
J±µ
Ω3

, (4.34)

in agreement with the redefinitions of fermionic fields previously discussed.

The invariance of the total lagrangian density under generic conformal transformations
allows us to compute any scattering or decay in the new frame, without introducing different
Feynman rules from those already present in the original frame. In particular, we will be
interested in the total decay widths of the intermediate gauge bosons into lighter states.
Summing over all the allowed decay channels and boson polarizations, we obtain [203]

Γ̃W± =
3g2

2m̃W

16π
=

3 cos3 θw
2Lips

Γ̃Z , (4.35)

where m̃W± , m̃Z , are the dynamical masses in the Einstein frame and Lips denotes Lorentz
invariant phase-space factors Lips ≡ 7

4 −
11
3 sin2 θw + 49

9 sin4 θw. Notice that the previous
expressions assume that the gauge bosons are non-relativistic, while the fermions produced
in the decay are relativistic. The relativistic or non-relativistic nature of a given particle is
something intrinsic to the particle and should not depend on the conformal frame. Indeed,
since both momenta and masses transform in the same way under conformal transformations,
if a gauge boson is allowed to decay into a pair of fermions in a given frame, it will also be
able to decay in another frame, and the other way round. For instance forbidden transitions
in the Jordan frame such as Z → t̄t, W → tb are neither allowed in the Einstein frame. We
will come back to this point in Section 4.8, cf. (4.100).
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The explicit form of gauge boson and fermion masses in the expressions above depends
a priori on the particular conformal transformation used, and therefore on the non-minimally
coupled model considered. For the Higgs Inflation case, making use of the conformal trans-
formation (3.7), we have

m̃2
A,f =

g2M2
P

4ξh

(
1− e−ακ|φ|

)
, (4.36)

with g = g2, g2/ cos θw and
√

2yf , for A = W,Z bosons and fermions f , respectively. On
the other hand, for the Higgs-Dilaton scenario, associated with a much more complicated
conformal transformation, we obtain

(
m̃2
A,f
)
HD

=
g2M2

P

4ξh

(
1− σ cosh2 (ακ (φ0 − |φ|))

1− σ

)
. (4.37)

Around the minimum of the potential we find an interesting connection between the masses
in the two models, namely, (m̃2

A,f )HD = m̃2
A,f (1 + 6ξχ) with

m̃2
A,f '

αg2MP

4ξh
|φ| . (4.38)

All the physical scales in Higgs and Higgs-Dilaton Inflation coincide, up to small corrections
proportional to the small parameter ξχ (cf. Table 3.1). This will allow us to apply the results
of the following sections to both models. From now on, we will focus on the Higgs Inflaton
scenario, extrapolating the main results to the Higgs-Dilaton case. As we did with the
gravitational sector, we will simplify the notation by omitting the tilde over all the Einstein
frame quantities in the matter sector.

4.4 Perturbative Decay of the Higgs field

A natural reheating mechanism, given the strength of the interactions of the Higgs boson
with the Standard Model particles, would be a single body perturbative decay of the inflaton
quanta into the Standard Model particles right after the end of slow-roll. In this picture, the
inflaton is understood as a collection of independent scalar particles with a finite probability
of decaying into the particles to which it is coupled [176, 177, 178]. During the inflationary
stage those couplings are usually neglected4, since, even if the excitations of those fields are
produced, the quasi -exponential expansion dilutes them almost instantaneously. In those
cases in which the mass of the decaying particle is larger than the Hubble rate, the curvature
of the spacetime can be neglected and the decay probabilities computed using the perturbative
Feynman rules in Minkowsky spacetime. In particular, we can modify the Higgs’ equation of
motion (4.16) to account for the proper quantum propagator. We have

φ̈+ 3Hφ̇+
(
M2 + Π(M)

)
φ = 0 , (4.39)

4These couplings are however fundamental for determining the radiative corrections during inflation. In
most of the inflationary models, they are assumed to be small in order to prevent radiative corrections from
lifting the flatness of the inflationary potential [46].
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First family Second family Third family

ye ∼ 2.9× 10−6 yµ ∼ 5.7× 10−4 yτ ∼ 10−2

yu ∼ 1× 10−5 yc ∼ 7.5× 10−3 yt ∼ 1

yd ∼ 2.5× 10−5 ys ∼ 5× 10−4 yb ∼ 2.4× 10−2

Table 4.1: Approximate values of the Yukawa couplings in the Standard Model assuming a
vacuum expectation value for the Higgs field v = 249 GeV.

where Π(M) is the polarization operator for the zero mode, kµ = (M,0). This operator
can be understood as the sum of all the one-particle irreducible (1PI) Green functions. Dia-
grammatically, these functions are constructed as the sum of all Feynman diagrams that
cannot be split into disconnected parts by cutting a single propagator line. Applying the
optical theorem in Minkowsky spacetime [125], Im Π(M) = M Γtot, the imaginary part of the
polarization operator5 can be related to the total decay width Γtot, obtained by adding all the
partial decays corresponding to each open channel. The effect of the polarization ope- rator
and the associated particle decays can be phenomenologically described by an effective (and
somehow controversial from the point of view of the fluctuation-dissipation theorem [204])
damping term [176, 177, 178]

φ̈+ (3H + Γtot) φ̇+M2φ = 0 . (4.40)

If the frequency of oscillations is sufficiently large compared with the Hubble rate and the
decay width, i.e M2 � {H2 , Im Π(M)}, we can safely neglect the temporal dependence of
these quantities to obtain

φ(t) ∝ exp

[
−1

2

(
3H + Γtot

)
t

]
sin(Mt) . (4.41)

The perturbative decay of the Higgs field into the Standard Model species translates in this
approach into an additional decrease of the oscillation amplitude and the non-conservation
of associated number of particles (4.21),

d

dt

(
a3nφ

)
= −Γφnφa

3 . (4.42)

Notice that for the previously described perturbative decay to happen, two conditions must
be fulfilled :

i) There should be enough phase-space in the final states for the Higgs field to decay, i.e.
M > 2mA,f , which will only happen when the amplitude of the Higgs field becomes

5The real part simply renormalizes the bare particle mass M2.
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smaller than a certain value φc. In particular, for a decay into gauge bosons and/or
fermions, in the light of (4.38), one needs

φ & φc ≡
1

g2

√
λ

2
M , (4.43)

which can be compared to the initial amplitude of the Higgs at the end of inflation to
obtain

φc
φend

' 1

3g2ξh
. (4.44)

ii) The decay rate of the Higgs field Γ ∼ g2

8πM has to be greater than the rate of expansion

H ≈ 1√
6
M
MP

φend
πj , or in other words, its half-lifetime must be smaller that the age of the

universe at that time. Such a condition, Γ > H, can be translated into the following
inequality

j ≥ jc ≡
4(ακφend)

g2
, (4.45)

which defines the critical number of semi-oscillations required for this second condition
to be true.

The critical amplitude (4.43) below which the Higgs is allowed to decay into gauge bosons is
of order φc ∼ 0.1M . When compared to the initial amplitude (3.27) of the Higgs at the end
of inflation φend ≈Mp ≈ 106M , we see that this critical amplitude is very small for the gauge
bosons. The Higgs condensate would need to oscillate ∼ 106 times before being able to decay
through this channel. The same applies to the top quark. In the case of other fermions,
due to the wide range of the Yukawa couplings, cf. Table 4.1,several situations can take
place . For instance, the decay channel into bottom and charm quarks is opened only after
a few oscillations of the Higgs, while for the rest of quarks and leptons, the decay-channel
has sufficient phase space from the very end of inflation. In general, the smaller the Yukawa
coupling of a given fermion to the Higgs, the less oscillations the Higgs will go through before
there is enough phase-space for it to decay into such a fermion. Notice however that the
smallness of the Yukawa coupling implies also a smaller decay rate. Consider for instance the
decay of the Higgs into electrons, whose Yukawa coupling is of order ye ≈ 10−6. From the
very end of inflation, see (4.43), there is phase-space in this channel for the Higgs to decay
into. However, it is precisely the smallness of the electron’s Yukawa coupling that allows the
decay to be possible, which prevents the condition ii) to be fulfilled. The decay width is much
smaller than the Hubble rate for a huge number of oscillations. Looking at (4.45), we realize
that the Higgs condensate should oscillate j ∼ 1012 times before the decay rate into electrons
overtakes the Hubble rate.

One can check that the previous conclusions also hold for the rest of fermions of the
Standard Model. When there is phase-space for the Higgs to decay into a given species, the
decay rate does not catch up with the expansion rate and, vice versa, if the decay rate of a
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given species overtakes the expansion rate, there is no phase-space for the decay to happen6.
The universe has then to wait to be old enough for the Higgs field to decay into the Standard
Model particles. Before any of those decay channels is opened, many other interesting non-
perturbative effects will take place. Their study is the purpose of the following sections.

4.5 Tachyonic preheating

As we pointed out in Section 3.2, the effective square mass m2
φ,eff of the Higgs field is negative

just after the end of inflation and will be so till the inflection point. When this happens
spinoidal instability takes place and long wavelengths quantum fluctuations φk, with momenta

k = |k| < mφ,eff, grow exponentially, φk(t) ∝ exp
(
t
√
m2
φ,eff − k2

)
, giving rise to an infrared

band. This effect is usually called Tachyonic Preheating [196, 197, 198]. Notice that this is
a strongly nonlinear and non-perturbative effect. The perturbative description presented in
the previous section has therefore a limited applicability. The width of the tachyonic band
will be limited in our case by the point of maximum particle production, i.e. the end of
inflation. At this point the effective mass mφ,eff takes a value

m2
φ,eff(φend) =

∂2V (φ)

∂φ2

∣∣∣∣∣
φend

≈ −M
2

30
, (4.46)

which corresponds to a maximum momentum for the tachyonic band kmax = 0.2M . This
comes from vacuum quantum fluctuations, φk(t) ∝ exp(Mt

√
1/30− (k/M)2), which grow

exponentially. In the usual hybrid inflation scenarios [205] this give rise to large occupation
numbers [196, 197, 198]. However, in our case, since the inflaton is fast rolling down the
potential towards the positive curvature region, the duration of the tachyonic preheating
stage is so short that the occupation numbers of those modes in the band do not grow
significantly and the effect can be neglected. In particular, the time interval from the end of
inflation till the inflection point is just M∆t ≈ 0.5 and therefore, even for the fastest growing
mode, k = 0, its growth is only ∼ e0.5/

√
30 ≈ 1.09. This is a negligible effect and thus, one

can still consider an initial spectrum of quantum vacuum fluctuations even at the inflection
point. All the analytical estimates of the following sections will ignore this period of tachyonic
instability, taking as initial conditions the amplitude (3.27) of the Higgs condensate at the
end of inflation and quantum vacuum fluctuations.

4.6 Bose-Einstein Condensation and Parametric Resonance

As we pointed in Section 4.2, the occupation number of the inflaton k = 0 mode at the
end of inflation is very large and the Higgs field effectively behaves, at least at zeroth order,
as a Bose-Einstein condensate. This implies that, contrary to the assumptions of Section

6Note that the condition (4.43) (which prevents Higgs decay into gauge bosons and top quarks) assumes
an averaged amplitude over a single Higgs oscillation, while smaller values are attained around the minimum
of the potential when X(t) < φc. However, when this happens, the Higgs field is well inside the non-adiabatic
range (4.57), in which the very concept of particle is not properly defined (see Section 4.6 for details).
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4.4, it should not be considered an ensemble of statistically independent static particles,
but rather a coherent zero-mode oscillating field, whose spatial and temporal coherence can
cause radical departures from the previous picture [179, 180]. To qualitatively understand
this let us consider any of the trilinear Einstein-frame couplings among the Higgs field and
the gauge bosons, forgetting for simplicity about polarizations. The direct decay probability,
PD ≡ Pφ→AA, of a Higgs particle φ with zero momentum into two gauge bosons A with same
momenta k, but opposite directions (as dictated by momentum conservation), is proportional
to

PD ∝ |〈nφ−1, nk + 1, n−k + 1|a†ka
†
−kaφ|nφ, nk + 1, n−k + 1〉|2 = (n−k + 1)(nk + 1)nφ , (4.47)

where a†±k and a±k are the gauge boson creation and annihilation operators and nk are
the corresponding occupation numbers. Accordingly, the probability for the inverse decay,
PI ≡ PAA→φ, to occur will be proportional to

PI ∝ |〈nφ + 1, nk − 1, n−k − 1|aka−ka†φ|nφ, nk + 1, n−k + 1〉|2 = nkn−k(nφ + 1) . (4.48)

If we assume spatial isotropy we can identify nk = n−k ≡ nk. Taking into account that the
effective decay width of the Higgs field in this channel will be given by the total decay width
times the difference between the direct (4.47) and inverse (4.48) probabilities, then

Γeff ≈ (1 + 2nk)ΓA . (4.49)

Therefore, for nk < 1 the effective decay width is determined just by the perturbative one,
Γeff ≈ Γtot. However, for a high occupation number nk � 1 the transition rates depend on
the number of identical bosons in that state. This effect, known as Bose stimulation, is the
familiar gain mechanism of an optical laser or a Bose-Einstein condensate7 and constitutes
the basis of Parametric resonance [179, 181, 182, 183], one of the most efficient preheating
mechanisms.

Let us see how this parametric resonance takes place in the Standard Model. Strictly
speaking the previous arguments apply only to gauge bosons. Fermions obey the Pauli
exclusion principle, which implies that the occupation numbers for a given mode are restricted
to be nk ≤ 1, so the system is severely constrained. While the number of gauge bosons can
grow exponentialy, that of fermions cannot and Fermi quantum statistic effectively transfers
their energy to the higher momentum modes (for a study of fermionic preheating see for
instance [206, 207]). Although it is hard to determine the relative importance of this effect in
the self-consistent non-linear dynamics of Bose and Fermi fields, if the production of fermions
is, as expected, proportional to the Yukawa coupling squared [208], then only the top quark
production would be non-negligible. Let us focus therefore on the interaction of the Higgs
field with the intermediate gauge bosons. The equation of motion for the fluctuations of each
gauge field with a given polarization is given by

A′′k +

(
k2

a2
+ m̃2

A(t) + ∆

)
Ak = 0 , (4.50)

7Indeed the Bose-Einstein distribution function can be obtained simply from bosonic stimulation and
detailed balance.
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where the rate of expansion has been absorbed in the field definition8, i.e A → a−3/2A,
and the corrections ∆ = −3

4
ȧ
a −

3
2
ä
a are always small for the matter dominated stage under

consideration, a ∝ t2/3. The physical momentum kph ≡ k/a redshifts with time due to
the expansion of the universe. Motivated by the inflationary dilution of any primordial
abundances, the initial conditions are chosen to be the vacuum for scales well inside the
horizon at the end of inflation. This corresponds to the initial-positive frequency solution

Ak(kt→ −∞) =
1√
2ωk

e−iωkt , (4.51)

with ω2
k = k2

ph + m̃2
A. Notice that the familiar notion in which positive energy solutions to

the wave equation corresponds to particles, while negative energy solutions correspond to
antiparticles is meaningless in time-dependent background fields. In Quantum Field Theory
the definition of particle depends on the choice of modes. The vacuum state is usually defined
as the eigenstate of minimal energy of the Hamiltonian, which must have a diagonalized
form. Particles and antiparticles are associated with those creation and annihilation operators
that diagonalize the Hamiltonian. Nevertheless, in the present case, the Hamiltonian is an
explicit function of time, due to the presence of a time-dependent mass term. Consequently,
the energy of individual particles is not conserved and the vacuum cannot be chosen as a
time-independent eigenstate of the Hamiltonian. Notice however that, when the temporal
dependences are not very rapidly varying in time, and the so-called adiabaticity condition∣∣∣∣ ω̇kω2

k

∣∣∣∣� 1 (4.52)

is satisfied, we should expect to recover a meaningful definition of particle number. Around
the minimum of the potential the masses of the intermediate gauge bosons (4.36) can be
approximated by the trilinear interaction (4.38). These masses are much greater than the
inflaton mass M for the main part of the Higgs oscillation. As a result, the typical frequency
of oscillation of the gauge bosons is much higher than the one of the Higgs. This implies that,
during most of the time, the effective masses of the intermediate bosons are changing adiaba-
tically, which allows us to adopt a physically reasonable definition of particle by introducing
instantaneous positive and negative energy solutions9

i
d

dt
f̃k(t) = ±ωk(t)f̃k(t) . (4.53)

In terms of these functions, the solution of (4.50) can be expressed as a superposition of
integrated plane waves

Ak(t) =
αk(t)√

2ω
e−i

∫ t ωk(t′)dt′ +
βk(t)√

2ω
e+i

∫ t ωk(t′)dt′ . (4.54)

Here, the αk and βk coefficients satisfy the Wronskian condition |αk|2 − |βk|2 = 1. Note
that the previous expression does indeed reduce to the standard Born approximation in the

8Notice that we maintain the notation A for the new conformal field.
9Notice that the use of the particle picture defined by the instantaneous positive and negative frequency

solutions is merely an ansatz which must be justified by physically reasonable results, such as an asymptotic
finite number of particles.
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constant ωk case. The associated instantaneous number of particles is defined as the ratio of
the total energy in a given mode k divided by the energy quantum ωk at a given time

nA ≡ |βk|2 =
ωk
2

(
|Ȧk|2

ω2
k

+ |Ak|2
)
− 1

2
. (4.55)

The subtraction −1/2 effectively eliminate quantum vacuum fluctuations from the counting.
One can easily check that the initial-positive frequency solution (4.51), corresponds to the
initial absence of particles within the horizon nA(kt→∞) = 0.

On the other hand, if the effective gauge boson masses change rapidly with time,
as happens for values of the Higgs field very close to zero, the previous analysis breaks
down. In that region the number of particles (4.55) is no longer an adiabatic invariant. The
inequivalence between the vacua before and after the passage of φ through the minimum of
the potential can be interpreted as particle production [179, 181, 182, 183]. The violation of
the adiabaticity condition | ˙̃mA|/m̃2

A � 1 corresponds to the region

|φ|<∼φa =

(
ξh|φ̇(t)|2

αg2MP

)1/3

, (4.56)

where, again, g = g2, g2/ cos θw for the W or Z bosons respectively. Only outside this region,
the notion of particle makes sense and an adiabatic invariant can be defined. Taking into
account that and approximating the velocity of the field around zero as φ̇(j) ≈ MX(j), see
Eq. (4.23), the general expressions (4.56) can be approximated as

φa(j) =

(
ξhM

2|φend|2

αj2g2π2MP

) 1
3

=

(
λπ

3ξhg2ακφend

) 1
3

j
1
3 X(j) . (4.57)

Note that the previous region is indeed very narrow compared to the amplitude of the osci-
llating Higgs, φa ∼ 10−2j1/3X(j). Therefore, the particle production in that region happens
within a very short period of time as compared to the inflatons’ oscillation period T = 2π/M ,

∆ta(j) ∼
2φa

|φ̇|
∼ 10−2 j1/3 M−1 � T , . (4.58)

Different values of λ do not change appreciably the above conclusions about the smallness of
the non-adiabatic regions. Given the weak dependence of ∆t ∝ j1/3, many semi-oscillations
(∼ 103) will take place before the fraction of time spent in the non-adiabatic zone increases
from a 1 % to a 10 %, as compared with the period of oscillations.

Moreover, despite the smallness of φa as compared to the amplitude X(j), it is impor-
tant to note that the field range corresponding to the region of non-adiabaticity is still several
orders of magnitude greater than those critical regions defined in Section 3.2. In particular,
let us recall that there is a field value, φt ∼ MP /ξh, below which there is a transition of the
effective potential from a quadratic to quartic behaviour. However, this is well inside the
region of non-adiabaticity, φt � φa, inside which the concept of particle during preheating is
not properly defined. Besides, there is an interval of Higgs field values, |φ| < φc, for which
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the Higgs perturbative decay into W , Z and top quarks can occur (see (4.43) in Section 4.4),
but it is also much smaller than the non-adiabaticity interval, φc � φa.

Let us discuss the non-perturbative creation of particles in the non-adiabatic region.
This production is formally equivalent to the quantum mechanical problem of a particle
scattering in a periodic potential, see Appendix A. Expanding (4.23) around the j-th zero
at time tj = πj, the evolution equation of the fluctuations (4.50) can be approximated as

A′′k +

(
k2

a2
+
αg2Mpφend| sin(M(t− tj))|

4πj ξh

)
Ak = 0 . (4.59)

The violations of the adiabaticity condition are localized in the vicinity of tj . Around these
points the sinusoidal behaviour | sin(M(t − tj))| can be very well approximated by its argu-
ment, | sin(M(t− tj))| ≈M |t− tj | ≡ |τ |, which allows us to rewrite (4.59) as

A′′k + ω2
k(j)Ak = 0 , (4.60)

where primes denote derivatives with respect to the rescaled time τ = Mt and

ω2
k(j) ≡

q

j
|τ |+ 1

j2/3

k2

M2
. (4.61)

Note that the previous expression is reminiscent of models with cubic interactions as those
considered in Refs. [209, 210, 211]. The possibility of Tachyonic Resonance preheating [210]
is however excluded in our case due to the presence of the absolute value. The resonance
parameter q in (4.61) is given by

q ≡ 3g2ξh ακφend

4πλ
, (4.62)

and depends, through the coupling g, on the gauge boson considered. Each zero crossing can
be interpreted therefore as the quantum mechanical scattering problem of a particle crossing
an inverted triangular potential. The coefficients αk and βk in the expansion (4.54) before
(−) and after (+) the j crossing are related by a Bogoliubov transformation(

αj
+

k e−iΘ
j
k

βj
+

k e+iΘjk

)
=

(
1/Tk R∗k/T

∗
k

Rk/Tk 1/T ∗k

)(
αj
−

k e−iΘ
j
k

βj
+−
k e+iΘjk

)
, (4.63)

where

Θj
k(t) =

∫ tj

0
ωk(t

′)dt′ , (4.64)

and Tk and Rk are the transmission and reflection probabilities for a single scattering, sa-
tisfying |Tk|2 + |Rk|2 = 1. The details of the derivation of (4.63) can be found in the
Appendix A. The general solution of the mode equation (4.60) can be written in terms of
Airy functions Ai(z),Bi(z) for times before and after the zero crossing. Matching this solution
with the adiabatic integral plane wave basis (4.60) before and after the crossing we obtain
[212]

C(xj) ≡ T−1
k (j)− 1 = π2

[
Ai
(
−x2

j

)
Ai′
(
−x2

j

)
+ Bi

(
−x2

j

)
Bi′
(
−x2

j

)]2
, (4.65)
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where we have used the Wronskian condition, Ai(z)Bi′(z)−Bi(z)Ai′(z) = π−1. The argument
of the Airy functions is defined as xj ≡ k/k∗(j), being k∗(j) ≡ q1/3j1/3M the typical mo-
mentum scale of the problem. Its order of magnitude coincide indeed with the one obtained
via the Heisenberg uncertainty principle (see (4.58)), k(j) ∼ aj(∆ta)−1 ≈ k∗(j)/21/3. Notice
that any momenta range will be red-shifted due to the expansion of the universe and, even
the comoving typical moment k∗, is not a static quantity but rather depends on j.

The number of particles just after the j-th scattering, nk(j
+), in terms of the number

of particles nk(j
−) just before that scattering, can be computed from (4.63) to obtain10

[181, 183]

nk(j
+) = C(xj) + (2C(xj) + 1)nk(j

−) + 2 cos θj

√
C(xj) (C(xj) + 1)

√
nk(j−) (nk(j−) + 1)

(4.66)

where θj = 2Θj
k −φk + Argαk + Argβk are some accumulated phases at each scattering. The

first term in the right hand side of the previous expression corresponds to the spontaneous
particle production, while the rest of terms depend on the number of previously existing
bosons, and account therefore for the stimulated emission effects described at the beginning
of this section. The previous expression is very enlightening. Let us emphasize its main
properties. Expanding the combination of Airy functions in (4.65), we obtain

C(xj) =
1

3
e
−D k2

k2∗ , D = 4
31/3Γ(2/3)

Γ(1/3)
, (4.67)

The occupation number decay exponentially for large momenta, which reflects the fact that
particle production is intrinsically an infrared effect. Notice also that the typical momentum
scale k∗(j) is proportional to the coupling, k∗(j) ∝ g1/3, making the previous expression non-
analytical for g = 0. The occupation number (4.66) is the result of a strong non-perturbative
effect that cannot be obtained from any perturbative computation.

4.7 Spontaneous boson production and decay into fermions

Let us start by considering the spontaneous particle creation of W and Z bosons in each zero-
crossing, corresponding to the low occupation limit nk(j

−)� 1. It tells us about the number
of particles produced in the first zero-crossing j = 1 and in those successive scatterings j > 1
in which the gauge bosons produced in the previous semioscillations have fully decayed into
other SM particles. Retaining only the first term in the spectral number densities (4.66)

nk(j
+) ≈ C(xj) , (4.68)

we obtain the total number of particles of a given species with a given polarization associated
to the spontaneous production

∆n(j+) =
1

2π2 a3
j

∫ ∞
0

dk k2 C(xj) =
q

2j
IM3 , (4.69)

10See also the Appendix A for details.
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Figure 4.5: Spectral distributions (4.68) for the gauge bosons created in a single zero crossing
through the first term of (4.66), calculated after j = 1, 2, 5 and 10 oscillations (from left to
right). The horizontal axis represents xj = k/k∗(j), so x = 1 is the typical width of the
band of momenta of particles created at the first scattering. For later times, the distributions
broaden out to greater momenta, since the argument of (4.68), xj behaves as ∝ j−1/3. The
typical momenta of the distribution agree with the one calculated in Section 4.6.

where I =
∫∞

0 C(xj)x
2dx ≈ 0.0046 and q are the resonant parameters given by (4.62). The

non-perturbative production of these particles is proportional to the coupling square. If the
couplings of the Higgs field to the intermediate gauge bosons were not so large (g2

2 ∼ 0.3),
then their production would be very suppressed. Notice that non-perturbative parametric
resonance is not the only place in which chan- ging effective masses might play a role. Af-
ter the passage through the minimum of the potential, the created number of W and Z
particles remains almost constant, while their effective masses (4.38) are boosted due to the
coupling with the Higgs field, m2

A(t) ∝ |φ(t)|, which increases their probability of decaying
into fermions. The process is schematically represented in Fig. 4.6.

The total number density of gauge bosons just previous to the (j+ 1)-th zero crossing,
n((j + 1)−), is then given by

n((j + 1)−) = n(j+)e
−

∫ tj+1
tj

Γdt
= n(j+)e−〈Γ〉j

T
2 , (4.70)

where the exponential factor e−〈Γ〉j
T
2 accounts for the decay into fermions between those two

crossings. The number of fermions produced in that time is simply

∆nF (j) = 2× 3×
[
nZ(j+)(1− e−〈ΓZ〉j

T
2 ) + 2nW (j+)(1− e−〈ΓW 〉j

T
2 )
]
, (4.71)

where the factor 2× 3 reflects that each gauge boson can have one out of three polarizations
and decay into two fermions, while the extra factor 2 in front nW , accounts both for the W+



4.7 Spontaneous boson production and decay into fermions 69

Figure 4.6: Schematic view of gauge boson and fermion production in Higgs Inflation: the
slow evolution of the Standard Model effective masses allows to adopt a physically reasonable
adiabatic definition of particle during most of the oscillation period. Nevertheless, for values
of the Higgs field very close to the minimum of the potential, the adiabaticity condition
becomes violated, which can be interpreted as particle production. Most of the created
particles are intermediate gauge bosons, since the production of fermions is limited by Pauli
blocking. The latter are produced as secondary products of the created gauge bosons, which
tend to decay into them via the Standard Model decay widths, amplified by the growing
Higgs amplitude.
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and W− decays. The averaged value of the decay widths (4.23) in the previous expressions
can be estimated as

〈ΓZ→all〉j =

(
g2

cos θw

)3 MP Lips

16π
√
ξh

〈
(1− e−ακ|φ|)1/2

〉
j
≡ 2γZ

T
F (j) ,

〈ΓW→all〉j =
3 cos3 θw

2Lips
〈ΓZ→all〉j ≡

2γW
T

F (j) , (4.72)

where T = 2π/M is the typical oscillation period and we have averaged the field dependence
between two crossings as

F (j) ≡
〈(

1− e−ακ|φ|
)1/2

〉
j

≈ 0.3423√
j

. (4.73)

The constants γZ , γW are just numerical factors depending on the model’s parameters and
decaying species,

γZ =

(
g2

cos θw

)3
√

3ξ
1/2
h

16λ1/2
Lips ≈ 14.23 λ−

1
4 , γW ≡

3 cos3 θw
2Lips

γZ ≈ 5.91 λ−
1
4 , (4.74)

The gauge bosons will tend to decay into fermions in a time inversely proportional to their
mean lifetime (4.72). The typical time of decay turns out to be of order ∆t ' j1/2M−1, where
the j-dependence comes from (4.73). Numerically, after j = 1, 2, 10, 15 and 20 zero-crossings,
the 99.5 %, 98.5 %, 94.2 %, 87.4 %, 81.9 %, 77.4 % of the produced Z particles have decayed
into fermions (and a similar, though smaller, fraction of the W bosons). Although significant
during the first few oscillations, the number of created fermions becomes smaller and smaller
as time goes by. Notice however that the relevant quantity for recovering the radiation
dominated era is not the number of particles, but rather the energy density transferred from
the inflaton to the fermions (through the gauge bosons). In what follows we study this energy
transfer in two different scenarios. Both of them neglect the contribution of the residual gauge
bosons that have not decayed into fermions and the corresponding stimulated emission. They
are therefore just based on the combination of spontaneous particle creation and perturbative
decays. The first one considers what is usually called Instant Preheating [199], in which the
transferred energy from the inflaton to the fermions is so large that the universe reheats in a
single oscillation. The second one, that we called Successive Instant Preheating, extends the
Instant Preheating scenario to multiple oscillations.

4.7.1 Instant Preheating

Let us focus on the first oscillation. As we pointed out at the end of the previous section,
roughly a 99.5 % of the gauge bosons produced in the first oscillation decay into fermions.
The large decay rate allows us to neglect the exponential factors e−γ〈Γ〉j � 1 in (4.71) and
compute the averaged energy density of the fermions as

∆ρF (1) ∼ 6 [∆nZ(1)EFZ
(1) + 2∆nW (1)EFW

(1)] , (4.75)
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where

EFA(j) ≡
〈√

k2
f +m2

f

〉
j
≈ 〈kf 〉j ≈

1

2
〈mA〉j ≈

g

4ξ
1/2
h

F (j)Mp , (4.76)

denotes the mean energy of the decay products. Notice that we have taken into account
that every gauge boson decay into two fermions and assumed that the produced fermions are
relativistic, while the gauge bosons are non-relativistic. This assumption will be justified in
Section 4.8.

Using (4.69) the averaged energy density (4.75) becomes

∆ρF (1) = ε

(
1

2
M2φ2

end

1

π2

)
F (1) (4.77)

with

ε ≡ 31/2π(2 + cos−3 θw)Ig3
2

4λ1/2ξ
1/2
h (ακφend)

≈ 3× 10−5λ−3/4 . (4.78)

Comparing this quantity with the energy density of the inflaton

ρφ(j) =
1

2
M2φ2

end

(
j + 1/2

π

)2

, (4.79)

evaluated at the maximum amplitude of the first semi-oscillation, Mt ≈ 1.5π, we obtain the
ratio

ε(1) ≡ ρF (1)

ρφ(1)
=
εF (1)

(2/3)2
≈ 2× 10−5λ−3/4 . (4.80)

The energy transferred to the fermions during the first oscillation is therefore just a tiny
percentage (∼ 0.004 % for λ = 0.4) of the inflaton’s energy. Thus, the so called Instant
Preheating [199] mechanism results frustrated here. In order to make it work efficiently, the
couplings of the theory must be fine-tuned, in such a way that a significant fraction of the
energy of the inflaton was transferred (in the first semi-oscillation) to the decay products of
the bosons to which the inflaton is coupled. Moreover, in the Instant Preheating scenario, the
produced fermions must be non-relativistic while the effective behaviour of the background
inflaton should be effectively mimicking that of relativistic matter (like e.g. in λφ4 models).
Only in this case it would be guaranteed that the remnant energy of the inflaton would
decay faster than that of the fermions. If the inflaton would effectively behave as non-
relativistic matter and the produced fermions were relativistic, the energy of the inflaton
could again overtake very soon that of the fermions, because the fermion’s energy would
decrease faster than that of the background. That is, precisely, the situation we have in the
scenario under discussion. Even if we had found that ε(1) ∼ O(1), the relativistic nature
of the fermions and the non-relativistic effective behaviour of the Higgs would prevent the
universe to instantaneously reheat at that point.
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4.7.2 Successive Instant Preheating

One could hope that, after a certain number of oscillations jp, the successively produced
fermions might accumulate enough energy as to finally equal that of the Higgs condensate,
ε(jp) ∼ O(1). Since the total energy stored in the Higgs field decreases as the universe
expands (cf. Eq. (4.79)), also does the amount of energy that must be transferred to the
fermions. Moreover, the number of created fermions increases monotonically with time,
adding energy in each semi-oscillation. These two effects contribute therefore to increase the
ratio ε(jp). On the other hand, the relativistic nature of the fermions and the decrease of
their production rate with the expansion of the universe (cf. Eq. (4.72)) tend to decrease this
ratio. In order to obtain the temporal evolution of the energy transferred to the fermions,
all these competing effects must be incorporated in an unified formalism. To do this, let
us start assuming, both for simplicity as for making the mechanism more efficient, that the
gauge bosons do not accumulate significantly, neglecting then the surplus between successive
decays. The intermediate gauge bosons are then produced just through spontaneous creation
at each zero-crossing and only the first term in (4.66) is considered. In this case the averaged
energy density of the fermions produced between tj and tj+1 will be

∆ρF (j) ∼ 6
[
(1− e−γZF (j))∆nZ(j)EFZ

(j) + 2(1− e−γWF (j))∆nW (j)EFW
(j)
]

= ε

(
1

2
M2φ2

end

1

π2

)
F (j)

j
Υ(j) , (4.81)

where ε is given by (4.78) and we have defined

Υ(j) ≡ 1− e−γZF (j) + 2 cos3 θwe
−γWF (j)

1 + 2 cos3 θw
. (4.82)

The ratio between the total fermionic energy density after the j-th zero crossing and that of
the Higgs condensate is generically given by

ε(j)F ≡
ρF (j)

ρφ(j)
=

2π2
(
j + 1

2

)2

M2φ2
end

j∑
i=1

∆ρF (i)

(
i

j

)8/3

, (4.83)

where we have used (4.79) and taken into account the relativistic behaviour of the fermionic
fluid

ρF (j) =

j∑
i=1

∆ρF (i)

(
ai
aj

)4

=

j∑
i=1

∆ρF (i)

(
i

j

)8/3

. (4.84)

For the particular averaged energy density (4.81), the ratio (4.83) becomes

ε(j)F ≡
ρF (j)

ρφ(j)
≈ ε

(
j + 1

2

)2
j

j∑
i=1

F (i)Υ(i)

(
i

j

)5/3

. (4.85)

Notice that, even for large values of the couplings (g2
2 ∼ 0.3), the initial transfer of energy

is very small. For λ = 0.4, the numerical values (4.85) after j = 1, 2, 5, 10, 15, 20 semi-
oscillations are respectively ε(j)[×105] ∼ 3.90, 5.97, 11.82, 37.26, 65.04, 97.59. If we could
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extrapolate the previous formalism to the creation of fermions around the minimum of the
potential, we would obtain even more ridiculous numbers, due to the smallness of the Yukawa
couplings11. As clearly seen, the energy ratio (4.85) is also a very slowly growing function of
time. After 20 zero-crossings, only ∼ 0.03 % of the Higgs energy has been transferred into
fermions. Indeed, if the former formalism could be applied up to arbitrary times, we will
need at least jp ∼ O(104) semi-oscillations to achieve the critical value ε(j) ∼ O(1). The
successive Instant Preheating mechanism seems therefore not efficient enough as to rapidly
reheat the universe. Nevertheless, as we will see in the next section, the up-to-now neglected
parametric resonance effects will completely modify the previous picture.

4.8 A new preheating mechanism: Combined Preheating

In this section, the successive Instant Preheating mechanism developed in the previous section
is extended to accommodate the stimulated creation of gauge bosons. As pointed out in
Section 4.6, this effect becomes the dominant one in the large occupation limit nk � 1. In
this case, the first term in (4.66) can be neglected to obtain

nk(j
+) ≈ nk(j−)

(
(2C(xj) + 1)− 2 cos θj

√
C(xj)(C(xj) + 1)

)
≡ nk(j−)e2πµk(j) , (4.86)

where nk(j
±) denote the spectral number densities of the produced gauge bosons before (−)

and after (+) the j-th scattering and the Floquet or growth index µk(j) is given by [181, 183]

µk(j) ≈
1

2π
log

(
(2C(xj) + 1)− 2 cos θj

√
C(xj)(C(xj) + 1)

)
. (4.87)

The accumulated phases at the j-th scattering, θj play a very important role, since they can
enhance (cos θj < 0) or decrease (cos θj > 0) the production of particles at each scattering.
Depending on their value, we can consider three different cases:

i) The typical behaviour of the Floquet index, for cos θ = 0,

µ
(typ)
k =

1

2π
log (2C(xj) + 1) , (4.88)

ii) The maximum index, achieved for cos θ = −1

µ
(max)
k =

1

π
log

(√
C(xj) +

√
C(xj) + 1

)
, (4.89)

iii) The average index over an oscillation

µ
(av)
k =

1

2π

∫ 2π

0
µk(θ) dθ =

1

2π
log (C(xj) + 1) . (4.90)
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Figure 4.7: The Floquet index for a given polarization of the W and Z bosons as a function of
the variable xj = k/k∗(j). Here we show the maximum (continuous red), the average (short
dashed green) and the typical (long dashed blue) indices.

All these possibilities are shown in Fig. 4.7, as a function of xj ≡ k/k∗(j), the natural
argument of the transmission probability scattering functions (4.65).

As explained in Ref. [183], when ∆θj ≡ θj+1 − θj � π, the effect of resonance will be
chaotic, being then the phases essentially random at each scattering. For instance, using the
effective frequencies of the fluctuations (4.61) of the gauge fields A = W,Z, these phases can
be estimated, for the relevant range of momenta, as

∆θj =
1

M

∫
tj

tj+1dt

√
k2

a2
+ m̃2

A ≈
gπ
√

3ξh

2
√
λ

F (j) ' 65π
g

λ1/4
j−1/2 . (4.91)

Note that, in obtaining the second equality, we have neglected the momenta of the gauge
bosons, since, as we will justify later, they are completely non-relativistic.

Comparing the above formula with π, we see that the end of the stochastic behaviour
will occur after j ∼ 5×103g2

2/
√
λ ∼ 103 zero crossings. Therefore, since, for the first thousand

of oscillations of the Higgs, the accumulated phases of the fluctuations of the gauge bosons

will be chaotic, we will average out the phases and work with µ
(av)
k .

On the other hand, the perturbative decay of the produced vector bosons occurs, as
before, between two successive Higgs zero-crossings, n((j+1)−) = n(j+) exp(−γ F (j)), where
F (j) is given by (4.73) and γ = γZ , γW by (4.74). Taking into account (4.86), we can express
the number of gauge bosons just after the (j + 1)-th scattering in terms of the number just
after the previous one

nk((j + 1)+) = nk((j + 1)−)e2πµk(j+1) = nk(j
+)e−γ F (j)e2πµk(j+1) . (4.92)

11A possible exception would be the top quark.
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Applied recursively, this formula allows us to obtain the occupation number for each species
and polarization, just after the (j+1)-th scattering, in terms of the initial abundances nk(1

+),

nk((j + 1)+) = nk(1
+) exp

[
− γFΣ(j)

]
exp

[
2π

j∑
i=1

µk(i+ 1)
]
, (4.93)

where we have defined FΣ(j) ≡
∑j

i=1 F (i). The total number density of created particles just
after the j-th scattering is given by

n(j+ ≥ 2) =
1

2π2a3
j

e−γFΣ(j−1)

∫
dkk2nk(1

+)e{2π
∑j
i=1 µk(i)} (4.94)

=
qM3

2π2a3
j

e−γFΣ(j−1)

∫
duu2C(u)

j∏
l=2

(1 + C(u l−1/3)) ,

where we have defined a new variable u ≡ j1/3xj < 1. This expression plays a central role
in what we have called Combined Preheating [77].It encodes the effect of non-perturbative
parametric resonance at the bottom of the potential and perturbative decay during the rest
of the semi-oscillation. As we will see in what follows, this combination gives rise to a very
rich phenomenology, clearly different from that appearing in other preheating mechanisms,
such as Parametric Resonance or Instant Preheating. In order to clarify and make explicit
the consequences of Combined Preheating, let us expand the combination of Airy functions
C in (4.94) for small arguments. We obtain

n(j+ ≥ 2) ≈ qM3

2π2j2
e−γFΣ(j−1)Aj−1C

∫
duu2e−Du

2
e−B(

∑j
i=2 i

−2/3)u2

=
qM3

2π2j2
e−γFΣ(j−1)Aj−1C

√
π

4

(
D +B

j∑
i=2

i−2/3

)−3/2

, (4.95)

where we have defined

A =
4

3
, B = 31/3 Γ(2/3)

Γ(1/3)
, C =

1

3
, D = 4B . (4.96)

The comparison, for different j′s, between the exact expression (4.94) and the Gaussian
approximation (4.95) is shown in Fig. 4.8. In this approximation, the resonant behaviour is
encoded in the factor Aj−1. Notice that, since A is bigger than one, for sufficiently large j, the
resonant effects will eventually overtake the decaying factor e−γFΣ(j−1). Taking into account
the factor 1/j2, due to the expansion of the universe, we conclude that this will happen for
those values of j for which

(j − 1) logA− 2 log j > γFΣ(j − 1) . (4.97)

On the other hand, the maximum value

up ≡ (D +B

j∑
i=2

i−2/3)−1/2 (4.98)
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Figure 4.8: The initial spectral distribution nk(1
+) (lower blue curve) and the Gaussian

approximation (4.95) for different j′s greater than 2 (rest of the curves), describing the
resonant behaviour. The approximation is so good that it is hard to distinguish it from the
real curve, presenting small deviations just on the tail. The horizontal axis is x = k/k∗(1)
and the curves correspond to different j’s. It is clearly distinguishable the fact that only the
range x < 1 (k < k∗(1)) is filtered and therefore excited through parametric resonance, no
matter if j � 2.
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Figure 4.9: Successive spectral distributions k2nk(1
+)e2π

∑j
k=2 µk(j), at different j’s, including

the volume factor k2. One can see the predicted (4.99) slow displacement of the maxima of
the distribution. The x-axis is given in terms of x = k/(k∗(1)).
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Figure 4.10: The ratio k2/〈m2〉 between the typical momenta produced around zero and the
averaged mass in every oscillation for the W (dashed blue line) and Z bosons (continuous
red line) as a function of the number of oscillations. This ratio is significantly smaller than 1
for all crossings, which allows us to consider the produced gauge bosons as non-relativistic.

of the integrand u2e−(D+B
∑j
i=2 i

−2/3)u2
inside (4.95) determines the typical (comoving) excited

momentum

kp ≈
k∗(1)

(D +B
∑j

i=2 i
−2/3)1/2

. (4.99)

Its behaviour can be observed in Fig. 4.9. According to the previous expression, the peaks of

the successive spectral distributions k2nk(1
+)e2π

∑j
k=2 µk(j), slowly evolve to smaller momenta

for larger j. Notice that the typical momentum k of the resonant fluctuations is always of
order k∗(1), independently of how many oscillations are performed by the Higgs field. This
can be understood as a consequence of the filtering k . k∗(1) performed by the initial spectral
distribution nk(1

+), cf. Eq. (4.93). On the other hand, comparing the evolution of the typical
momenta (4.99) with the averaged masses of the gauge bosons in every oscillation we realize
that the ratio

(kp/aj)
2

〈mA〉2j
=

4λ q2/3

3g2ξh(D +B
∑j

i=2 i
−2/3) (ajF (j))2

∝ 1

g2/3

1

j1/3(D +B
∑j

i=2 i
−2/3)

, (4.100)

is not only initially smaller than one, but also a monotonically decreasing function of time.
This behaviour is shown in Fig. 4.10. We can conclude therefore that the vector bosons
produced at the bottom of the potential are always non-relativistic, which justifies a posteriori
the calculation of the energy of the fermions (4.76) performed in Section 4.7.1. If we could
extrapolate (4.100) to the case of fermions, we would realize that they would be mainly
relativistic, due to the smallness of the Yukawa couplings. The only exception would be the
top quark.
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Figure 4.11: Schematic representation of the Combined Preheating process: The non-
perturbatively created gauge bosons in the successive scatterings in the inverted periodic
triangular potential (first spontaneously and then via stimulated emission) tend to decay
into fermions while their effective masses (4.38) are boosted due to the coupling with the
Higgs field. These decays initially delay the development of parametric resonance and the
consequent exponential particle production. Eventually, the resonant effects overtake the per-
turbative decays and parametric resonance develops as usual, i.e. as if the produced bosons
would not decay perturbatively during each semi-oscillation.

The energy density transferred to the fermions between the j-th and the (j + 1)-th
scatterings, will be

∆ρF (j) = 6
[
(1− e−γZF (j))nZ(j+)EFZ

(j) + 2(1− e−γWF (j))nW (j+)EFW
(j)
]

= ε̃

(
1

2
M2φ2

end

1

π2

)
Aj−1C

√
π

4

(
D +B

j∑
l=2

l−2/3

)− 3
2
q∗
j2
F (j)× (4.101)

×
(

(1− e−γZF (j))e−γZΓΣ(j−1) + 2 cos θ3
w(1− e−γWF (j))e−γWΓΣ(j−1)

)
,

where we have used (4.76) and defined a factor q∗ ≡ q/g2/3 common to both bosonic species.
The gauge coupling dependence is nonetheless incorporated into the definition of the ε̃ pa-
rameter

ε̃ ≡ 3g3
2λ

1/2

(cos θw)3ξ
5/2
h (ακφend)2

, (4.102)

which modulates the strength of the effect. The ratio of the total energy density transferred
into the fermions to that of the inflaton is again (4.81), but now with ∆ρF given by (4.101).
Here we can clearly see the two competing effects; schematically represented in Fig. 4.11.
On the one hand we have the perturbative decay of the bosons, given by the factors (1 −
e−γF (j))e−γFΣ

(j−1), which tend to decrease the rate of production of bosons and fermions.

On the other the factors e2π
∑j
i=2 µk(i), encoded in the form of the gaussian approximation,
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describe the resonant effect due to the accumulation of the previously produced bosons.
Initially, the perturbative decay prevents the resonance to be effective. However, after a
certain number of oscillations, the resonant effect overtakes the perturbative decays and
parametric resonance develops as usual, i.e. as if the produced bosons would not decay
perturbatively during each semi-oscillation. In order to estimate the time at which this
happens, let us evaluate numerically the ratio

σ ≡
2π
∑j

i=2 µk(i)

γΓΣ(j − 1)
, (4.103)

for the fastest growing mode (4.99), and find the number of semi-oscillations jR for which it
becomes greater than one, σ > 1. We find jR ≈ 70 for the W bosons and jR ≈ 300 for the Z
bosons. The fact that parametric resonance becomes important much earlier for W than for Z
bosons is not a surprise, since their decay rate (4.35) differs in a factor γZ/γW ≈ 2.4, which
simply means that many more W survive every semioscillation. Therefore, the Combined
Preheating of the W bosons is much faster driven into the parametric-like behaviour, while
the evolution of the Z bosons is much more affected by the perturbative decays, delaying
(or even completely preventing) the development of parametric resonance. Obviously, after
a dozen of oscillations, the transfer of energy from the inflaton to the gauge bosons will be
completely dominated by the W channel, since by that time they will be fully resonant, while
the Z bosons will still be severely affected by their perturbative decay.

To conclude this section and achieve an overall complete picture of all the details, let
us also estimate the transferred energy from the inflaton to the gauge bosons. In particular,
the total energy transferred to them just after the j-th scattering, ρB(j), is given by

ρB(j) = 3
(
nZ(j+)〈mZ〉j + 2nW (j+)〈mW 〉j

)
, (4.104)

where we have used taken into account that the gauge bosons are non-relativistic and have
3 polarizations. Therefore, the ratio of the energy of the gauge bosons to the energy of the
inflaton, εB(j) ≡ ρB(j)/ρφ, can be expressed as

εB(j) = ε̃
(
j +

1

2

)2
(

1

cos θw

)2 √
π k3
∗F (j)Aj−1C

4j2
(
D +B

∑j
i=2 i

−2/3
)3/2

(
e−γZFΣ(j) + 2 cos θ3

we
−γWFΣ(j)

)
,

(4.105)
where we have used (4.95). As in the fermionic case, the amplitude of this growing function
is modulated by the parameter ε̃, defined in (4.102).

Using Eqs. (4.83) and (4.105), we can estimate the time at which the energy of the
inflaton would be finally transferred to the fermions and bosons. Defining that moment as
εF (jeff) ≡ 1 and εB(jeff) ≡ 1 respectively, we obtain the numbers presented in Table 4.2.
Note that although the number of oscillations jeff required for an efficient energy transfer
depends on the parameter λ, the overall order of magnitude does not change appreciably.
Unfortunately, as we will see in the next subsection, before reaching the stage εF,B ∼ 1,
the backreaction of the produced gauge fields into the homogeneous Higgs condensate will
become significant, and it will must be taken into account.
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λ 0.2 0.4 0.6 0.8 1.0

j
(F )
eff 107 111 113 114 115

j
(B)
eff 111 113 115 116 117

jBR 107 110 112 113 114

Table 4.2: Number of semi-oscillations of the Higgs required, as a function of λ, for an efficient
transfer of energy from the inflaton to the fermions (F) and/or to the gauge fields (B). The
numbers are compared with the number of semi-oscillations for the backreaction (BR) of the
gauge fields into the Higgs background to become significant.

4.9 Backreaction and the end of (p)reheating

The perturbations in cosmology usually depend on the background but no vice versa. How-
ever, during the preheating stage, the production of particles is so explosive that it rapidly
affects the dynamics of the inflaton itself. In this section we study the backreaction of the W
and Z bosons into the Higgs condensate and the end of preheating. In the so-called Hartree-
Fock approximation [213, 214], the amplification effects of the created particles on the inflaton
are encoded in the variance of the created fields, 〈A2〉, which modifies the equation of motion
for the inflaton

φ̈+ 3Hφ̇− 1

a3
∇2φ+

[
M2 +

αg2Mp

4ξh|φ|
e−ακ|φ|〈A2〉

]
φ = 0 , (4.106)

where we implicitly assume a sum over polarizations and gauge boson species and neglect
the vectorial nature of the fields. Although the variance is initially small, 〈A2〉 � 1, it will
eventually grow enough as to modify the curvature of the potential around the minimum M .
When this happens the amplitude of the oscillations decreases, as in the standard harmonic
oscillator, diminishing the q parameter (4.62), and therefore, stopping the non-perturbative
production of gauge bosons.

Whenever the Higgs frequency evolves adiabatically, we can compute the expectation
value of the bosonic field components A as

〈A2〉 ≡ 1

2π2a3

∫
dkk2|Ak|2 =

1

2π2a3

∫
dkk2

ωk

(
1

2
+ nk + Re{αkβ∗ke−i2

∫ t ωdt′+Argαk+Arg βk}
)

where nk ≡ |βk|2 denotes the spectral number densities of the produced gauge bosons and
αk and βk are related by the Wronskian condition |αk|2− |βk|2 = 1. Taking into account the
non-relativistic nature of the produced gauge bosons ωk ' mA (cf. Eq. (4.36)), the previous
expression becomes

〈A2〉 ≈ 1

2π2a3

2
√
ξh

gMp

1√
1− e−ακ|φ|

∫
dkk2 nk

[
1 + cos

(2π

M

∑
j

〈ω〉j + Argαk + Arg βk

)]
(4.107)
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with averaged frequency 〈ω〉j = M
π

∫ tj+1

tj
dt′ω(t′). The coupling g appearing in the denom-

inator of the previous expression clearly reflects that we are dealing with non-perturbative
processes. Following [183], we will rewrite the previous equation as

〈A2〉 ≈ 2
√
ξh

gMp

nA√
1− e−ακ|φ|

[
1 + a cos

(2π

M

∑
j

〈ω〉j
)]
, (4.108)

where the coefficient a < 1 hides the uncertainty about the accumulated phases Argαk and
Arg βk, and nA ≡ (2π2a3)−1

∫
dkk2nk. From here, we can define the effective frequency of

the Higgs condensate as

M2
eff ≡M2 +

αg nA
2
√
ξh|φ|

[
1 + a cos

(
2π
M

∑
j〈ω〉j

)]
√
e2ακ|φ| − eακ|φ|

. (4.109)

The backreaction of the gauge bosons on the Higgs field dynamics, will become relevant
when the last term in the right hand side of the previous expressions becomes of order M2.
The initial blocking of parametric resonance due to the perturbative decays into fermions
prevents this to happen during the first oscillations. However, when parametric resonance
becomes efficient, the number of gauge bosons nA grows exponentially fast within few Higgs
oscillations, and the second term in (4.109) becomes eventually dominant. In terms of the
number densities of the Z and W bosons, i.e. summing the contribution over all polarizations
and species, this will happen at a time tj = jπ/M , in which(

nZ(j)/ cos θw + 2nW (j)
)
&

2
√
ξh|φ(tj)|(ακ〈φ(t)〉j)1/2M2

3αg2
, (4.110)

where we have expanded
√
e2ακ|φ| − eακ|φ| ≈ (ακ|φ|)1/2 around the minimum of the potential

and replaced φ(t) by its averaged value per semi-oscillation

〈φ(t)〉j =
φend

πj
(
1

π

∫ π

0
sin(x)) =

2

π

φend

πj
. (4.111)

Using the analytical expressions (4.95) for the gauge boson occupation numbers we can trans-
late the above condition into the following one(
e−γZΓΣ(j−1)/ cos3 θw + 2e−γWΓΣ(j−1)

) A(j−1)C

j1/2
(
D +B

∑j
i=2 i

−3/2
) ≥ 16

√
6ξ

3/2
h (ακφend)3/2

λ1/2g3
2π

7/2 k3
∗

.

(4.112)
The moment at which backreaction of the bosonic fields becomes significant can be deter-
mined numerically from the previous expression. Table 4.2 shows the results obtained for
different values of the undetermined Higgs self-coupling λ. We clearly see that backreaction
seems to become important at a time slightly earlier than that at which we were expecting
the Higgs to have transferred efficiently its energy to the bosons and fermions. This means
that our analytical estimates of these transfers were biased, and a careful numerical study
of the process via a modification of the numerical packages available [215, 216, 217] is re-
quired. Beyond backreaction, the strength of the resonance very quickly decreases due to
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Figure 4.12: The dependence of the frequency of oscillation in (4.121) as a function of Ak
and z. The region under the blue dashed line corresponds to Ak− 2p| cos 2z| − p2 sin2 2z < 0.
Note the periodicity T = π/2.

the increased frequency of oscillations of the Higgs. Eventually, the broad resonance driving
the production of gauge bosons and thus their decay into Standard Model particles becomes
narrow and finally shuts off. From then on, the inflaton will oscillate like a matter field,
while the produced particles will redshift as radiation, becoming their effect on the expansion
completely negligible after a few hundred oscillations.

4.10 Similar but not equal: Dilaton production

Throughout this chapter we have assumed that Higgs and Higgs-Dilaton inflation give rise
to one and the same (p)reheating. Notice however that Higgs-Dilaton Inflation incorporates
an extra degree of freedom, the dilaton field. The constancy of the classical background
component is of course guaranteed by the scale invariance current conservation, but this
reasoning does not apply to the corresponding quantum excitations. As suggested in [218],
these modes can be excited through the non-canonical kinetic term in the Einstein-frame
lagrangian (4.11), which mixed quantum excitations and background solutions. Although
the perturbative estimate of dilaton production via the effective field mixing is very small
(due to the small value of ξχ), non-perturbative effects can play a very important role [219].
To illustrate the point let us consider the equations of motion for the scalar perturbations
[152, 153]

δφ̈k + 3Hδφ̇k +

(
k2

a2
+ V,φφ

)
δφk = 0 , (4.113)

δρ̈k +
(

3H + 2ḃ
)
δρ̇k +

k2

a2
δρk = 0 . (4.114)
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Figure 4.13: The Floquet index µk for dilaton production. It presents a large infrared band
at low momenta is reminiscent of a tachyonic mechanism, and a smaller band at higher
momenta.The results neglect the expansion of the universe.

Note that we have ignored metric perturbations and taking into account the constancy of the
background field ρ. The function b = b(φ) (cf. (4.12)) plays the role of an addition oscillatory
damping term for the dilaton perturbations. Let us focus of the effect of this term, neglecting
therefore the expansion of the universe as a first approximation. In this case, the amplitude
φend of the angular background oscillations in (4.23) becomes constant, which allows us to
further approximate ḃ as

ḃ = −ᾱκd|φ|
dt

tanh (ακ(φ0 − |φ|)) ≈ −ακMφend
d| cosMt|

dt
(4.115)

Performing a change of variables Mt→ 2z we can now rewrite (4.114) as

δρ′′k + 2p sin (2z) δρ′k +Akδρk = 0 cosMt > 0 , (4.116)

δρ′′k − 2p sin (2z) δρ′k +Akδρk = 0 cosMt ≤ 0 , (4.117)

where primes denote derivatives wrt to z and we have defined

p ≡ 2ᾱκφend , Ak ≡
4k2

M2
(4.118)

Notice that the previous equations closely resemble an Ince’s equation. This suggests to
introduce a version of the standard field redefinition

fk(z) = δρk(z)e
p
2
| cos 2z| (4.119)

to recast (4.116) as a modified version of the Hill-Whittaker equation [220]

f ′′k (z) + ω2
ffk(z) = 0 , (4.120)

with frequency
ω2
f ≡ Ak − 2p| cos 2z| − p2 sin2 2z . (4.121)
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As for the original equation Hill-Whittaker, the Floquet or Bloch theorem can be applied,
which open the possibility of exponential particle production of those quantum modes for
which the Floquet index acquires an imaginary part [218]. Following [94, 221] we define the
number of created particles at time z as

nk(z) = 2 sinh2 (µkz) , (4.122)

where the Floquet index µk is determined by

cosh (µkT ) = Re
[
f

(1)
k (T )

]
(4.123)

where T = π/2 is the periodicity associated to the frequency (4.121) (cf. Fig. 4.12) and

f
(1)
k also satisfies (4.120), but now with initial conditions f

(1)
k (0) = 1 and f

(1)′

k (0) = 0. The
shape of the resulting Floquet index is shown in Fig. 4.13. It presents a large infrared band,
reminiscent of tachyonic preheating, as well a smaller band at larger momenta. One should
expect therefore a large production of dilatons, which might spoil completely the analysis
presented in this chapter. The problem requires however a careful numerical study that takes
into account the expansion of the universe, which could change the band structure previously
described. We are at present studying such particle production.



CHAPTER 5

The Higgs field and Dark Energy

Like a great poet, Nature knows
how to produce the greatest
effects with the most limited
means.

Heinrich Heine

5.1 Scale invariance and the Cosmological Constant

As we argued in Chapter 2 a spontaneously broken scale invariance symmetry constitutes a
very natural extension of the Standard Model, able to generate all the dimensional parameter
of the theory, at the classical and quantum level. Note however that it forbids the appearance
of a cosmological term, required (in the most conventional approaches) to explain the late
time acceleration of the universe. Although one could argue that the cosmological constant
term might reappear due to quantum effects or to the pure presence of a time-dependent cos-
mological background, it is worth exploring to the possibilities of solving the problem already
at the classical level. One interesting possibility is to consider a quite modest modification
of General Relativity, firstly considered by Einstein in 1919, known as Unimodular Gravity
(UG) [31, 222, 223, 224, 225]. Unimodular Gravity is a very particular case of the much
more general set of theories invariant under the group of transverse diffeomorphisms TDiff
[222, 226, 227, 228, 229, 230]. These are coordinate transformations

xµ 7→ x̃µ(x) ,

∣∣∣∣∂x̃µ∂xµ

∣∣∣∣ = 1 (5.1)

generated by the subalgebra of transverse vectors

xµ 7→ xµ + ξµ(x) , ∂µξ
µ = 0 . (5.2)
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TDiff theories generically contain an extra scalar degree of freedom on top of the massless
graviton. Unimodular Gravity reduces the dynamical components of the metric by requiring
the metric determinant g ≡ det(gµν) to take some fixed constant value, conventionally |g| = 1.
Unimodular gravity is then only invariant under volume-preserving diffeomorphisms. As
shown in [222, 75], the field equations for UG in combination with arbitrary matter fields
with arbitrary couplings to gravity are classically equivalent to the solutions obtained from
the Diff invariant action1

Σe =

∫
d4xLe =

∫
d4x
√
−g
(
L(gµν , ∂gµν ,Φ, ∂Φ) + Λ0

)
, (5.3)

except that, while in the standard theory the Λ0 term appears directly in the action, in UG
it is an integration constant related to some initial conditions. Indeed, if we reformulate UG
in terms of an unconstrained metric by taking into account the unimodular constraint on the
metric determinant (|g| = 1) through an undetermined lagrange multiplier λ(x), then, it can
be shown [75] that, for all possible infinitesimal transformations, λ(x) = Λ0 is a constant of
motion

∂µλ(x) = 0 . (5.4)

Note that this conserved quantity should not be understood as a cosmological constant, since
although it plays that role in minimally coupled theories, things are different if Newton’s
constant is induced dynamically (non-minimal coupling). Let us see this explicitly in the
Higgs-Dilaton inflationary model.

5.2 Dilaton Quintessence

In Unimodular Gravity the Einstein frame potential (4.13) in the lagrangian density (4.11)
becomes

VUG = V + VΛ0 . (5.5)

where
V (φ) = V0

[
1− σ cosh2 (ᾱκ(φ0 − |φ|)

]2
, (5.6)

was already defined in Section 4.2 and VΛ0 is a new term proportional to the arbitrary
integration constant Λ0

VΛ0 (φ, ρ) = Λ0

(
1 + 6ξχ
ξχ

)2

σ2 cosh4 [ᾱκ (φ0 − |φ|)] e−4γκρ . (5.7)

We see that once transformed to the Einstein frame the up-to-now Λ0 constant term in the
equations of motions becomes the strength of a potential.

As can be seen in Fig. 5.1 the new Λ0 term does not significantly modify the asymptotic
flat regions of the former potential, cf. Fig. 3.2. The effects of the cosmological constant
become however dominant around the (h, χ) = (0, 0) point, giving rise to chimney and well
shapes. Note that the conformal transformation is indeed not properly defined at that point,

1For a choice of coordinates such that the metric determinant is equal to one, which is always possible
[231].
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Figure 5.1: Shape of the Einstein-frame Higgs-Dilaton potential in the original field variables
h and χ for Λ0 < 0 (left) and Λ0 > 0 (right). The non-equal zero value of Λ0 gives rise to
the well and chimney shapes in the center of the figures. Its main effect is lifting the valleys,
breaking therefore the degeneracy of the classical ground state. For Λ0 < 0 the valleys are
tilted towards the origin, which induces a trivial classical ground state (h, χ) = (0, 0). On the
other hand, for Λ0 > 0 the potential becomes of runaway type, with an asymptotic ground
state at large field values.

and therefore it should be skipped from the discussion. Their main effect of the tubular
shapes is lifting the valleys, breaking therefore the degeneracy of the classical ground state.
For Λ0 < 0 the valleys are tilted towards the origin, and the fields will tend to approach
to the trivial h = χ = 0 ground state. Much more interesting is the Λ0 > 0 case, where
the potential becomes of runaway type with an asymptotic ground state at large field values
(χ→∞). Let us analyze the consequences of this behaviour.

Assume that the backreaction of the created particles on the inflaton dynamics during
inflation does not modify the analytical estimates about the efficiency of the energy transfer
from the inflaton to the fermions (cf. Section 4.8). In this case, the system will eventually
thermalize, acquiring a reheating temperature Trh and entering in the radiation dominated
era. At the beginning of this stage, the energy density of the Universe will be completely
dominated by the relativistic energy density ρtotal ' ρrad(Trh) = π2

30 geff(Trh)T 4
rh. At that

time, the scalar fields have almost settled down2 in one of the two almost degenerate classical
ground states of the potential, i.e. h ' ±ϑχ. In this case, the lagrangian density (4.11)
becomes independent of the angular variable,

L√
−g

=

[
M2
P

2
R− 1

2
(∂ρ)2 − VΛ0(ρ)

]
, (5.8)

We are left therefore with just one dynamical degree of freedom, the field ρ, which, as pointed
out in Ref. [75], keeps on rolling down the potential with the dynamics of a “thawing”

2The trajectory along the valley is indeed asymptotic, not an exact solution of the equations of motion.
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quintessence model [232, 233]

ṼΛ0(ρ) = Λ0

(
1 + 6ξχ
ξχ

)2

e−4γκρ ' Λ0

ξ2
χ

e−4γκρ . (5.9)

The Klein-Gordon equation of motion for the dilaton field ρ in a flat FRW background is
given by

ρ̈+ 3Hρ̇+
dVΛ0

dρ
= 0 , (5.10)

where we have assumed the field to be homogeneous, ρ = ρ(t). In what follows it will be
useful to adopt a perfect fluid description of the problem. Defining the energy and pressure
densities of the dilaton field as3

%ρ ≡
1

2
ρ̇2 + VΛ0 , pρ ≡

1

2
ρ̇2 − VΛ0 . (5.11)

we can rewrite (5.10) as
%̇ρ = −3H%ρ (1 + wρ) . (5.12)

with wρ ≡ pρ
%ρ

the associated equation of state for the barotropic fluid. On the other hand,
the first Friedmann equation is given by

H2 =
1

3M2
(%m + %ρ) , (5.13)

where %m represents generically the dominant fluid component of the remaining particle
or energy content. That fluid is assumed to have a constant equation of state but it is
otherwise completely generic. It can be simply relativistic or non-relativistic matter, or
even an extra dark energy component with constant equation of state, wm < −1/3 (at that
appearing in Higgs-Dilaton Inflation if we allow for a non-zero value of β in the initial scale-
invariant potential (2.15)). Note that no explicit interactions between the two fluids have
been included. The dilaton field interacts with matter and radiation components only trough
the gravitational interactions, since it does not couple directly to the Standard Model fields.

Let us rewrite the Klein-Gordon equations (5.12) and Friedmann (5.13) equations as

η′ρ = −3ηρ(2− ηρ) + 4γ(2− ηρ)
√

3ηρΩρ , (5.14)

Ω′ρ = 3(ηm − ηρ)Ωρ(1− Ωρ) , (5.15)

and study the critical points of the system. Here primes denote derivatives wrt the number
of e-folds and we have defined the observable quantities (i = ρ,m)

ηi ≡ 1 + wi , Ωi ≡
%i

3M2
PH

2
, (5.16)

where the latter satisfy the cosmic sum rule Ωm + Ωρ = 1. As shown in Refs. [172, 233], the
behaviour of 5.14 and 5.15 depends on the value of the γ parameter. For 4γ >

√
3ηm, the

3Note that we have slightly modified the notation for the energy density used in the thesis (ρ→ %) to avoid
confusion with the radial field coordinate ρ.



5.3 From the Early to the Late Universe 89

dilaton inherits the equation of state of the barotropic fluid, ηρ = ηm, evolving towards the
stable fixed point

Ωρ =
3ηm
16γ2

. (5.17)

These so-called scaling solutions4 can not be responsible for the late-time acceleration of the
universe. For the dilaton field to be responsible of the late time evolution of the universe it
should be the dominant contribution from the very beginning, excluding therefore the exis-
tence of a radiation dominated era. A scaling dilaton can at best provide a small contribution
to dark energy.

The previous conclusion changes completely if 4γ <
√

3ηm. In this case the stable fixed
point is given by

Ωρ = 1 , ηρ =
16γ2

3
, (5.18)

which means that if 4γ <
√

2, or equivalently ξχ . 1
2 the asymptotic solution is that of an

accelerating universe, opening the possibility for the dilaton field ρ to be responsible of the
present dark energy dominated era if the stable fixed point (5.18) has not yet been attained5.
Note that this is precisely the case of Higgs-Dilaton Inflation in the absence of another dark
energy component with η < 4γ/

√
3. Indeed, taking into CMB bound ξχ . 5× 10−3 derived

in Section 3.5 we obtain 4γ ' 4
√
ξχ <

√
2.

The dilaton energy density must be negligible (Ωρ � 1) during the radiation and matter
dominated stages and become important (Ωρ ' 0.74) in the recent era [234]. If Ωρ � 1 the
second term on the right-hand side of (5.15) is small compared to the first one, the system
evolves towards ηρ � 1 or equivalently towards the cosmological constant case wρ ' −1.
Then, the value of ρ is almost constant during the radiation and matter dominated epochs,
remaining essentially equal to its value at the end of (p)reheating. Nevertheless, the larger
dilution of radiation and matter densities with the expansion of the universe would eventually
lead the inflaton to be the dominant contribution. At this point, ρ starts rolling down the
potential and ηρ starts to evolve towards its attractor value. The described scenario in
which the dilaton field remains constant for a long time to eventually start rolling down the
exponential potential (5.9) belongs to the so-called thawing quintessence models [232] and
has been previously studied in the literature [235, 236].

5.3 From the Early to the Late Universe

5.3.1 Consistency relations

As we showed in Chapter 3, the value of the non-minimal couplings of the Higgs and dilaton
fields to gravity in Higgs and Higgs-Dilaton Inflation can be directly constrained by CMB
observations, in particular by the scalar tilt and the amplitude of curvature perturbations,

4The name comes from the tendency of the dilaton’s energy density to scale as that of the additional fluid.
5The limits of the present dark energy abundance [1] set an upper bound on the contribution of the dilaton

ρ to the present energy density, Ω0
ρ . Ω0

DE ' 0.74, with the inequality becoming an equality if the dilaton
the only dark energy component of dark-energy. The bound shows that the present universe must not have
reached its fixed-point yet.
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Figure 5.2: The monotonically increasing function F (Ωρ) (green solid line). Note that it
becomes exactly 1/2 for Ωρ = 0.74 (red dashed lines).

cf. Fig. 3.6. The theory is therefore completely specified at the inflationary stage and any
subsequent period, as the mentioned dark energy dominated stage, should be consistent with
that choice of parameters. In this section we will derive several consistency conditions among
the inflationary observables and those of the equation of state of dark energy.

Let us start by combining (5.14) and (5.15) in the approximation where 1 +wρ � 1 to
obtain the following interesting relation [235]

1 + wρ '
16γ2

3
F (Ωρ) , (5.19)

where

F (Ωρ) =

[
1√
Ωρ

− 1

2

(
1

Ωρ
− 1

)
ln

1 +
√

Ωρ

1−
√

Ωρ

]2

. (5.20)

As can be seen in Fig. 5.2 F (Ωρ) is a monotonic increasing function. Note that if no extra
dark energy components apart from the dilaton field ρ are present, then we can equate
Ω0
ρ = Ω0

DE ' 0.74, from which one gets F (Ω0
DE = 0.74) = 0.5. Inserting this inequality into

(5.19) we obtain the bound

1 + w0
ρ .

8

3

ξχ
1 + 6ξχ

' 8ξχ
3

+O(ξ2
χ) , (5.21)

on the present equation of state of the dilaton field. From equations (5.14) and (5.15) it
can be easily understood that if dark energy is mainly due to a barotropic component, its
corresponding η must be smaller than ηρ. Therefore, the previous bound can be translated
into a bound on the equation of state parameter of the total dark energy

1 + w0
DE .

8

3

ξχ
1 + 6ξχ

' 8ξχ
3

+O(ξ2
χ) . (5.22)



5.3 From the Early to the Late Universe 91

Note that this is a rather non-trivial result: Observations related to the very early universe
provide information about observables of the very late universe. The Higgs-driven inflationary
models give again rise to very precise predictions or consistency relations, able to confirm or
rule out the model. Indeed, taking into account the upper bound ξχ < 0.0052 derived in the
previous chapter (cf. Table 3.1), we obtain a very strong bound on the equation of state of
dark energy, namely

0 ≤ 1 + w0
DE . 0.014 . (5.23)

Unfortunately the current observational constraint −0.04 < 1+w0
DE < 0.2 [1] is much weaker

than (5.23). From this point of view, the energy density %0
DE is practically indistinguishable

from a cosmological constant. Nevertheless, the observational bound is expected to improve
considerably in the near future. A measurement precision at the percent level would make it
possible to check the prediction of our model.

The relation between the scalar spectral index n∗s and the dark energy equation of state
w0

DE can be further refined if the dilaton ρ alone is responsible from the late time accelerated
expansion of the universe, i.e. Ω0

ρ = Ω0
DE. Recall that in the Higgs-Dilaton model under

consideration this corresponds to the absence of a dilaton quartic interaction in the original
Jordan frame (cf. Section 2.3), i.e. to β = 0. In that case, the associated dark energy
component becomes purely dynamical. Combining (5.22) (where inequality is replaced by
equality) with the approximate relation (3.78) allows us to express the scalar tilt n∗s as a
function of η0

DE and the number of e-folds N∗ as

n∗s ' 1−
12η0

DE

4− 9η0
DE

coth

(
6N∗η0

DE

4− 9η0
DE

)
. (5.24)

This relation is plotted in Fig. 5.3 for the fast and slow reheating assumption. The plot is
equivalent to that in Fig. 3.4, except that the independent variable is changed from ξχ to
w0

DE with the help of (5.19). As before, the result is rather insensitive to variations of the
number of e-folds N∗ within the estimated range (3.89). For intermediate values of ξχ, the
previous equation can be approximated as

− 3(w0
DE + 1) ≈ (n∗s − 1) , (5.25)

which can be written as a relation between the zero and first orders in the early and late
universe

d ln %0
DE

d ln a
≈
d lnPζ(k)

d ln k
. (5.26)

The comparison between (5.24) and (5.25) is also shown in Fig. (5.3). Note that although
(5.25) completely fails to describe the behaviour of (5.24) for values of w0

DE very close to the
cosmological constant case w0

DE = −1, it can constitute a good approximation, within the
expected accuracy of the Planck mission, for slightly larger values of w0

DE . Moreover, it is
also possible to derive a relation among the first and second order respectively,

3wa ≈
dn∗s
d log k

, (5.27)

relating the rate of change of the equation of state parameter w(a) = w0 + wa(1 − a) with
the logarithmic running of the scalar tilt.
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Figure 5.3: Approximate functional relationship (5.24) between the spectral tilt and the dark
energy equation of state. The red dashed curve is obtained for fast reheating ρrh = ρmaxrh with
N∗ = N∗max, while the blue solid curve represents the case of slow reheating ρrh = ρminrh with
N∗ = N∗min. The shaded region shows the WMAP7 1σ and 2σ bounds. The green diagonal
line corresponds to the further approximation (5.25). Note that this extra approximation
completely fails to describe the behaviour of (5.24) close to the cosmological constant case
w0
DE = −1. However, it might constitute a good approximation, within the expected precision

of the forthcoming surveys, for slightly larger values of w0
DE . Gray horizontal dot-dashed

line represent the expected accuracy to be achieved by the Planck satellite [237] around an
hypothetical central value of the spectral tilt.
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Equations (5.26) and (5.27) should be seen as consistency relations for the unimodular
Higgs-Dilaton model under consideration, that could allow us either to confirm or exclude it in
the near future. Let us stress again that the links between the observable n∗s and dn∗s

d ln k , related
to inflation, and w0

DE and wa, related to dark energy, are non-trivial predictions of the present
model. They constitute an intriguing relation between inflation and dark energy, relating two
periods a priori totally independent, that allows us to use the measurable observables from
CMB anisotropies to make firm testable predictions in the widely unknown DE sector. On the
other hand one should also mention that this result relies on several important assumptions.
In particular, the functional relation (5.24) is based on the requirement that the J-frame
potential has a flat direction (β = 0).

5.3.2 Dark energy constraints on the initial inflationary conditions

As we saw in Section 5.1, if General Relativity is replaced by Unimodular Gravity the exact
scale invariance of the original Higgs-Dilaton model is explicitly broken by the appearance
of an arbitrary integration constant Λ0. Note that the shape of the potential is dramat-
ically modified around the vicinity of the (h, χ) = (0, 0) point (cf. Fig 5.1), which could
potentially spoil the analysis of the inflationary trajectories performed in Chapter (3). The
non-conservation of the radial component during inflation could give rise to the generation of
isocurvature perturbations, which would hinder the determination of the non-minimal cou-
plings ξh and ξχ from the CMB observables. In what follows we will explicitly show that all
the conclusions of the previous chapters hold also if scale-invariance is explicitly broken. To
do this, let us characterize the departure of scale invariance by the dimensionless ratios

v1 ≡
VΛ0

V
, v2 ≡

√
V ,a

Λ0
V ,a

Λ0

V ,bV ,b
, (5.28)

Here latin indices denote as usual the Higgs and dilaton field coordinates. The interpretation
of (5.28) is rather obvious. The parameter v1 compares the strength of the scale invariance
breaking part of the potential VΛ0 with that of the scale invariant one V . Similarly, the
parameter v2 encodes, in a coordinate invariant way, the relation between the derivatives of
both parts. In those regions of (5.5) where both v1, v2 � 1, the effect of the Λ0-term can
be completely neglected at the level of the classical equations of motion, recovering therefore
the scale-invariant case studied in the preceding chapters.

Among all the possible inflationary trajectories, only those able to give rise to a late
dark energy stage can be considered as phenomenologically acceptable. As can be inferred
from the theoretical bound (5.23), the energy density of the dilaton field at the minimum of
the potential (5.5) is completely dominated by the potential energy contribution, ρρ ' VΛ0(ρ).
Taking this into account we can translate the observational upper bound on Ω0

ρ ≤ Ω0
DE ' 0.74

[1] into a lower bound on the current value of the dilaton field

ρ0>∼−
1

4γ
MP ln

(
ξ2
χ

Λeff

Λ0

)
, (5.29)

where
Λeff ≡ 3M2

PH
2
0 Ω0

DE ' 10−120M4
P , (5.30)
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denotes the present value of the effective cosmological constant in Planck units. The slow
evolution of the dilaton field along the minimum of the potential from the end of inflation
till today makes it possible to approximate the present value of ρ0 by that at the end of
inflation6. Making then use of (5.29) and (5.28) we obtain

υ1 .
144ξ2

χξ
2
h

λ

Λeff

M4
P

1

sin4 θ
, υ2 .

24ξχξ
2
h

λ

Λeff

M4
P

1

sin2 θ cos2 θ
. (5.31)

The small value of the effective cosmological constant Λeff extremely suppresses the value of
the previous parameters (v1, v2 � 1) for the whole evolution of the angular variable, θend <
θ < θ∗ (cf. Eqs. (3.76) and (3.77)). We conclude therefore that any phenomenologically viable
field trajectory originated from an inflationary region in which the effect of the Λ0-term was
completely negligible.

The minimal value (5.29) of the radial field and its slow evolution from horizon crossing
during inflation until today allows indeed to further restrict the initial inflationary conditions
discussed at the end of Chapter 3. For a scale-invariant trajectory (υ1, υ2 � 1), the bound
(5.29) translates into

ρin ' ρ∗ ' ρend>∼−
1

4γ
MP ln

(
ξ2
χ

Λeff

Λ0

)
, (5.32)

which in terms of the original variables can be written as

χ2
in

Λ
1/2
0

+ 6ξh
h2
in

Λ
1/2
0

>∼
1

ξχ

M2
P

Λ
1/2
eff

∼ 1060 . (5.33)

If we combine this bound with (3.91) we conclude that appropriate initial conditions must be

much larger than the arbitrary scale Λ
1/4
0 , namely hin/Λ

1/4
0
>∼1030. Notice that the associated

region is a bidimensional surface in the (h, χ) plane. If ρ is completely responsible from the
observed dark energy abundance and no additional component are allowed (β = 0), then, the
inequalities become equalities and the initial values lie on a very precise line in the (ρ, θ) plane.
Let us note that, although this kind of fine-tuning on the initial conditions is an undesirable
feature, it does not constitute a consistency problem. Indeed, it is just a manifestation of the
Cosmic Coincidence problem permeating all Dark Energy models. A summary of the different
kind of evolutions in Higgs-Dilaton inflation according to the different initial conditions in
presented in Fig. 5.4.

6The numerical solution shows that the changes of ρ during the (p)reheating and thawing quintessence
stages are around the percent level.
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Figure 5.4: In this schematic plot we summarize the different kind of evolutions that can
take place in Higgs-Dilaton inflation according to the different initial conditions. In order
to guarantee a sufficient number of e-folds, the initial values of the Higgs and dilaton fields
have to lie above the green line, which corresponds to θ = θ∗, given by (3.77). For Λ0 > 0
the dilaton contributes to the dark energy density in the late universe. For this contribution
not to exceed the observational value Ω0

DE, the initial conditions have to lie above the arc
of an ellipse ρ ' ρ0, with ρ0 given by (5.29). The orange region in the figure corresponds
therefore to initial field values giving rise to a successful inflationary stage as well as to a
dark energy dominated era compatible with the observations. If the dilaton field is completely
responsible from the present dark energy, the initial conditions must be fine-tuned to lie on
the dotted black segment of the ellipse. The blue region below the hyperbola corresponds to
the non-scale-invariant region where the Λ0 term becomes dominant. Trajectories starting in
that area tend to move away from the origin before entering the scale-invariant region. Such
initial conditions can also be acceptable as long as the corresponding trajectories enter the
scale-invariant region above the line given by ρ ' ρ0.
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CHAPTER 6

Conclusions and Outlook

You alwaies end ere you begin.

The two Gentlemen of Verona
W.Shakespeare

From the Early to the Late Universe

General Relativity and the Standard Model of Particle Physics constitute two well-founded
pillars of modern physics, albeit not free of caveats. Questions such as the origin of neutrino
masses, the dynamics of cosmic inflation or the nature of the dark components of the Universe
remain unexplained. In the usual Beyond the Standard Model approach new physical scales
are usually invoked in order to solve or alleviate the Standard Model problems. In this thesis
we adopted an alternative and minimalistic approach, relying only on those elements that
are known to be there or that can be discovered in the near future: The Standard Model is
assumed to be valid up to the Planck scale and the number of additional degrees of freedom
is severely restricted. The resulting models are therefore rather fragile, but at the same time
extremely predictive. If any of their predictions is not verified the whole idea would be ruled
out. Among all the phenomenological consequences, we focused on the cosmological aspects,
especially on their relevance in the context of inflation, preheating and dark energy. Let us
summarize the main results.

The Higgs field and Inflation

We started by complementing the Einstein-Hilbert action with a non-minimal coupling of the
Higgs field to gravity. A conformal transformation shows that the model is, at the level of the
equations of motion, indistinguishable from the Starobinsky scenario [97, 98, 99, 100]. Indeed,
the model admits inflationary solutions for relatively large values of the non-minimal coupling,
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ξh ∼ 104, which rescues the Higgs field from the known difficulties for generating inflation.
In spite of the large value of the coupling, it does not leave any observable signature at low
energy scales and solar system physics. After the end of inflation, the symmetry breaking
potential forces the Higgs field to acquire a vacuum expectation value, which is many orders
of magnitude smaller than the Planck mass. The evolution of the, otherwise dynamical,
gravitational Newton’s constant freezes and the Weak Equivalence Principle bounds [93] can
be satisfied.

In order to unify the different mechanisms for mass generation, the previous extension
of the Standard Model was supplemented with a classical scale invariance symmetry, which
can be extended to the quantum level if a specific renormalization scheme [116, 117] is used.
The vacuum expectation value of the Higgs is made dynamical and promoted into a singlet
scalar field, the dilaton. The coupling between the new singlet and the Standard Model
particles is forbidden by quantum numbers, not violating therefore any experimental bound.
Nevertheless, non-minimal couplings to gravity can be included, in the spirit of the Induced
Gravity scenario. The resulting lagrangian density does not display any scale or mass pa-
rameter. All the scales, including the Newton’s constant, originate from one and the same
source: the spontaneous breaking of scale invariance. Due to quantum scale invariance the
Higgs mass is stable against quantum corrections [116]. As a bonus, the model also provides
a successful inflationary scenario. In spite of dealing with a multi-field inflationary model, no
isocurvature perturbations are produced during the whole inflationary stage. The conserved
current associated to the symmetry of scale invariance effectively reduces the number of de-
grees of freedom to a single field. Indeed, by choosing the appropriate set of variables, it was
shown that the inflationary trajectories are well described, when rescaled, by circumferences
of constant radius in field space, whose evolution depends only on an angular variable. In this
case, the primordial power spectra can be directly related to the observations of the CMB
[1] to obtain bounds on the non-minimal couplings of the Higgs and dilaton fields to gravity,
which turn out to be of order ξh ∼ 104 and ξχ ∼ 10−3 respectively.

On the initial conditions of the hot Big Bang

The number of Standard Model particles per comoving volume at the end of inflation is
completely negligible. Any particle abundance previous to the inflationary stage has been
completely diluted by the inflationary expansion. In order to recover the standard hot Big
Bang picture, the potential and kinetic energy stored in the Higgs condensate must be trans-
ferred to the Standard Model particles during the (p)reheating stage. Given the hierarchical
structure of the non-minimal couplings to gravity, with one of them much larger than the
other, the study of the (p)reheating stage in Higgs-Dilaton inflation effectively reduces to that
in Higgs inflation, up to small corrections and dilaton production [219]. All the couplings
of the Higgs (inflaton) to matter fields are experimentally known at the electroweak scale,
and can be extrapolated to the (p)reheating scale using the renormalization group equations.
Contrary to other (p)reheating models, no ad hoc assumptions about their values are done.
The process becomes more complicated than expected, and a series of subsequent stages take
place, where essentially all different types of particle production mechanisms at preheating
occur [77, 202].



99

After a negligible tachyonic particle production after the end of inflation, the Higgs
field starts to oscillate around the minimum of its potential with a curvature scale of order
1013 GeV. Given the initial large occupation of the Higgs zero-mode, the standard Quantum
Field Theory techniques for particle production in non-trivial backgrounds [94, 238] can be
applied. Indeed, the oscillating Higgs condensate gives rise to a homogeneous time-dependent
mass term for all the fields to which it is coupled. Notice that the concept of particle can only
be properly defined in those cases in which the frequency of oscillations changes adiabati-
cally. Although this condition is satisfied during most of the oscillation period, it is certainly
violated around the minimum of the potential, where the temporal variation of the Higgs
field is maximal. This gives rise to a inequivalence between the vacua before and after the
zero crossing, which can be interpreted as non-perturbative particle production [181, 183].
While there is no restriction on the number of created weak bosons, the direct production of
SM fermions is severely restricted by Fermi-Dirac statistics [206]. Based on the experience
on other preheating scenarios, the number density of gauge bosons would be expected to
grow exponentially due to bosonic stimulation. However, the couplings among the gauge and
fermionic fields in the Standard Model are non-negligible, which gives rise to a very compli-
cated process in which perturbative and non-perturbative effects are mixed. We called this
process Combined Preheating [77], to distinguish it from all the other existing (p)reheating
mechanisms. The created weak bosons, triggered by the increasing Higgs amplitude after
the zero crossing, acquire a large mass and decay (perturbatively) into quarks and leptons
within half a Higgs oscillation, rapidly depleting the occupation numbers of gauge bosons.
This forbids the weak bosons to accumulate and postpones the development of the resonance.
At this point, the fraction of energy of the Higgs that goes into Standard Model particles is
still very small compared with the energy in the oscillations. A relatively large number of
oscillations will take place before a significant amount of energy is transferred to the gauge
bosons and fermions. Eventually, the decreasing of the Higgs amplitude due to the matter-
like expansion of the Universe reduces the decay rate and parametric resonance becomes the
dominant effect. The gauge bosons start to build up their occupation numbers very rapidly
via parametric amplification. We computed the distribution of the energy budget among all
the species present at that time, which roughly coincides with the time at which backreaction
from the gauge bosons into the Higgs condensate start to be significant. As a consequence,
the Higgs field acquires a large mass and preheating ends. Soon afterwards, the Universe is
filled with the remnant condensate of the Higgs and a non-thermal distribution of fermions
and bosons, redshifting as radiation and matter respectively. From there on until thermal-
ization [239, 240, 241], the evolution of the system is highly non-linear and non-perturbative,
which makes it difficult to make a clear statement about the subsequent stage. Numerical
studies in the lattice are needed.

It is interesting to notice that, although the Combined Preheating scenario was dis-
cussed in the context of Higgs inflation, the formalism is completely general and could be
applied to any realistic particle physics theory. Indeed, the described competition between
perturbative and non-perturbative physics will take place whenever the inflaton couples to
fields able to decay into lighter ones. Whether the energy density of the decay products
overcomes that in the inflaton condensate before the development of the resonance or not
depends on the specific values of the couplings. Among the many particle physics models that
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could be considered, the so-called New Higgs Inflation scenario [242, 243] seems especially in-
teresting. It constitutes an alternative, or rather a complement, to the Higgs inflation models
described above, where all the couplings to the Standard Model particles are also known. The
Combined Preheating mechanism could besides modify the development of the Gravitational
Wave Background (GWB) produced as a secondary product of the re-scattering of classical
matter waves produced during preheating [244, 245, 246, 247, 248, 249, 250, 251] as well as
the production of magnetic fields at preheating [252, 253] or even electroweak baryogenesis
[254, 255, 256, 257].

The Higgs field and Dark Energy

The required dilatation symmetry described above forbids the appearance of a cosmological
constant term in the action. Nevertheless, this term can be recovered if one considers a very
modest modification of General Relativity. In Unimodular Gravity the metric determinant
is fixed to one and the Λ term reappears at the level of the equations of motion. Its physical
interpretation is however very different. Rather than a cosmological constant, it becomes the
strength of a quintessence potential, being its value related only to initial conditions. The
Higgs and dilaton fields are able to provide not only an inflationary stage, with successful
preheating, but also a dark energy dominated period. All the parameters of the theory are
completely determined from CMB physics, which allows us to make specific predictions in
any subsequent period. In particular, we present an extremely appealing connection between
the spectral tilt of the CMB anisotropies, n∗s, and the present equation of state w0

DE of
dark energy, −3(w0

DE + 1) ≈ (n∗s − 1), for ΩDE = 0.74. An extra consistency relation,
3wa ≈ dn∗s/d ln k, between the scale-factor dependence of the equation of state for dark
energy, w(a) = w0+wa(1−a) and the logarithmic running of the spectral tilt is also presented.
These expressions allowed us to predict within this model the equation of state parameter
and its derivative, w = −0.987 and wa < 0.01, which constitutes a precise prediction that
could potentially allow to accept or reject the model.

Something in the distance...

These are very exciting times for modern physics, where lots of data will be available soon.
To know if the particle physics desert assumed throughout this Thesis [60, 57] is the proper
answer or a Beyond the Standard Model oasis appears in the distance is just a matter of
time. Decades of speculations and unsolved questions may turn out into experimental reali-
ties, changing our understanding of the Universe or just slightly modifying it. Regarding the
cosmological aspects discussed in this work, the results of the LHC, the PLANCK mission
and the different surveys aimed to unveil the nature of the dark energy are particularly im-
portant. The precise electroweak symmetry breaking mechanism will hopefully be accessible
in the LHC, whatever it may be. If the simplest scenario is finally realized and the Higgs
boson detected, the measurement of its mass will complete the list of the couplings of the
Standard Model. On the other hand, the PLANCK satellite [258] might determine the tensor
contribution to the temperature and polarization anisotropies of the CMB, whose amplitude
is directly proportional to the energy scale of inflation [259, 260, 261, 262, 263]. Photometric
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and Spectroscopic Dark Energy surveys, such as DES, PAU or BOSS [264, 265, 266], will
determine the Dark Energy equation of state at the 5 % level, or even better, as well as its
evolution with the scale factor at the 10 % level. Unfortunately, the Higgs-Dilaton models
consistency relations seem difficult to be tested in the near future.
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CHAPTER 7

Resumen y Perspectivas

You alwaies end ere you begin.

The two Gentlemen of Verona
W.Shakespeare

Del Universo primitivo a nuestros d́ıas

La Relatividad General y el Modelo Estándar de F́ısica de Part́ıculas constituyen dos de los
pilares mejor fundamentados de la f́ısica moderna, aunque no por ello libres de problemas.
La ausencia de respuestas para cuestiones tan fundamentales como el origen de las masas
de los neutrinos, la dinámica del proceso inflacionario o la naturaleza de las componentes
oscuras del Universo, motivó la busqueda de soluciones en las llamadas teoŕıas Más allá del
Modelo Estándar. Un denominador común de todas estas teoŕıas es la introducción de nuevas
escalas f́ısicas y/o part́ıculas para intentar solventar, o al menos aliviar dichas dificultades.
En esta tésis se adoptó una visión alternativa y minimalista para afrontar el problema, basada
solamente en elementos bien conocidos o susceptibles de ser verificados en un futuro cercano.
Se asume que el Módelo Estándar es valido hasta la escala de Planck, restringiendo con ello
sustancialmente el numero de grados de libertad e imponiendo la busqueda de respuestas
dentro del marco existente. Los modelos obtenidos son por tanto extramadamente frágiles
pero al mismo tiempo extraordinariamente predictivos. Si cualquiera de sus predicciones
no se viera satisfecha, la idea debeŕıa descartarse por completo. De entre todas las posibles
consecuencias fenomenológicas, en esta tésis se hizo especial hincapie en los aspectos de ı́ndole
cosmológico, especialmente en aquellos relacionados con inflación, recalentamiento y enerǵıa
oscura. En lo que sigue resumimos los principales resultados obtenidos.
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El Higgs e Inflación

Se introdujo un acoplo no-minimo del campo de Higgs a gravedad, adicional al termino de
tipo Einstein-Hilbert ya existente. Es fácil demostrar, haciendo uso de una transformación
conforme, que el citado modelo es indistinguible del modelo de Starobinsky [97, 98, 99, 100],
al menos al nivel de las ecuaciones de movimiento. Al igual que este último, nuestro modelo
admite soluciones inflacionarias para acoplos no-mı́nimos relativamente grandes ξh ∼ 104,
capaces de rescatar al Higgs de las conocidas dificultades para generar inflación. A pesar del
enorme valor del acoplo, este no deja ningún tipo de signatura experimental ni en el sistema
solar ni en los experimentos de baja enerǵıa, ya que al final de inflación el Higgs adquiere
un valor de expectación muchos ordenes de magnitud menor que la escala de Planck. La
evolución del mismo queda por tanto congelada y las cotas sobre el Principio de Equivalencia
Débil [93] satisfechas.

Para intentar unificar los diferentes mecanismos de generación de masa se extendió
el anterior modelo con una simetŕıa de escala clásica, potencialmente extendible al regimen
cuántico por medio de un proceso de renormalización adecuado [116, 117]. El valor de ex-
pectación del Higgs se convierte en este caso un singlete escalar dinámico, el dilatón. Los
acoplos entre esta nueva part́ıcula y las ya existentes en el Módelo Estándar están prohibidos
por sus números cuánticos, respetandose por tanto todas las cotas experimentales. Sin em-
bargo, el dilaton puede acoplarse no-minimamente a gravedad, igual que el Higgs, en el más
puro esṕıritu de Gravedad Inducida. El lagrangiano resultante no contiene parametro di-
mensional o escala alguna. Todas las escalas se originan a partir de un único mecanismo: la
ruptura espontánea de la invariancia de escala. Si esta se mantiene a nivel cuántico, la masa
del Higgs resulta estable frente a correcciones radiativas [116]. Al igual que en el modelo
anterior, el sistema admite soluciones inflacionarias. La corriente de Noether asociada a la
invariancia de escala actúa como una ligadura que reduce de manera efectiva el número de
grados de libertad a uno, no produciendose por tanto perturbaciones isocurvatura durante
el proceso inflacionario. En este caso, el espectro de potencias primordial puede relacionarse
directamente con las observaciones del Fondo Cósmico de Microondas [1], obteniendo cotas
sobre los valores de los acoplos no mı́nimos del Higgs y del dilaton a gravedad. Estos resultan
ser de orden ξh ∼ 104 y ξχ ∼ 10−3 respectivamente.

Sobre las condiciones iniciales del Big Bang

El número de part́ıculas del Modelo Estándar por volumen comóvil al final de proceso in-
flacionario es completamente despreciable. Cualquier contenido previo a dicho estado se ve
completamente diluido por la expansion. Si queremos recuperar el Big Bang o historia térmica
del Universo, la enerǵıa cinética y potencial almacenada en el condensado de Higgs debe ser
transferida a las part́ıculas del Modelo Estándar en un proceso llamado (p)recalentamiento.
Dada la estructura sumamente jerarquica de los acoplos no mı́nimos a gravedad, con uno de
ellos mucho mayor que el otro, el estudio del proceso de recalentamiento en Higgs-Dilaton
Inflation se reduce de manera efectiva a aquel en Higgs Inflation, salvo pequeñas correcciones
o producción de dilatones [219]. Todos los acoplos entre el inflaton y los campos de mateŕıa
son conocidos a la escala electrodébil, lo que permite su extrapolación hasta la escala de
recalentamiento mediante el uso de las ecuaciones del grupo de renormalización. Esta carac-
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teŕıstica es extremadamente singular, y diferencia los modelos estudiados de otros modelos de
recalentamiento. El proceso final resulta ser más complicado de lo esperado, involucrando en
él todos los procesos de producción de part́ıculas conocidos [202, 77]. Tras una, casi despre-
ciable, producción taquionica de part́ıculas al final de inflación, el Higgs comienza a oscilar
alredador del mı́nimo de su potencial, decurvatura aproximada 1013 GeV. La alta población
inicial del modo cero del Higgs nos permite hacer uso de las técnicas de teoŕıa cuántica de
campos para la producción de part́ıculas en background no triviales [94, 238]. El Higgs en su
oscilación da lugar a un termino de masa homogéneo dependiente del tiempo para todas aque-
llos campos a los que se encuentra acoplado. Nótese que el concepto de part́ıcula solamente
está definido si la evolución temporal de dichas masas es suficientemente lenta. Aunque esta
condición claramente se satisface durante la mayor parte del periodo de oscilación, se viola en
las zonas cercanas al mı́nimo del potencial, donde la variación temporal del Higgs es máxima.
Esto da lugar a inequivalencias entre los diferentes vaćıos antes y despues de dicho punto, lo
que puede interpretarse como producción no perturbativa de part́ıculas [181, 183]. De entre
las diferentes especies creadas, destacan por su número los bosones intermedios, mientras
que la creación de fermiones está seriamente restringida por la estad́ıstica de Fermi-Dirac
[206]. Los bosones creados tienden a decaer en fermiones debido al incremento de su masa
efectiva por el desplazamiento del Higgs hacia el máximo de su potencial, dando lugar a un
proceso muy complicado que llamamos Recalentamiento Combinado, para distinguirlo de los
mecanismos existentes. El decaimiento de los bosones gauge impide la producción estimulada
de los mismos y por tanto el desarrollo de la resonancia paramétrica. La fracción de enerǵıa
transferida a las part́ıculas del Modelo Estándar es todav́ıa muy pequeña comparada con la
almacenada en las oscilaciones. Serán necesarias un gran número de oscilaciones para que la
transferencia sea efectiva y el decrecimiento de la amplitud del Higgs permita al efecto res-
onante dominar sobre el decaimiento en fermiones. A partir de este momento el número de
bosones gauge crecera exponencialmente via amplificación paramétrica. Cuando esto ocurre
el backreaction sobre el condensado de Higgs empieza a ser significativo, lo que da lugar a un
incremento de la masa del Higgs y al f́ınal del recalentamiento. El estado resultante contiene
el remanente del consendado de Higgs, aśı como una distribución no térmica de fermiones
y bosones, escalando como radiación y materia respectivamente. La evolución del sistema
hasta termalización [241] es altamente no lineal y no perturbativa, lo que requiere el uso de
métodos numéricos en el ret́ıculo.

Es destacable que aunque el Recalentamiento Combinado previamente descrito fue anal-
izado en el contexto de Higgs Inflation, es un formalismo completamente general que puede
ser aplicado a cualquier teoŕıa realista de f́ısica de part́ıculas. La competición entre efectos
perturbativos y no-perturbativos tendrá lugar en todas aquellos casos en los que el inflaton
se acople a campos acoplados a su vez a otros más ligeros. Si la densidad de enerǵıa de
los productos de decaimiento supera o no a la almacenada en el inflatón antes del desar-
rollo de la resonancia dependerá de los valores espećıficos de los acoplos en cada modelo.
De entre todos las posibilidades destaca el conocido como New Higgs Inflation [242, 243],
por constituir una alternativa a Higgs Inflation donde también se conocen todos los acop-
los. El Recalentamiento Combinado podŕıa modificar además el desarrollo del Fondo de
Ondas Gravitacionales (GWB) producido como un producto secundario del re-scattering de
las ondas de materia producidas durante preheating [244, 245, 246, 247, 248, 249, 250, 251],
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asi como la producción de campos magnéticos [252, 253] o incluso baryogenesis a la escala
electrodébil [254, 255, 256, 257].

El Higgs y la Enerǵıa Oscura

La simetŕıa de dilatación introducida anteriomente prohibe la aparición de una costante cos-
mológica al nivel de la acción. Esta puede ser sin embargo recuperada haciendo uso de una
modesta modificación de Relatividad Genera conocida como Gravedad Unimodular. En ella
el determinante de la métrica se fija a la unidad y el término Λ reaparece al nivel de las ecua-
ciones de movimiento, aunque con una interpretación f́ısica muy diferente. En lugar de una
constante cosmológica debeŕıa interpretarse como la amplitud de un potencial, con su valor
dictado por las condiciones iniciales. Este potenticial se enmarca dentro de los modelos cono-
cidos como de quintaesencia y puede dar lugar a un periodo dominado por enerǵıa oscura.
Todos los parámetros del modelo se encuentran fijados por el proceso inflacionario inicial,
lo que permite hacer predicciones concretas sobre cualquier periodo subsiguiente. Concre-
tamente, presentamos una sorprendente relación entre el tilte espectral de las anisotroṕıas
de Fondo Cósmico de Microondas n∗s y la ecuación de estado w0

DE de la enerǵıa oscura,
−3(w0

DE + 1) ≈ (n∗s − 1), para ΩDE = 0.74. Es posible obtener además una relación de
consistencia adiacional, 3wa ≈ dn∗s/d ln k, entre la evolucion de la ecuación de estado para
la enerǵıa oscura w(a) = w0 + wa(1 − a) y el running del tilte espectral. Estas relaciones
permiten derivar una predicción precisa para la ecuación de estado y su derivada, w = −0.987
and wa < 0.01, que podŕıa potencialmente descartar o confirmar el modelo.

Algo en la distancia...

Vivimos tiempos de júbilo para la f́ısica moderna, donde una gran cantidad de datos exper-
imentales estará pronto a nuestra disposición. Saber si la naturaleza eligió el desierto de
part́ıculas y escalas presentado en esta tésis o por el contrario el oasis de otras teoŕıas es
solo una cuestión de tiempo. Decadas de especulaciones y preguntas sin resolver podŕıan
convertirse en realidades confirmadas experimentalmente, cambiando ligeramente o por com-
pleto nuestra forma de entender el Universo. En lo que respecta a los diversos aspectos
cosmológicos discutidos en este trabajo, los resultados del LHC, PLANCK y otras misiones
similares son especialmente importantes. Con algo de suerte, el mecanismo (cualquiera que
sea) responsable de la ruptura de simetŕıa será pronto desvelado por el LHC. Si el escenario
más sencillo es el elegido por la naturaleza, la medida de la masa del bosón de Higgs comple-
tará la lista de acoplos del Modelo Estándar. Por otro lado, el satélite PLANCK [258] podŕıa
determinar las contribuciones tensoriales a la temperatura y polarization del Fondo Cósmico
de Microondas, cuya amplitud está directamente relacionada con la escala de enerǵıa de in-
flación [259, 260, 261, 262, 263]. Rastreos fotométricos y espectroscópicos tales como DES,
PAU o BOSS [264, 265, 266], determinarán el valor de la ecuación de estado de la enerǵıa
oscura con una precisión del 5 % , o incluso mejor, aśı como su evolución con el factor de
escala al 10 % . Lamentablemente, las relaciones de consistencia de Higgs-Dilaton inflación
serán dificiles de testar en un futuro próximo.
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APPENDIX A

Parametric resonance as a quantum mechanical
problem

This appendix is devoted to the derivation of Eq. (4.66). This expression is indeed generic
for any interaction of the form

Veff(φ,A) = V (φ) +
1

2
M2(φ)A2 , (A.1)

with M2(φ) playing the role of an effective mass term

M2(φ) ≡ ∂2Veff(φ,A)

∂A2
, (A.2)

for the A field. The field φ must be understood as an homogeneous highly populated periodic
field, satisfying φ(t+ T ) = φ(t). On the other hand, A is assumed to be in an initial vacuum
state1. This fact allows us to decompose A into fluctuations

A(t,x) =
1

(2π)3/2

∫
d3k

(
akAk(t)e−ikx + a†kA

∗
k(t)eikx

)
, (A.3)

living in an evolving background φ. The temporal eigenfunctions Ak(t) in the previous
expression obey the Klein-Gordon equation

Äk + 3HȦk +

(
k2

a2
+M2(φ)

)
Ak = 0 , (A.4)

where the physical momentum kph ≡ k/a(t) redshifts with time due to the expansion of the
Universe. This equation resembles that of a damped, H 6= 0, (quantum) harmonic oscillator

1In the particular Higgs-driven inflationary scenarios φ would correspond to the Higgs condensate, while
the scalar field A would plays de role of the different gauge fields polarizations.
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with a time-dependent mass (frequency). The previous equation can be rewritten in a much
more transparent way making use of the field redefinition

a3/2Ak(t) ≡ Ak(t) =
αk(t)√

2ωk
e−i

∫ t ωkdt +
βk(t)√

2ωk
e+i

∫ t ωkdt , (A.5)

in terms of which the evolution equation (A.4) becomes2

Äk(t) + ω2
k(t)Ak(t) = 0 , (A.6)

with
ω2
k(t) ≡ k2 +M2(t) . (A.7)

The functions αk and βk satisfy the so-called Wronskian condition |αk|2 − |βk|2 = 1. An
additional and useful constraint on these functions can be imposed taking the derivative of
Eq .(A.5) as if αk and βk were time-independent, to obtain

α̇k =
ω̇

2ω
e+2i

∫ t ωdtβk , β̇k =
ω̇

2ω
e+2i

∫ t ωdtαk . (A.8)

Note that Eq. (A.6) is just the a Schrödinger kind of equation for a wave function Ak(t)
scattering in a potential −M2(t). The problem has been therefore translated into a quantum
mechanical one, which allows to apply the standard complex time WKB methods (WKB). If
the frequency is varying slowly with time

ω̇k
ω2
k

� 1 , (A.9)

then the solution of (A.6) is close to that of the equation in which ω2
k is constant (Born

approximation). The region in which this happens is frequently called the adiabaticity region,
since in this case the particle number, nk = |βk|2, is an adiabatic invariant, evolving slowly
with time. Indeed, for |βk| � 1 we can obtain an iterative solution

βk '
1

2

t∫
−∞

dt′
ω̇

ω2
exp

(
−2i

t′∫
−∞

dt′′ω(t′′)
)
. (A.10)

which clearly shows that for ω̇k/ω
2
k � 1 the particle production is completely negligible3. The

field A approximately remains then in its vacuum state, given by initial positive frequency
solution

Ak(kt→ −∞) =
1√
2ωk

e−iωkt . (A.11)

On the other hand, if the effective mass changes rapidly with time ω̇/ω2 � 1 the WKB
analysis breaks down. The particle number is then no longer an adiabatic invariant and a

2We skipped over corrections ∼ H2, Ḣ. The smallness of these terms is indeed quite model dependent, but
whenever a ∝ tn, as happens for instance in a radiation or matter dominated Universe, they can be safely
neglected soon after inflation.

3The integral can be evaluated by the stationary phase method. For three-legs interactions the perturbative
result can be interpreted as separate inflatons decaying independently into pairs of A-particles.
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Figure A.1: Complex time WKB trajectories for a periodic potential.

significant particle production should be expected. The violations of the adiabaticity condition
(A.9) are localized in the vicinity of so the so-called reflection points tj , which correspond with
those time at which the inflaton field φ crosses zero. The (complex) points where the time
dependent frequency, understood as a complex function, equals zero, ω2

k = 0, are respectively
known as turning points. In WKB the resonance particle production occurs due to rotation of
currents at the turning and reflection points. The former kind of production is independent of
time and is associated with the spontaneous particle creation, while the successive reflections
at the points tj are associated with induced particle creation. Let us define the action for the
path that goes from ti to tf

Θ(tf , ti) =

∫ tf

ti

ω(t) dt, (A.12)

and consider the asymptotic in and out boundary conditions

Ak(kt→ −∞) = Tke
iΘ(t,t0) , Ak(kt→ +∞) = eiΘ(t,t0) +Rke

−iΘ(t,t0) , (A.13)

corresponding to the absence of particles at kt → −∞ and to the potential creation of
particles at kt → −∞. Here Rk and Tk are the reflection and transmission amplitudes
respectively, related again by the Wronskian condition |Rk|2 + |Tk|2 = 1. Rightmoving waves
are chosen as exp [−iΘ(t, t0)], while the leftmoving ones evolve exp [+iΘ(t, t′0)]. As can be
seen in (A.13), the transmission and reflection coefficients are defined as (Tk, Rk) for the
rightmoving waves. The left moving one will correspondingly have coefficients (T ∗k , R

∗
k). Let

us focus on the violation of the adiabaticity condition around a given inflaton zero crossing
tj . The asymptotic adiabatic expressions for the incoming (tj−1 < t < tj) and outcoming
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waves (tj < t < tj+1) take the form

Ajk(t) =
αjk√
2ω
e−iΘ(t,t0) +

βjk√
2ω
e+iΘ(t,t0) , (A.14)

Aj+1
k (t) =

αj+1
k√
2ω
e−iΘ(t,t′0) +

βj+1
k√
2ω
e+iΘ(t,t′0) (A.15)

where αjk, β
j
k, α

j+1
k , βj+1

k are constant coefficients in their corresponding intervals. In the

region tj < t < tj+1 the rightmoving component of Aj+1
k (t)

Aj+1
k,RMP =

[
αjk
Tk

+
βjk R

∗
k

T ∗k
e2 iΘ(tj ,t0)

]
e−iΘ(t,t0) , (A.16)

is made of two parts (cf. Fig. A.1). The first one (represented by a in Fig. A.1) gets the
factor 1/Tk after transmission at tj . The second contribution to the rightmoving wave comes

from t > tj . The amplitude βjk exp[2 iΘ(tj , t0)] of the leftmoving part ( represented by the
trajectory b in Fig. A.1), gets a factor 1/T ∗k , when continued into the region t > tj . This
factor is again modified by the reflection at tj , becoming finally the R∗k/T

∗
k term in (A.16) .

Comparing (A.16) with the first term in (A.15) we get

αj+1
k =

αjk
Tk

+
βjk R

∗
k

T ∗k
e2 iΘ(tj ,t0) . (A.17)

The left moving part

Aj+1
k,LMP =

[
βjk
T ∗k

+
αjk Rk
Tk

e−2iΘ(tj+1,t0)

]
e+iΘ(t,t0), (A.18)

has also two contributions given by the trajectories c and d in Fig. A.1. The trajectory (c)
coming from t′0 gives the left moving part βj+2

k exp [iΘ(t, t′0)] which in the region t < tj+1 gets

a factor 1/T ∗k . The continuity condition βjke
iΘ(tj ,t0) = βj+2

k eiΘ(tj ,t
′
0) must used to convert βj+2

k

to βjk. On the other hand, the amplitude of the trajectory (d) is modified by the transmission
at tj and the subsequent reflection at tj+1 acquiring a factor by a factor Rk/Tk. Comparing
(A.18) with the second term in (A.15) provides

βj+1
k =

βjk
T ∗k

+
αjkRk
Tk

e−2iΘ(tj+1,t0) . (A.19)

Note that the previous expression coincides with that in (4.63). The number of particles just
after the j-th scattering, nk(j

+), in terms of the number of particles nk(j
−) just before that

scattering, can be computed from (A.19) to obtain

nk(j
+) = Ck + (2Ck + 1)nk(j

−) + 2 cos θj
√
Ck (Ck + 1)

√
nk(j−) (nk(j−) + 1)

with Ck ≡ T−1
k (j)− 1, recovering therefore (4.66).



APPENDIX B

Conformal transformations

An overpresent mathematical tool throughout this thesis has been the use of conformal trans-
formations. A conformal transformation

gµν → g̃µν = Ω2gµν , (B.1)

is a point-dependent rescaling of a Lorentzian or Riemannian metric tensor in a a smooth
n-dimensional manifold M by a non-vanishing, and sufficiently regular function Ω = Ω(x),
usually called the conformal factor. In the most interesting and practical applications, it
usually depends on the value of one of more scalar fields coupled non-minimally to the cur-
vature in a given frame. We will generically denote these scalar fields as φ. The conformal
transformation affects the lengths of spacetime intervals as well as the norm of vectors, but
it leaves the light cones unchanged, maintaining therefore the causal structure of spacetime.
In what follows we summarize some useful rules for conformally transforming the curvature
invariants, stress-energy tensors and inflationary observables.

B.1 Geometrical quantities

We start by considering the changes in the most relevant geometrical quantities. Let us
denote by g the metric determinant det(gµν). Applying the conformal transformation (B.1)
one has,

g̃ ≡ det (g̃µν) = Ω2ng . (B.2)

On the other hand, the Christoffel symbols acquire an extra contribution due to the conformal
factor Ω

Γ̃µνρ = Γµνρ + Ω−1
(
δµν∇ρΩ + δµρ∇νΩ− gνρ∇µΩ

)
. (B.3)

Something similar happens with the Riemann tensor, and its associated contractions, namely

R̃δµνρ = Rµνρ
δ + 2δδ[µ∇ν]∇ρ(ln Ω)− 2gδσgρ[µ∇ν]∇σ(ln Ω) + 2∇[µ(ln Ω)δδν]∇ρ(ln Ω)

−2∇[µ(ln Ω)gν]ρg
δσ∇σ(ln Ω)− 2gρ[µδ

δ
ν]g

σρ∇σ(ln Ω)∇ρ(ln Ω) , (B.4)
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R̃µν = Rµν − (n− 2)∇µ∇ν(ln Ω)− gµνgρσ∇ρ∇σ(ln Ω) + (n− 2)∇µ(ln Ω)∇ν(ln Ω)

−(n− 2)gµν g
ρσ(∇ρ ln Ω)(∇σ ln Ω) , (B.5)

R̃ = Ω−2 [R− 2 (n− 1)2 (ln Ω)− (n− 1) (n− 2) gµν∇µ(ln Ω)∇ν(ln Ω)] . (B.6)

At this point, we would like to make explicit the conformal transformation of the scalar
curvature in 4 dimensions, since it plays a spacial role in the work developed in this thesis.
Particularizing (B.6) to n = 4 we obtain

R̃ = Ω−2

[
R− 62Ω

Ω

]
= Ω−2

[
R− 122

√
Ω√

Ω
− 3gµν∇µΩ∇νΩ

Ω2

]
. (B.7)

Notice that the inverse transformations of the previous expressions can be easily calculated
just by changing Ω −→ Ω−1. As these are written in terms of logarithms, this change
translates into a change of sign in some of the terms in the corresponding expression. For
instance, the inverse of (B.6) is given by

R = Ω2
[
R̃+ 2 (n− 1)

∼
2 (ln Ω)− (n− 1) (n− 2) g̃µν∇µ(ln Ω)∇ν(ln Ω)

]
. (B.8)

Finally, we would like to note that there exist a very important quantity for characterizing
conformal metric, known as the Weyl or conformal tensor, whose form remains, according to
its name, invariant under conformal transformations

C̃σµνρ = Cσµνρ . (B.9)

B.2 Matter quantities

Recall that in Section 4.3 we presented the transformation rules for the kinetic terms and in-
teractions associated to scalar, vector and fermionic fields. We would like to supplement that
study with the transformations rules for the matter content understood in the fluid descrip-
tion commonly used in General Relativity. Under the effect of a conformal transformation
the stress energy tensor associated to a given matter lagrangian LM

Tµν =
−2√
−g

δ (
√
−gLM )

δgµν
(B.10)

becomes
T̃µν = Ω−n+2Tµν . (B.11)

For the particular case of a perfect barotropic fluid of energy density ρ, pressure p

Tµν = (ρ+ p)uµuν + pgµν , (B.12)

the previous equation (B.10) implies

ũµ = Ω−1 uµ , ρ̃ = Ω−nρ , p̃ = Ω−np . (B.13)

We conclude therefore that the equation of state of a given barotropic fluid1 remains un-
changed under conformal transformations.

1Note that the conclusion does not hold for a non-barotropic fluid with a general equation of state p(ρ).
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B.3 Cosmological perturbations

In this thesis we chose to work in the Einstein frame, where all the inflationary slow-roll
parameters and observables take the usual form used in Chapter 3. However, the analysis
could have been also performed, with the same result, in the original Jordan frame, where the
fields couple non-minimally to the scalar curvature. To illustrate this point, let us consider
the metric perturbations generated during inflation. We start by decomposing the conformal
factor (depending on the scalar fields non-minimally coupled to gravity) into a background
Ω̄2(t) and a perturbation δΩ(x, t) as

Ω2(x) = Ω̄2(t) + δΩ(x, t) . (B.14)

When this transformation is applied to a perturbed Friedmann-Robertson-Walker metric
longitudinal gauge

ds2 = −(1 + 2Ψ(x, t))dt2 + +a2(t) (1 + 2Ψ(x, t)) δijdx
idxj , (B.15)

we obtain the following transformation rules

dt̃ = Ω(t)dt , ã(t) = Ω(t)a(t) , Φ̃ = Φ +
δΩ

2Ω2
, (B.16)

where the bar over the homogeneous part Ω̄(t) has been omitted to simplify the notation.

Let us start by analyzing the background evolution. The Hubble rate in the Einstein
frame is redefined as

H̃ ≡ 1

ã

dã

dt̃
=
H

Ω

(
1 +

Ω′

Ω

)
, (B.17)

where the tilde denotes differentiation wrt the number of e-folds N in the Jordan frame.
Taking into account the previous equation, it is easy to obtain an useful relation among the
number of e-folds computed in both frames

∆ ≡ dN

dÑ
= 1− d ln Ω

dÑ
. (B.18)

Integrating the previous equation from the initial field configuration φ0 at the beginning of
inflation we get

Ñ −N = ln
Ω(φ)

Ω(φ0)
≤ 0 . (B.19)

As expected, the number of e-folds is not an invariant under conformal transformations.
However, the difference between the two frames turns out to be practically irrelevant during
the inflationary stage. As an example, let us consider Higgs-Inflation. To obtain an upper
bound, we focus on the value at the end of inflation, ln Ωend/Ω0, where the discrepancy
between Ñ and N is larger. As we saw in Chapter 3, the inflationary are well described by
ellipses with constant radius, r2

0 ≡ (1 + 6ξh)h2
0 + (1 + 6ξχ)χ2

0. Here h0 and χ0 are the initial
values for the Higgs and dilaton fields respectively. Let us assume that they are roughly
equal. In this case, it is possible to relate the initial and final amplitude of the h field to
obtain

hend
h0
≈

√
6ξχ

1 + 12ξχ
. (B.20)
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Figure B.1: The quantity ∆ ≡ 1− d ln Ω
dÑ

for an arbitrary inflationary trajectory. This quantity
measures the difference between the number of e-folds computed in Einstein and Jordan
frames. For values of ∆ close to 1 the observables in the Einstein frame can be directly
related to those in the Einstein frame.

where we have used ξh � ξχ as well as the approximate relation among the field amplitudes at

the end of inflation χ ≈
√

ξh
ξχ
h. Taking into account (B.20), we obtain Ωend/Ω0 ≈

√
12ξχ

1+12ξχ
,

which corresponds, for a typical ξχ = 0.005, to

∣∣∣N − Ñ
N

∣∣∣ ≤ 2% . (B.21)

During most of the inflationary stage the quantity ∆ in (B.18) is indeed quite smaller than
the previous bound, cf. Fig. B.1. Given the small difference between the number of e-folds
defined in Jordan and Einstein frame, we will from now on identify N = Ñ . Regarding
the cosmological perturbations produce during inflation, let us notice that the curvature
perturbation on comoving slices is not only gauge invariant but also invariant under conformal
transformations [267, 268]

R̃ ≡ Φ− H

dφ/dt
δφ = Φ̃− H̃

dφ̃/d̃t
δφ̃ = R̃ , (B.22)

as can be easily verified making use of the properties (B.17). This constitutes a fundamental
property that can indeed be proved to any order in perturbation theory [269] (see also Ref.
[270]). It allows to compute the action for a comoving perturbation in a given frame and
then obtain it in another frame by simply performing a conformal transformation [271, 272].
The power spectra computed in the two frames agree

Pζ = P̃ζ . (B.23)
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The associated spectral indices (for vanishing isocurvature modes) take the form [135]

ñs = 1− 6ε̃+ 2p̃abÑ
ab , ns = 1− 6ε+ 2pabN

ab + 3
d log Ω

dN
, (B.24)

in the final (Einstein) and initial (Jordan) frames respectively. The ε̃ and Ñab slow-roll
parameters in the previous expression are defined in the Einstein frame, taking therefore the
standard form

ε̃ ≡
M2
Pγ

abṼ,aṼ,b

2Ṽ 2
, Nab ≡

M2
P Ṽ;ab

Ṽ
. (B.25)

with

p̃ab ≡
Ṽ,aṼ,b

γcdṼ,cṼ,d
, (B.26)

The corresponding slow-roll parameters in the Jordan frame are defined as [135]

ε ≡
M2
Pγ

abVeff,aVeff,b

2V 2
, Nab ≡

M2
PΩ2

V

(
Veff;b

Ω2

)
;a

. (B.27)

where the effective potential Veff,a is given by

Veff,a ≡ −Ω2

(
V

Ω2

)
,a

(B.28)

and

pab =
Ṽeff,aṼeff,b

γcdṼeff,cṼeff,d

, (B.29)

Tensor perturbations are invariant under conformal transformations [126].
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APPENDIX C

Higgs-Dilaton trajectories in the Jordan frame

In this Appendix we derive analytic formulae for the temporal evolution of the Higgs and
dilaton fields in the Jordan frame and compared them with exact solutions obtained numer-
ically in Jordan and Einstein frames in the way described in [273]. We start by considering
the lagrangian density (3.33) for negligible ϑ. If we assume the fields to be homogeneous
during inflation, together with the standard slow-roll approximation, φ̇2

a � V , φ̈a � V,a
and φ̈a � Hφ̇a the equations of motion for the scalar fields (2.27), expressed in term of the
number of e-folds N , becomes

3H2φ′a ≈ −V,a +
1

2
f,aR , (C.1)

while the Friedmann equations (2.25) and (2.26) simplify respectively to

V ≈ 3H2
(
f + f ′

)
, (C.2)

fR ≈ 4V − 9H2f ′ . (C.3)

In the last equation, we have assumed extended slow-roll conditions, namely 1+6ξaφ̇a � V (φ)
and 1 + 6ξaφ̇a � Hḟ(φ), which should be checked numerically a posteriori. Equations (C.2)
and (C.3) imply that the Ricci scalar can be approximated as R ≈ 12H2 (1 + f ′/(4f)), which
does not correspond to the usual approximation Ḣ � H2. Although it can be checked
numerically that the contribution of the extra term f ′/(4f) is indeed very small, it must be
explicitly maintained to preserve the conservation law (2.23) in the slow-roll regime. Indeed,
combining equations (C.1), (C.2) and (C.3) we obtain

(1 + 6ξχ)χχ′ + (1 + 6ξh)hh′ ≈ 0 , (C.4)

which can be integrated to obtain the field space constraint

r2 ≡ (1 + 6ξh)h2 + (1 + 6ξχ)χ2 , (C.5)
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Figure C.1: Evolution of the angular variable z as a function of the number of e-folds N and
detailed view of the last 60 e-folds. The green (dot-dashed) lines represent the approximate
slow-roll solutions given by (C.9), while the red (solid) and blue (dashed) curves correspond
to the result of an exact numerical computation performed in the Jordan and Einstein frames
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e-folds N . The green (dot-dashed) lines represent the approximate slow-roll solutions given
by (C.10), while the red (solid) and blue (dashed) curves are exact numerical results in the
Jordan and Einstein frames respectively.
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where r2 = r2
0 is a constant determined by the initial conditions. The inflationary trajectories

are therefore ellipses in field space of radius (C.5). This suggests to rewrite the problem in
terms of polar coordinates (r, z), where z is defined as

z ≡

√
(1 + 6ξh)

(1 + 6ξχ)

h

χ
. (C.6)

Notice that this choice is quite natural from the point of view of a scale-invariant theory,
where physical quantities can only only depend on the ratio of dimensional quantities. The
evolution equation for this angular variable can be computed making use of (C.1), (C.2) and
(C.3) to obtain

z′

z
≈ −4ξχ

z2 + σ

z2 + σ + 2ξχ

(
1 +

1

z2

)
, (C.7)

where

σ ≡ (1 + 6ξh) ξχ
(1 + 6ξχ) ξh

. (C.8)

The previous equation can be easily solved to obtain the evolution with the number of e-folds(
1 + z2

)1−2ξχ (z2 + 6ξχ
)2ξχ(

1 + z2
0

)1−2ξχ (z2
0 + 6ξχ

)2ξχ = e−8ξχN , (C.9)

where r0 and z0 stand for the initial values for the radial and angular coordinates respectively.
The comparison between the slow-roll solution (C.9) for the z variable and the exact solutions
obtained numerically in Jordan and Einstein frames is shown in Fig. C.1. Notice that we have
identified the number of e-folds computed in Jordan with that computed Einstein frame, N ,
given the small difference between the two during the whole inflationary period, cf. Appendix
B. The evolution of the non-dimensional quantity z does not depend on the chosen frame.
Finally, making use of Eqs. (C.9) it is also possible to compute the corresponding values of
the original Higgs and dilaton fields via

h(N) =
r(N)√
1 + 6ξh

(
1 + z−2(N)

)−1/2
, χ(N) =

r(N)√
1 + 6ξχ

(
1 + z2(N)

)−1/2
, (C.10)

whose comparison with the numerical solutions is shown in Fig.C.2. The conservation law
(2.23) acts therefore as a constraint equation, reducing the multi-field Higgs-Dilaton scenario
to the single field case. This have strong implications, not only for the determination of the
model parameters from the CMB observables, but also for the reheating stage after inflation,
cf. Chapter 3.
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