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When does causality constrain the monopole abundance? 
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The causality bounds on monopole abundance are reexamined in the light of recently constructed 
models which display very rapid monopole annihilation. It is shown that the behavior displayed in 
these models is consistent with causality, and that the proper formulation of the causality bounds is 
very dependent on the representation content of the model. By invoking intermediate phases with 
appropriate types of symmetry breaking, it is possible to annihilate essentially all monopoles, or 
even to avoid their ever appearing. 

It is well known that magnetic monopoles could have (I) unbroken U(1), with 4 = $=0; 
been produced during the course of certain cosmological (11) broken U( l ) ,  with 4 # 0 ,  *=0; 
phase transitions. Specifically, consider a transition in (111) broken U( l ) ,  with $If 0,  */#O, and 4*d2 real; 
which a symmetry group G is broken to a subgroup H by (IV) same as phase 11. 
the development of a nonzero expectation value for some 
scalar field 4 .  The dynamics does not uniquely determine 
the value of 4,  but only restricts it to a manifold 
M = G / H .  Just after the transition, the actual value of 4 
will vary from place to place, with a characteristic corre- 
lation distance 5. This twisting of $ in internal space can 
give rise to monopoles if n,( G /HI is nontrivial. 

A rough estimate of this initial monopole density is 
nIni, where p is a geometric factor expected to be 
of order lo-'. While the calculation of 5 requires a de- 
tailed understanding of the dynamics, causality con- 
siderations imply that the orientation of the scalar field 
cannot be correlated over distances greater than the hor- 
izon distance d H .  This implies the horizon bound3 

Although this bound was originally applied to the initial 
monopole density, the reasoning behind it should apply 
equally well at later times, as indicated in Eq. (1). It 
should therefore restrict the efficacy of any monopole- 
annihilation mechanism. However, two  model^^,^ have 
been proposed in which a Langacker-Pi-type mechanism6 
appears to annihilate monopoles much more rapidly than 
allowed by Eq. (1). Furthermore, as we shall show, one 
can modify the models in such a way as to evade even the 
bound on the initial monopole production. Our aim in 
this paper is to resolve the apparent contradiction be- 
tween causality and the behavior observed in these mod- 
els. 

We begin by recalling the essential features of the mod- 
els. The first,4 proposed by Everett, Vachaspati, and 
Vilenkin (EVV), has a U(1) symmetry and is set in a two- 
dimensional space, with vortices playing the same role as 
the three-dimensional monopoles. There are two scalar 
fields, which we shall denote 4 and 4, with the U(1) 
charge of the former being twice that of the latter. The 
dynamics is assumed to be such that the Universe, as it 
cools, passes through the following phases: 

(The fourth phase does not occur in the original version 
of the model.) Vortices are formed during the transition 
from phase I to 11. When the Universe passes to phase 
111, the vortices become attached to strings. These can 
link either a vortex-antivortex pair or two vortices of the 
same sign. The contraction of these strings leads to 
vortex-antivortex annihilation in the former case and to 
the formation of doubly charged vortices in the latter. At 
the final transition, to phase IV, the strings disappear, 
thus liberating any remaining singly charged vortices. 
The doubly charged vortices may or may not dissociate 
at this time, depending on the dynamics; let us assume 
that they do not. 

The model of Copeland et (CHKMT) is a three- 
dimensional model with an SU(2) symmetry. The scalar 
fields comprise a triplet 4 and a doublet d .  The sequence 
of phases is rather similar to that of the EVV model: 

(1') unbroken SU(2), with 4=O, $=O; 
(11') SU(2) broken to U( l ) ,  with 4# 0, d=O; 
(111') SU(2) completely broken, with 4 f  0, $# 0, and 

1j~71h.4 maximal; 
(IV') same as phase 11'. 

(Again, the fourth phase does not appear in the original 
version of the model.) Monopoles are produced during 
the transition to phase 11'. At the next transition they be- 
come attached to strings; in contrast with the EVV mod- 
el, these strings can only connect oppositely charged ob- 
jects. As before, the final phase transition dissolves the 
strings, thus liberating the surviving monopoles. 

In these models the rate of pair annihilation during the 
third phase is directly related to the distribution of string 
lengths at the onset of the phase. Both computer simula- 
tions4,5,'7 and analytic arguments7 show that in both cases 

this initial distribution falls exponentially with length, 
implying that the density of monopoles or unit vortices 
falls exponentially in time. In the CHKMT model the 
Universe emerges into the final phase with a monopole 
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density far below the bound of Eq. (1). In the EVV model 
the density of unit vortices in the final phase is similarly 
suppressed, although the density of doubly charged vor- 
tices is consistent with the horizon bound. 

Although these models were constructed as counterex- 
amples to the bound on the annihilation rate, they can 
easily be modified so as to violate even the bound on the 
initial density. This is accomplished by replacing the 
second phase in each model by a phase in which $=O but 
+# 0, while leaving the other phases unchanged. In the 
EVV case this still results in a breaking of the U(1) sym- 
metry, with + vortices being produced at the first phase 
transition. When the $ field becomes nonzero at  the next 
transition, its phase is everywhere determined by the 
preexisting + phase. A doubly charged 4 vortex is 
formed around every unit + vortex, but no singly charged 
q5 vortices can be formed. Since the disappearance of the 
+ field a t  the final phase transition should not disturb the 
4 vortices (recall that we are assuming that doubly 
charged vortices are stable against dissociation), the 
Universe can reach the final phase without any unit q5 
vortices ever being produced. The doubly charged vor- 
tices do, however, obey the horizon bound, just as in the 
original version of the model. 

In the C H K M T  case the development of a nonzero + 
field breaks the SU(2) symmetry completely. No  mono- 
poles can be produced at this stage, because 
I12(G/H)=I12(SU(2)) is trivial. To  be more explicit, the 
+ field at this stage must be of the form 

+ l x ) = G ( x )  I:] , (2) 

where G ( x )  is a 2 x 2  SU(2) matrix. Continuity of + ( x )  
implies continuity of G ( x ) .  On any closed surface, the 
function G ( x )  is topologically trivial; i.e., it can be con- 
tinuously deformed to a constant. When 4 becomes 
nonzero at  the next transition, its orientation in internal 
space is determined by that of +. Specifically, it must be 
such that 

Because G ( x )  is topologically trivial on any closed sur- 
face, 4 x 1  must also be trivial, and so no monopoles are 
formed. Since there is no reason to expect monopoles to 
appear when $ vanishes at the final transition, we have a 
mechanism for breaking SU(2) to U(1) without producing 
any monopoles, clearly contradicting Eq. (1). 

These examples clearly demonstrate that the horizon 
bound as given above can be violated without introducing 
any nonlocal or  noncausal elements into the dynamics. 
With this in mind, let us try to formulate more carefully 
the constraints imposed by causality. 

Consider a theory with a symmetry group G and a set 
of scalar fields which we assemble into multiplets $ and 
+, each transforming according to a (possibly reducible) 
representation of G. The dynamics restricts q5 to a mani- 
fold M, thereby breaking G to a subgroup H ,  with 
M = G /H. (This may be further broken by +, but we ig- 
nore this for the moment.) We are interested in objects 
characterized by nonzero values of the topological 

charge, which is given by an expression of the form 

where the integration is over a surface B with the topolo- 
gy of an n-sphere Sn ( n =  1 or 2 in the models above). In 
particular, we want to consider the case where Z is much 
larger than the horizon. The field $ at  a given point x on 
I: can take any value in M with equal probability. Furth- 
ermore, if two points x and x 2  on Z are causally discon- 
nected, there will be no correlation between the values in 
M taken by 4 ( x l )  and $ (x2) .  I t  might therefore seem 
that Q ( Z could take any value. However, simply impos- 
ing the requirement that $ ( x )  be continuous everywhere 
on Z (which can certainly be done by local physics) re- 
stricts Q ( B )  to a discrete set of values corresponding to 
the elements of I In (M) .  

To say that local physics can distinguish between those 
functions $ ( X I  on Z which correspond to elements of 
I I , (M) and those which do not (i.e., between functions 
which are everywhere continuous and those which are 
not) is hardly new. However, we will now show that local 
considerations can distinguish between certain elements 
of n n ( M ) .  TO do this, we must take into account +, 
which we have so far ignored. Let & be the manifold of 
dynamically a1low:d v a l u e s ~ f  $ and +; it may be 
identified with G /H, where H C H is the subgroup of G 
which leaves both $ and + invariant. By a simple exte%- 
sion of our previous remarks, the function from Z to M 
defined by the combined choice of $ ( x )  and + ( X I  can be 
forced by purelx local mechanisms to correspond to an  
element of I I n ( M ) .  Now any continuous map from Sn to 
& clearly induces a continuous y p  from Sn to M. This 
correspondence implies that II, ( M )  can be mapped into 
(although not necessarily onto) I I , (M),  with the image of 
nn (A) forming a subgroup of nn ( M ) .  Since local phys- 
ics can pick out continuous functions from to S",  it 
can di~tinguish~those elements of II, ( M )  which lie in the 
image of n , , ( M  ) from those which do not. Therefore, 
causality alone can place no lower bound on the abun- 
dance of topological objects whose charges are not in the 
image of II, (& ); this remains true even if + vanishes at 
some later time. 

Thus the correct formulation of the horizon bound de- 
pends on the representation content of the theory. It 
may be stated as follows. Let $ break the symmetry 
group G to a subgr%up H. Now consider all possible 
breakings of H to an H C H which can be implemented by 
the remaining fieldsA$. The intersection of the images of 
the various II, ( G /H in II, ( G /H) forms a subgroup of 
I I n ( G / H ) .  The usual horizon bound applies-at all 
times-to those objects whose topological charge lies in 
this subgroup and only to those objects. Let us apply this 
formulation to the examples we considered above. In the 
EVV model the manifold M of allowed values of $ is a 
circle, and so H , ( M ) = Z ,  the additive group of the in- 
tegers. &, the set of allowed $ and +, is aka a circle, but 
it is related to M in such a way that I I , ( M )  corresponds 
to the subgroup of Z formed by the even integers. The 
horizon bound therefore applies to doubly charged $ vor- 
tices, but not to singly charged ones; this is completely 
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consistent with the behavior displayed by the model. In 
the CHKMT model, 4 breaks SU(2) to U ( l ) ,  which in 
turn can be broken czmpleteiy by the doublet field $. We 
can therefore have M = G /H=SU(2); since r12( SU(2) ) is 
trivial, there is no horizon bound. 

We have concentrated thus far on the horizon bound. 
However, causality considerations can also be used to 
bound the rate at which charge fluctuations can be dissi- 
pated, thus giving a more stringent bound on the annihi- 
lation rate. This bound should be applicable to the same 
objects as the horizon bound and only to those. 

It follows that an annihilation mechanism of the type 
proposed by Langacker and Pi is not limited by causality 
bounds. Such a mechanism may therefore be able to 
reduce the monopole abundance to an arbitrarily low lev- 
el. Alternatively, the initial monopole production can be 
suppressed by a mechanism of the sort described above. 
As an example, consider the standard SU(5) model, in 
which monopoles are produced when the symmetry is 
broken to SU(3)XSU(2)XU(l)  by an adjoint representa- 
tion Higgs field 4. To avoid monopole production, we 
may introduce an additional field $ in the ten- 
dimensional antisymmetric tensor representation. We 
then arrange that $ develops a nonzero expectation value 
before 4 does, with the potential being such that 
tr(  $t$)2/(tr$t$)2 is maximized. This implies that $ is of 
the form 

which breaks SU(5) to SU(3)XSU(2); this breaking does 
not support monopole solutions. We next allow 4 to be- 
come nonzero, subject to the requirements that 
( t r $ ~ ~ ) / ( t r # ~ ~ ) '  be minimized and (tr$t42$)/(tr42)(tr$t$) 
be maximized. With $ given by Eq. (51, must then be 

Finally, we let $ vanish again. Although this increases 
the unbroken-symmetry group to SU(3) X SU(2) X U( l ) ,  no 
monopoles are produced. 

In summary, we have shown that local mechanisms 
can suppress the density of certain topological objects to 
much less than one per horizon volume. The horizon 
bound [Eq. ( I ) ]  is therefore very dependent on the repre- 
sentation content of the theory. By invoking intermedi- 
ate phases with appropriate types of symmetry breaking, 
it is possible to annihilate essentially all monopoles or 
even to avoid their ever appearing. This provides the 
possibility of a noninflationary solution to the primordial 
monopole problem. 
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