Hard probes for a strongly coupled plasma

Edmond Iancu IPhT Saclay & CNRS

Collaboration with Yoshitaka Hatta and Al Mueller (lecture notes arXiv:0812.0500)

Introduction

Int	tro	duc	tio	n
	ιυ	Juc		

Outline

Motivation

Partons and jets in pQCD

 (Δ)

Partons and currents in

AdS/CFT

e+e-	at	strong	coupling

DIS off the plasma

Jet quenching

Conclusions

- Experimental results at RHIC suggest that the deconfined hadronic matter ('Quark–Gluon Plasma') produced in a AA collision at high energy might be strongly interacting
- A challenge for the theory: lattice QCD cannot be used for such dynamical phenomena
- New method: string theory via AdS/CFT correspondence
 - not yet QCD: conformal symmetry, no confinement
 - at high energy and/or finite temperature, such issues are (presumably) less important, even in QCD
- A vigourous activity with many interesting results
 - conceptually interesting relations between particle physics, string theory, gravity, black holes
 - physical interpretation of the results is very challenging

Outline

Introduction

Outline

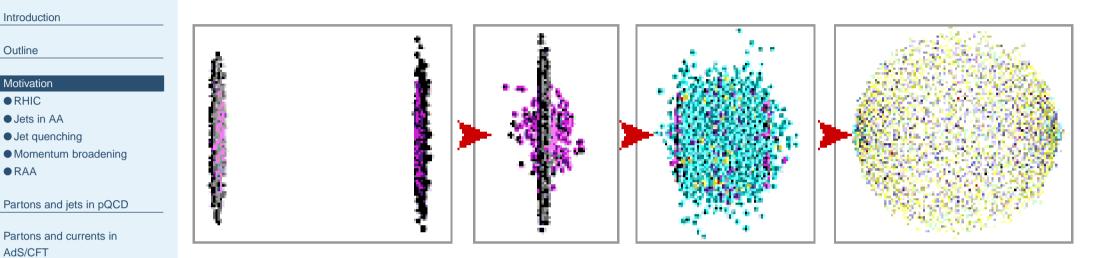
Motivation

Partons and jets in pQCD

Partons and currents in AdS/CFT

e+e- at strong coupling

DIS off the plasma


Jet quenching

Conclusions

- Motivation : Heavy Ion Collisions at RHIC and LHC
- Weak coupling: Partons and jets in perturbative QCD
- Strong coupling: Partons and jets from AdS/CFT
- Vacuum case: electron-positron annihilation at strong coupling
- Finite—T plasma: Deep inelastic scattering & Parton saturation
- Finite—T plasma: Jet quenching & Momentum broadening (new developments in collaboration with Grégory Giecold and Al Mueller)

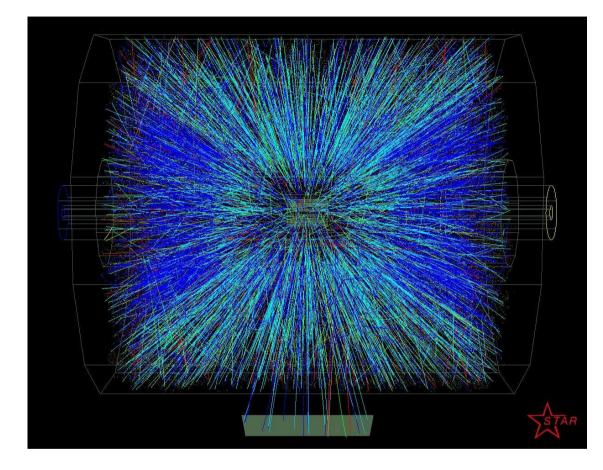
Ultrarelativistic heavy ion collisions @ RHIC and LHC

- Extremely complex phenomena
 - high density partonic systems in the initial wavefunctions
 - multiple interactions during the collisions
 - complicated, non-equilibrium, dynamics after the collision
 - expansion, thermalization, hadronisation
- Is there any place for strong–coupling dynamics ?

(A)

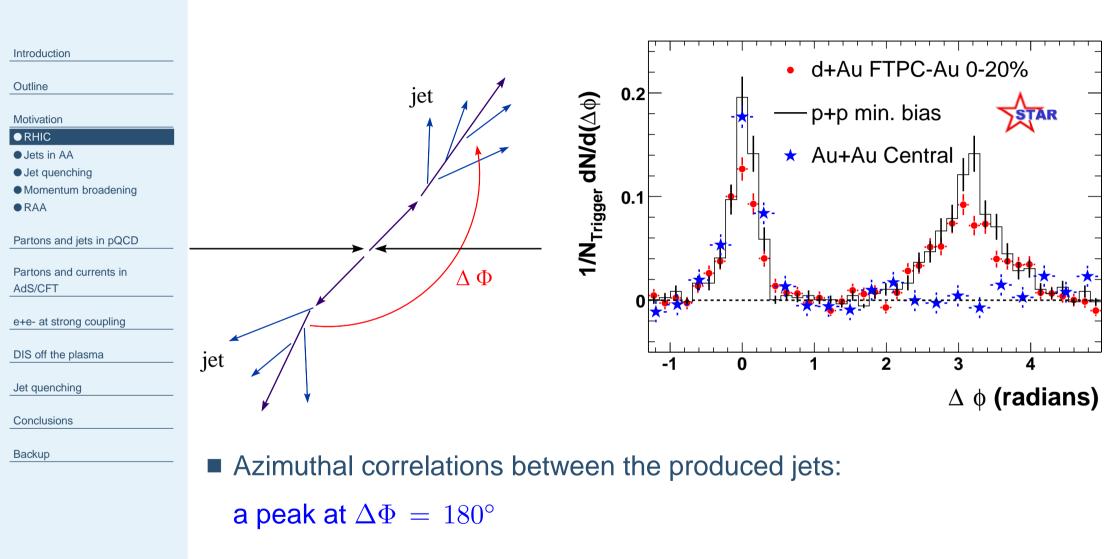
e+e- at strong coupling

DIS off the plasma

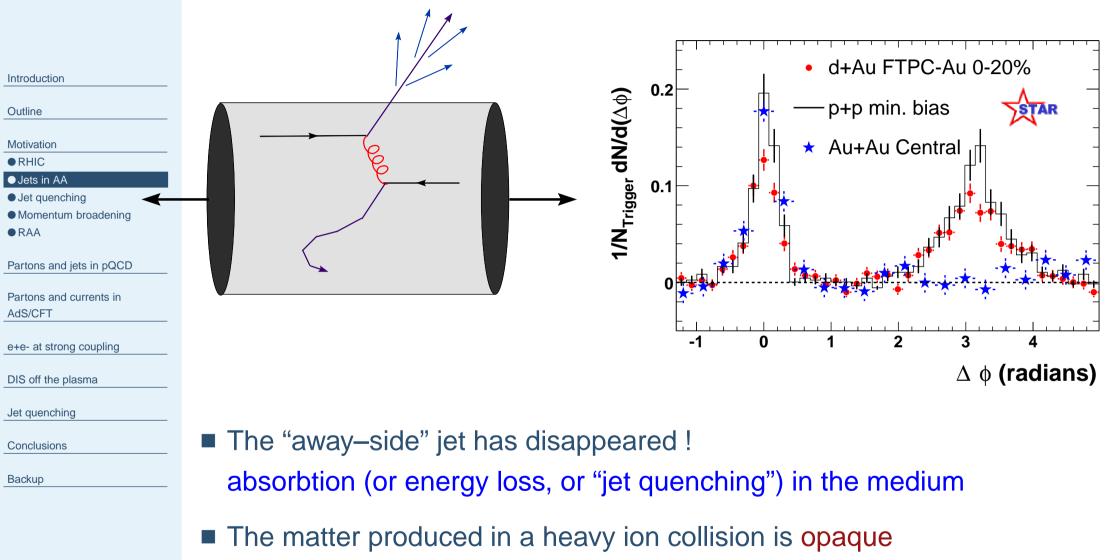

Jet quenching

Conclusions

Hadron production at RHIC

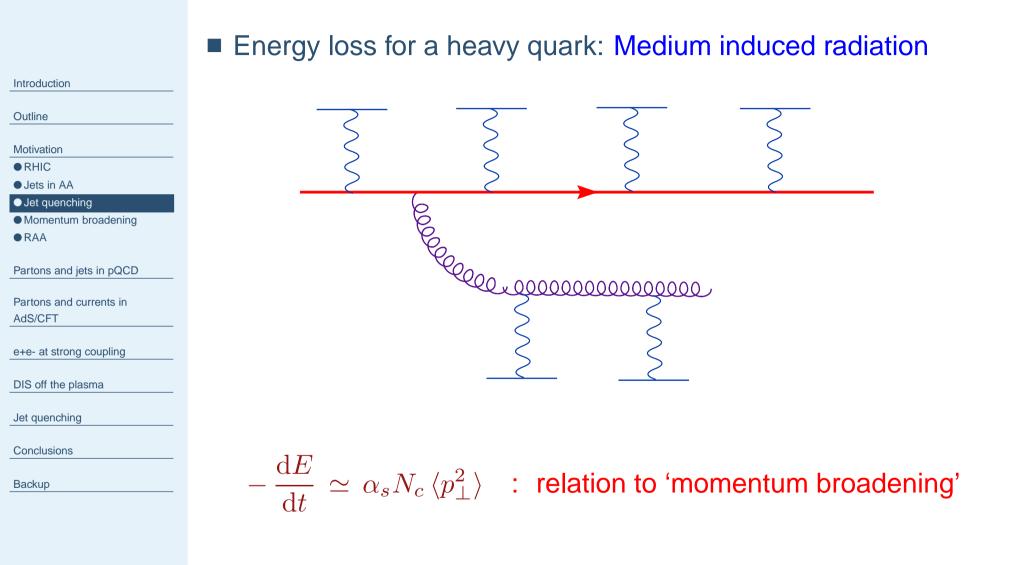

Introduction	
Outline	
Motivation	
●RHIC	
 Jets in AA 	
 Jet quenching 	
 Momentum broadening 	
● RAA	
Partons and jets in pQCD	
Partons and currents in	
AdS/CFT	
e+e- at strong coupling	
DIS off the plasma	
Jet quenching	
Conclusions	
Backup	■ ~ 3000

Œ



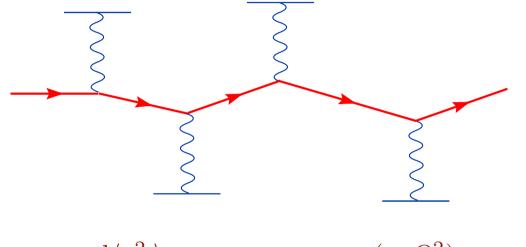
- ~ 3000 hadrons in the final state vs. 400 nucleons in AA
- Most of them arise as hadronized partons
- Particle correlations are essential to disentangle phenomena

Jets in proton–proton collisions



Nucleus-nucleus collision

high density, strong interactions, ... or both


Jet quenching

Transverse momentum broadening

A parton ('heavy quark') scatters off the plasma constituents on its own, hard, resolution scale

$$\frac{\mathrm{d}\langle p_{\perp}^2 \rangle}{\mathrm{d}t} \equiv \hat{q} \simeq \alpha_s N_c \, \frac{xg(x,Q^2)}{N_c^2 - 1}$$

• $xg(x,Q^2)$: gluon distribution per unit volume in the medium

Weakly–coupled QGP : incoherent sum of the gluon distributions produced by thermal quarks and gluons $xg(x,Q^2) \simeq n_q(T) xG_q + n_g(T) xG_g, \text{ with } n_{q,g}(T) \propto T^3$

Motivation

RHIC

• Jets in AA

• Jet quenching

Momentum broadeningRAA

Partons and jets in pQCD

Partons and currents in AdS/CFT

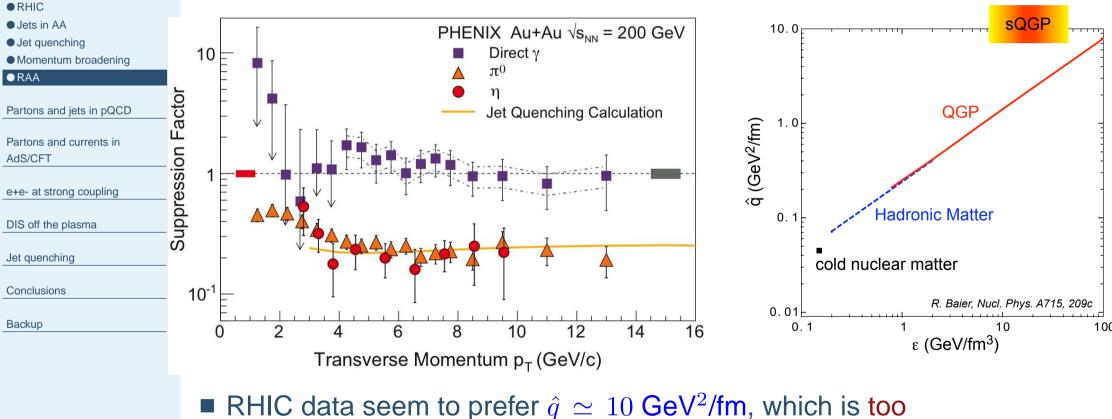
e+e- at strong coupling

DIS off the plasma

Jet quenching

Conclusions

Introduction


Outline

Motivation

Nuclear modification factor

• How to measure \hat{q} ? Compare AA collisions at RHIC to pp

$$R_{AA}(p_{\perp}) \equiv \frac{Yield(A+A)}{Yield(p+p) \times A^2}$$

arge to be accounted for by weakly–coupled QGP (??)

Introduction

Outline

●e+e-

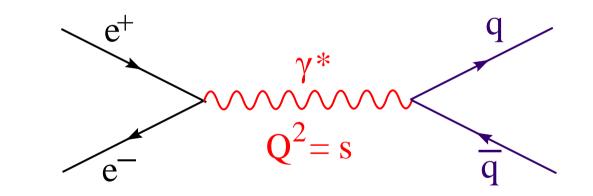
Jets3-iet

DISF2

AdS/CFT

Motivation

Partons and jets in pQCD


Bremsstrahlung

Optical theorem
 Current correlator

Parton evolution
 Gluons at RHIC

e^+e^- annihilation: Jets in pQCD

- How would a high-energy jet interact in a strongly coupled plasma ?
 - How to produce jets in the first place ?
 - Guidance from perturbative QCD: $e^+e^- \rightarrow \gamma^* \rightarrow q\bar{q}$

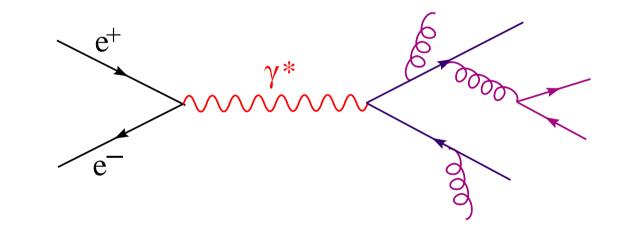
e+e- at strong coupling

Partons and currents in

DIS off the plasma

Jet quenching

Conclusions


Backup

• Decay of a time-like photon: $Q^2 \equiv q^{\mu}q_{\mu} = s > 0$

e^+e^- annihilation: Jets in pQCD

- How would a high-energy jet interact in a strongly coupled plasma ?
 - How to produce jets in the first place ?
 - Guidance from perturbative QCD: $e^+e^- \rightarrow \gamma^* \rightarrow q\bar{q}$

- Introduction
- Outline
- Motivation
- Partons and jets in pQCD
- ●e+e-
- Bremsstrahlung
- Jets
- 3-jet
- Optical theorem
- Current correlator
- DIS
- F2
- Parton evolution
- Gluons at RHIC

```
Partons and currents in AdS/CFT
```

e+e- at strong coupling

DIS off the plasma

Jet quenching

Conclusions

Backup

The structure of the final state is determined by
 parton branching & hadronisation

Bremsstrahlung

 P_{7}

Gluon emission to lowest order in perturbative QCD:

Outline

Motivation

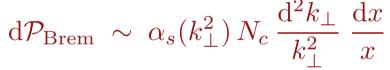
Partons and jets in pQCD

e+e-

- Bremsstrahlung
- Jets
- 3-iet
- Optical theorem
- Current correlator
- DIS
- F2
- Parton evolution
- Gluons at RHIC

```
Partons and currents in
AdS/CFT
```

e+e- at strong coupling


DIS off the plasma

Jet quenching

Conclusions

Backup

 $(1-x)P_{z} , -k_{\parallel}$ $k_z = x P_z + k_\perp$

- Phase-space enhancement for the emission of
 - collinear $(k_{\perp} \rightarrow 0)$
 - and/or low–energy $(x \rightarrow 0)$ gluons
- Parton lifetime (or 'gluon formation time') : $\Delta t \sim \frac{k_z}{k_z^2}$ Soft partons ($k_{\perp} \sim \Lambda_{\rm QCD}$) are produced later

Jets in perturbative QCD

Introduction

Outline

Motivation

Partons and jets in pQCD

(A)

•e+e-

Bremsstrahlung

Jets

• 3-jet

Optical theorem

Current correlator

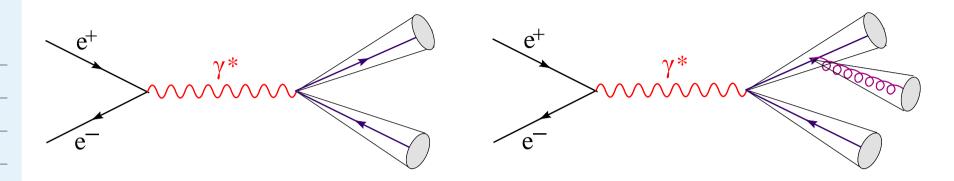
• DIS

• F2

Parton evolution

Gluons at RHIC

Partons and currents in AdS/CFT


e+e- at strong coupling

DIS off the plasma

Jet quenching

Conclusions

Backup

Few, well collimated, jets

• e^+e^- cross-section computable in perturbation theory

$$\sigma(s) = \sigma_{\text{QED}} \times \left(3\sum_{f} e_{f}^{2}\right) \left(1 + \frac{\alpha_{s}(s)}{\pi} + \mathcal{O}(\alpha_{s}^{2}(s))\right)$$

 $\sigma_{\rm QED}$: cross-section for $e^+e^- \rightarrow \mu^+\mu^-$

• Multi-jet ($n \ge 3$) events appear, but are comparatively rare

3-jet event at OPAL (CERN)

Introduction	
Outline	

Motivation

Partons and jets in pQCD

•e+e-

Bremsstrahlung

Jets

●3-jet

Optical theorem

Current correlator

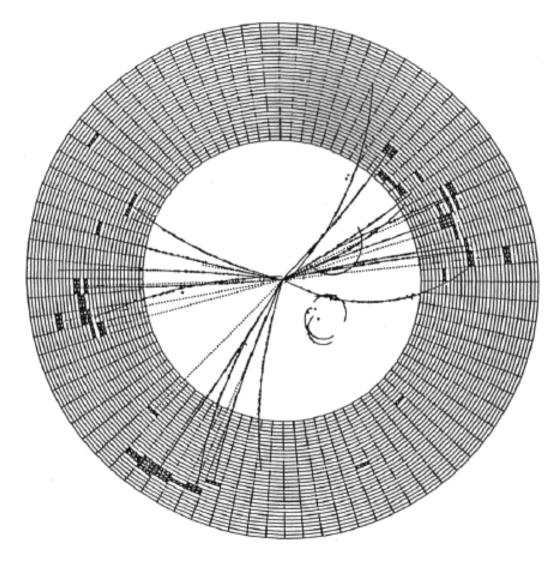
• DIS

• F2

Parton evolution

Gluons at RHIC

Partons and currents in AdS/CFT


e+e- at strong coupling

DIS off the plasma

Jet quenching

Conclusions

Backup

HAN SUMS (GEV) HAN PTOT 35,768 PTRANS 29,964 PLONG 15,700 CHARGE -2 TOTAL CLUSTER ENERGY 15,169 PHOTON ENERGY 4,893 NR OF PHOTONS 11

x d y z

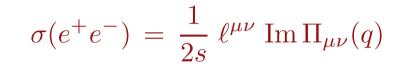
Total cross-section given by the optical theorem

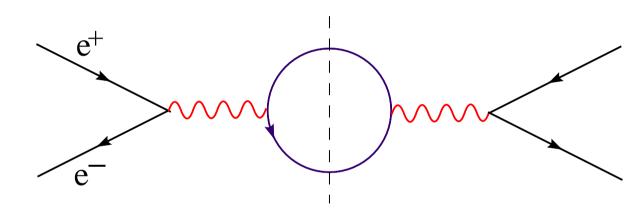
 (\mathbf{P})

Motivation

- Partons and jets in pQCD
- e+e-
- Bremsstrahlung
- Jets
- 3-jet
- Optical theorem
- Current correlator
- DIS
- F2
- Parton evolution
- Gluons at RHIC

```
Partons and currents in AdS/CFT
```

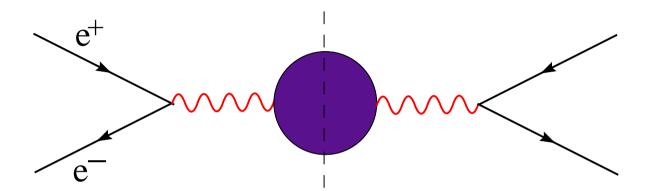

e+e- at strong coupling


DIS off the plasma

Jet quenching

Conclusions

Backup



The quark loop: The vacuum polarization tensor $\Pi_{\mu\nu}$ for a time–like photon (here, evaluated at one–loop order)

This can be generalized to all-orders

Current–current correlator

• $\Pi_{\mu\nu}$ = current–current correlator to all orders in QCD

$$\Pi_{\mu\nu}(q) \equiv i \int \mathrm{d}^4 x \,\mathrm{e}^{-iq \cdot x} \left\langle 0 \left| \mathrm{T} \left\{ J_{\mu}(x) J_{\nu}(0) \right\} \right| 0 \right\rangle$$

$$J^{\mu} = \sum_{f} e_{f} \, \bar{q}_{f} \, \gamma^{\mu} \, q_{f} \, : \, \text{quark electromagnetic current}$$

Valid to leading order in
$$\alpha_{em}$$
 but all orders in α_s

Introduction

Motivation

Partons and jets in pQCD

(A)

•e+e-

Bremsstrahlung

Jets

3-jet

Optical theorem

Current correlator

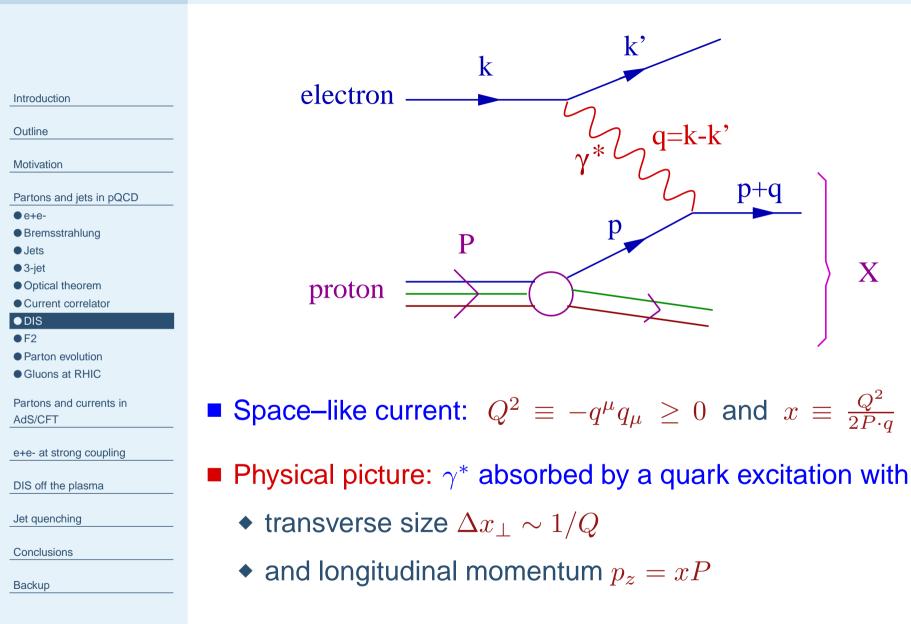
• DIS

• F2

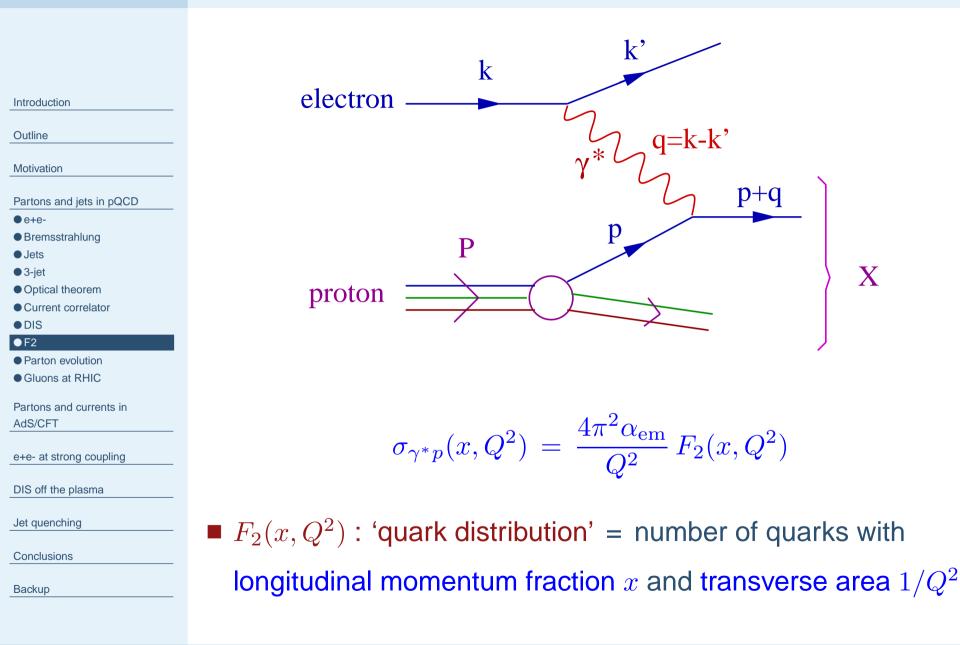
Parton evolution

• Gluons at RHIC

Partons and currents in AdS/CFT


e+e- at strong coupling

DIS off the plasma


Jet quenching

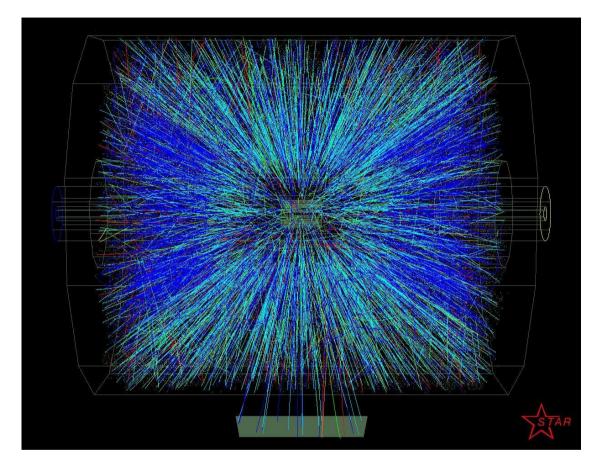
Conclusions

Deep inelastic scattering



The proton structure function

Parton evolution in pQCD


Gluons are implicitly seen in DIS, via parton evolution

Partons at RHIC

Introduction	-
Outline	_
Motivation	_
Partons and jets in pQCD	
• e+e-	
Bremsstrahlung	
• Jets	
• 3-jet	
 Optical theorem 	
 Current correlator 	
• DIS	
• F2	
Parton evolution	
● Gluons at RHIC	
Partons and currents in	
AdS/CFT	_
e+e- at strong coupling	
DIS off the plasma	_
Jet quenching	
	-
Conclusions	_
Backup	

Œ

- Partons are actually 'seen' (liberated) in the high energy hadron-hadron collisions
 - central rapidity: small-x partons
- forward/backward rapidities: large-x partons

Electromagnetic current in a plasma

Thermal expectation value (retarded polarization tensor) :

$$\Pi_{\mu\nu}(q) \equiv \int \mathrm{d}^4 x \,\mathrm{e}^{-iq\cdot x} \,i\theta(x_0) \,\langle \left[J_{\mu}(x), J_{\nu}(0)\right] \rangle_T$$

• 'Hard probe' : large virtuality $Q^2 \equiv |q^2| \gg T^2$

- time-like current ($q^2 > 0$) : jets
- space–like current ($q^2 < 0$) : DIS, partons
- A 'cousin' of QCD: $\mathcal{N} = 4$ Super Yang–Mills theory
 - conformal invariance: coupling is fixed !
 - no confinement, no fundamental quarks ...
- Perhaps better suited for QCD at finite temperature

Partons and jets in pQCD

 (Δ)

Partons and currents in

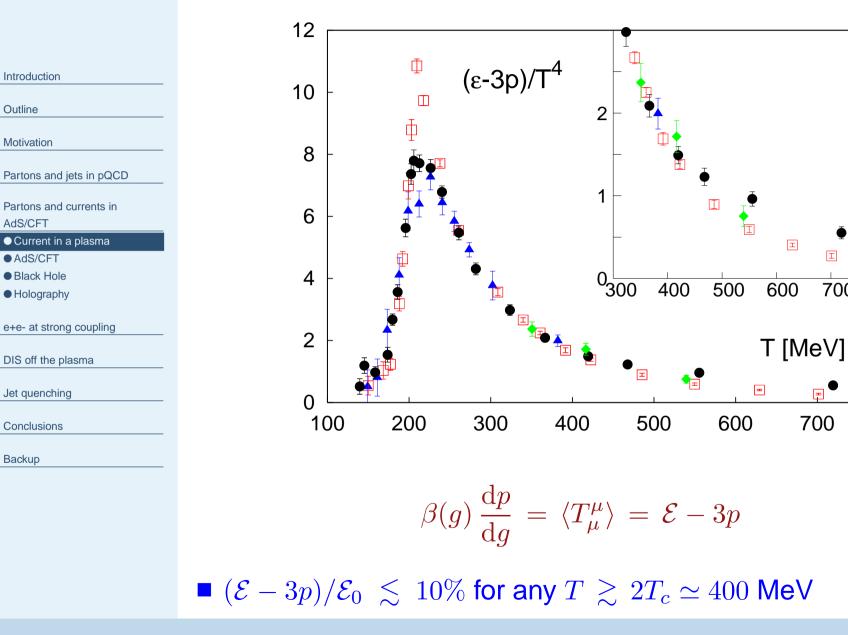
AdS/CFT

Introduction

Current in a plasma

AdS/CFT
Black Hole

Holography


e+e- at strong coupling

DIS off the plasma

Jet quenching

Conclusions

Trace anomaly from lattice QCD

œ

Т

I

700

Ξ

700

Introduction

Outline

Motivation

AdS/CFT

AdS/CFT
Black Hole
Holography

Partons and jets in pQCD

Partons and currents in

Current in a plasma

e+e- at strong coupling

DIS off the plasma

Jet quenching

Conclusions

Backup

A Gauge/Gavity duality (Maldacena, 1997)

• A conformal gauge field theory in D = 4: $\mathcal{N} = 4$ SYM

Type IIB string theory living in D = 10: $AdS_5 \times S^5$

$$ds^{2} = \frac{R^{2}}{\chi^{2}}(-dt^{2} + d\vec{x}^{2}) + \frac{R^{2}}{\chi^{2}}d\chi^{2} + R^{2}d\Omega_{5}^{2}$$

• $0 \le \chi < \infty$: 'radial', or '5th', coordinate

- gauge theory lives at the Minkowski boundary $\chi = 0$
- Strong 't Hooft coupling (more properly, $N_c \to \infty$):
 - $\lambda \equiv g^2 N_c \gg 1$ with $g^2 \ll 1 \implies$ classical supergravity
- Generating functional for the correlations of an operator $\hat{\mathcal{O}}$

$$\left\langle \mathrm{e}^{i\int\mathrm{d}^{4}x\hat{\mathcal{O}}\phi}\right\rangle_{4D} \approx \mathrm{e}^{iS_{\mathrm{SUGRA}}[\phi_{cl}]}$$
 with $\phi_{cl}(x,\chi=0) = \phi(x)$

Heating AdS₅

\mathcal{N} = 4 SYM at finite temperature \iff Black Hole in AdS_5

$$ds^{2} = \frac{R^{2}}{\chi^{2}} \left(-f(\chi)dt^{2} + dx^{2} \right) + \frac{R^{2}}{\chi^{2}f(\chi)}d\chi^{2} + R^{2}d\Omega_{5}^{2}$$

where $f(\chi) = 1 - (\chi/\chi_0)^4$ and $\chi_0 = 1/\pi T$ = BH horizon

- **Example:** compute the plasma entropy density for $\lambda \to \infty$
- The black hole entropy: Bekenstein–Hawking formula

$$S_{\rm BH} = \frac{A}{4G}$$
 with $A =$ horizon area

• ... is identified with the entropy of the $\mathcal{N} = 4$ plasma:

$$\implies s \equiv \frac{S_{\rm BH}}{V_{3D}} = \frac{\pi^2}{2} N_c^2 T^3 = \frac{3}{4} s_0$$

Outline

```
Motivation
```

Partons and jets in pQCD

Partons and currents in

AdS/CFT

Current in a plasma

AdS/CFTBlack Hole

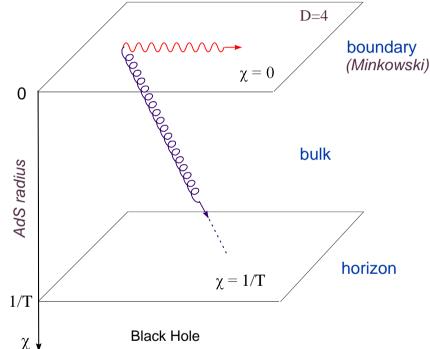
Holography

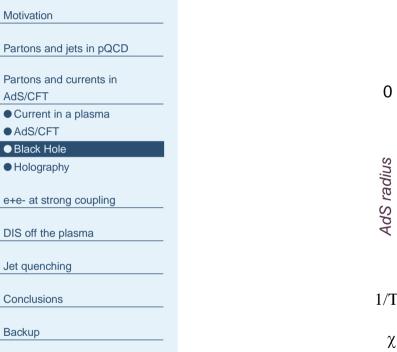
e+e- at strong coupling

DIS off the plasma

Jet quenching

Conclusions


Introduction


Outline

DIS off the Black Hole (Hatta, E.I., Mueller, 07)

• Abelian current J_{μ} in 4D \leftrightarrow Maxwell wave A_{μ} in AdS_5 BH

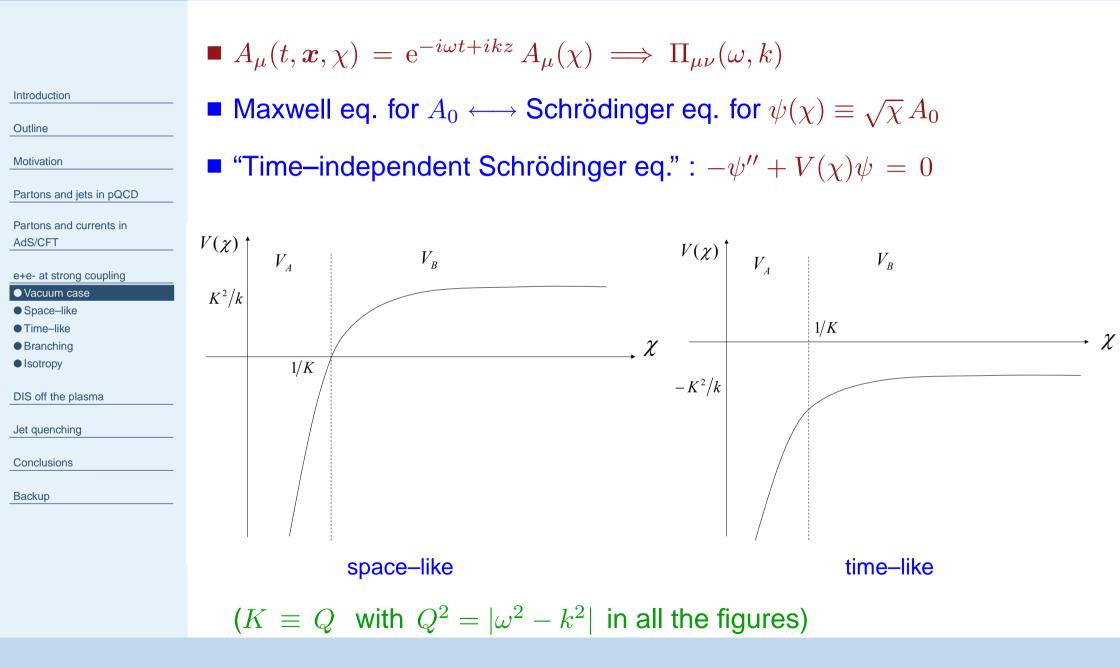
• Im $\Pi_{\mu\nu} \iff$ absorption of the wave by the BH

Maxwell equations in a curved space-time

 $\partial_m \left(\sqrt{-g} g^{mn} g^{pq} F_{nq} \right) = 0$ where $F_{mn} = \partial_m A_n - \partial_n A_m$

The Holographic principle

• 'Holography' : A quantum field theory in $D = 3 + 1 \iff$ A theory with gravitation in higher dimensions Introduction $\chi = 0$ Motivation Partons and jets in pQCD Q 1/0boundary Partons and currents in 00 AdS/CFT (Minkowski) Current in a plasma AdS/CFT 0 Black Hole Holography AdS radius e+e- at strong coupling DIS off the plasma bulk Jet quenching Conclusions χ


- Rôle of the 5th dimension: a reservoir of quantum flucts.
- **Radial penetration** χ of the wave packet in $AdS_5 \iff$ transverse size L of the partonic fluctuation on the boundary

(A)

Outline

The vacuum case as a warm up

Space-like current in the vacuum

Introduction

Outline

Motivation

Partons and jets in pQCD

Partons and currents in AdS/CFT

e+e- at strong coupling

Vacuum case

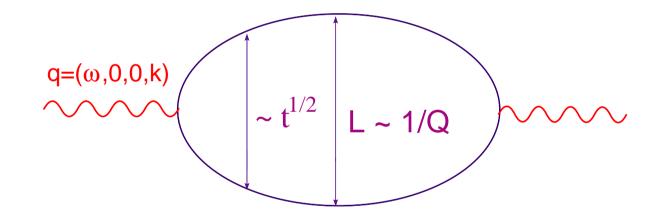
Space–like

• Time–like

Branching
 Isotropy

DIS off the plasma

Jet quenching

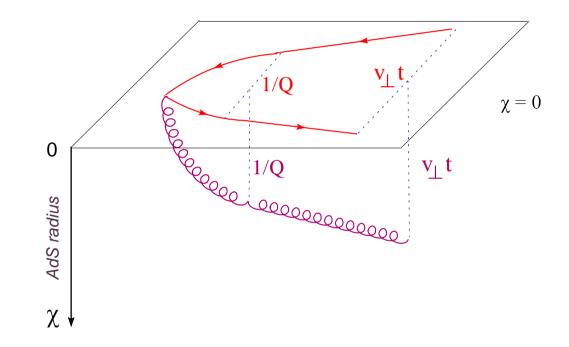

Conclusions

Backup

Potential barrier \implies the wave is trapped at $\chi \lesssim 1/Q$

By energy–momentum conservation, a space–like current cannot decay (in the vacuum)

It can develop a virtual partonic fluctuation


By uncertainty principle, this has a transverse size $L \sim 1/Q$

and a lifetime
$$\Delta t \sim rac{1}{Q} imes rac{\omega}{Q} \sim rac{\omega}{Q^2}$$

Time-like current in the vacuum

- No potential barrier (flat potential)
 - the wave can escape towards large values of χ
 - free streaming with radial velocity $v_{\chi} = Q/\omega$

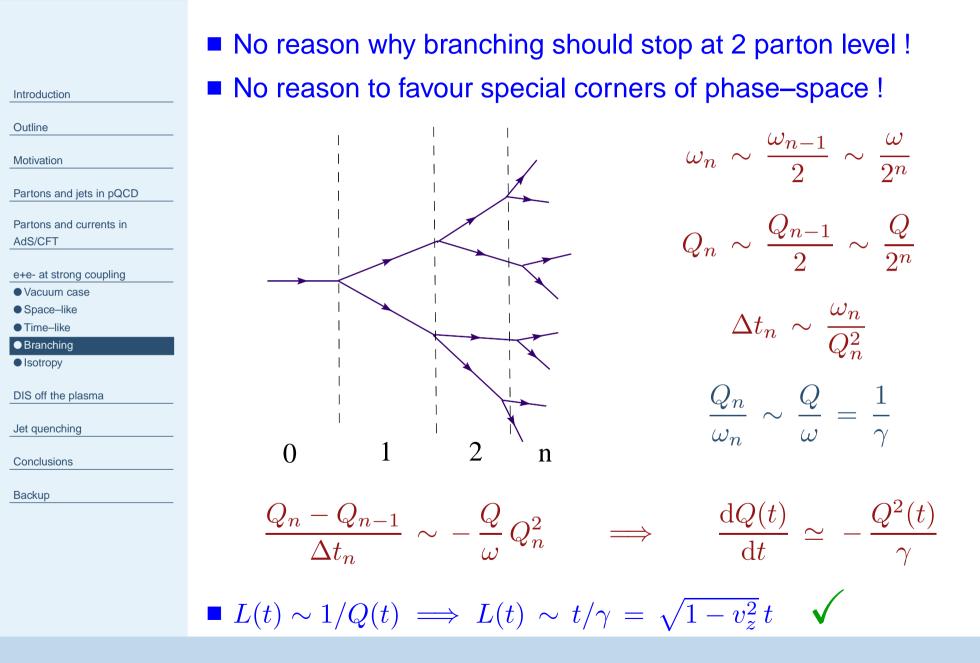
AdS/CFT

Introduction

Outline

Motivation

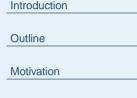
e+e- at strong coupling


Partons and jets in pQCD

Partons and currents in

- Vacuum case
- Space-like
- Time–like
- BranchingIsotropy
- DIS off the plasma
- Jet quenching
- Conclusions
- Backup

- Physics: The current decays into massless partons
 - common longitudinal velocity $v_z = k/\omega$
 - transverse velocity $v_{\perp} = \sqrt{1 v_z^2} = Q/\omega$

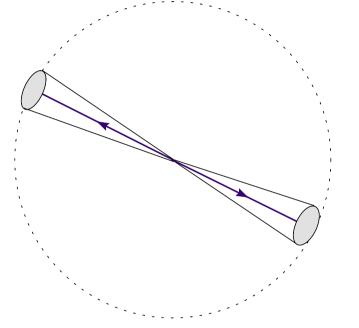

Quasi-democratic parton branching

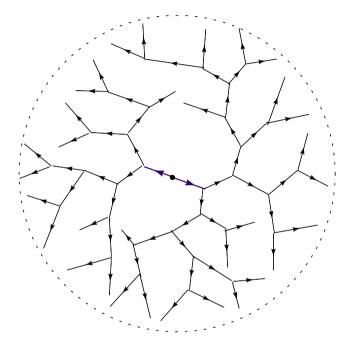
e^+e^- at strong coupling

Time-like current in the vacuum

Partons and jets in pQCD

Partons and currents in AdS/CFT


e+e- at strong coupling


- Vacuum case
- Space–like
- Time–like
- BranchingIsotropy

DIS off the plasma

Jet quenching

Conclusions

- Infrared cutoff $\Lambda \longrightarrow$ splitting continues down to $Q \sim \Lambda$
- In the COM frame → spherical distribution ⇒ no jets ! (similar conclusion by Hofman and Maldacena, 2008)
- Final state looks very different as compared to pQCD !

œ

Introduction

Outline

Motivation

AdS/CFT

DIS

Partons and jets in pQCD

Partons and currents in

e+e- at strong coupling

Saturation momentum

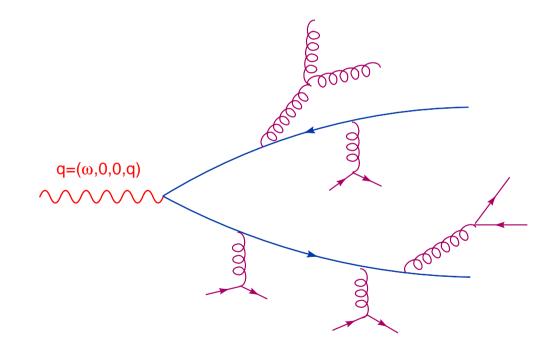
Branching in the plasma

DIS off the plasma

High energy

DIS: Large x
 Meson

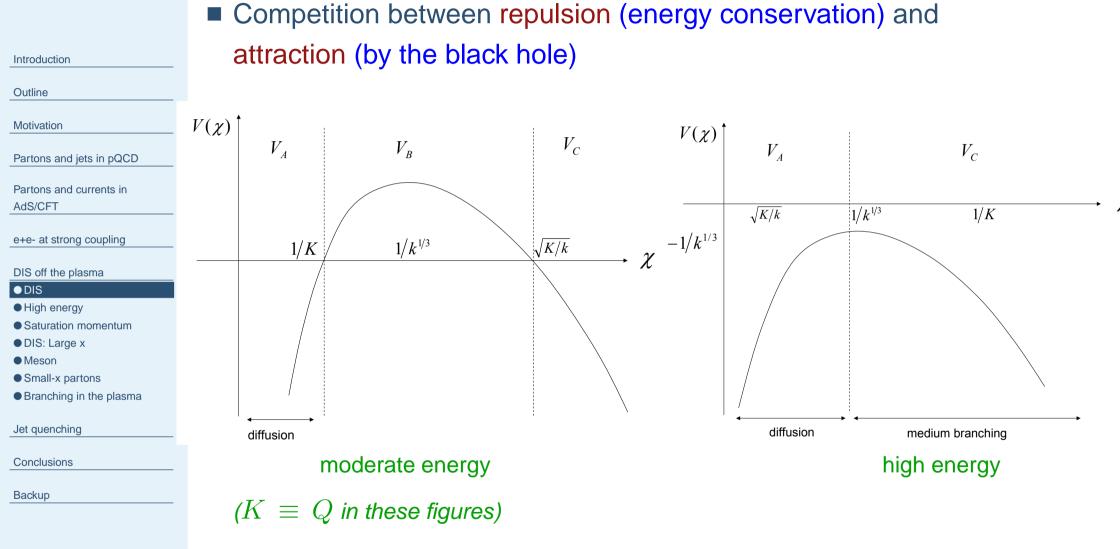
Jet quenching

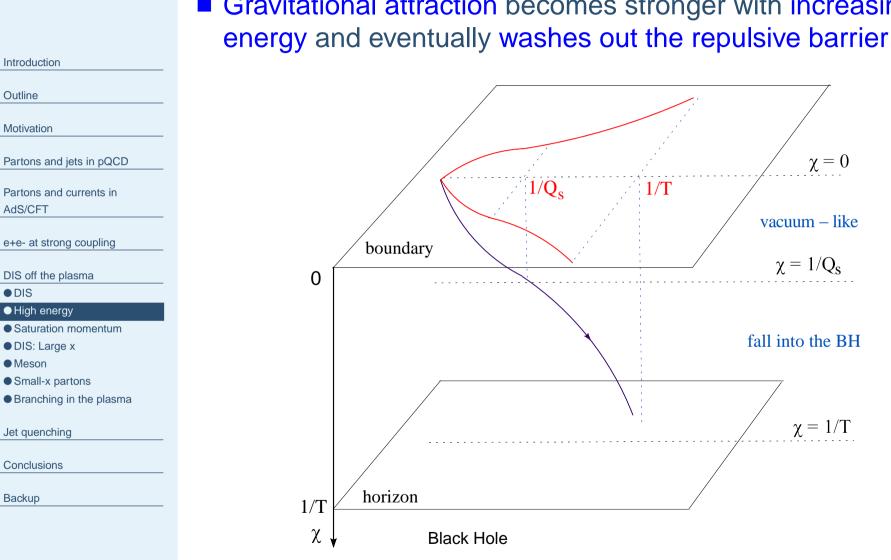

Conclusions

Backup

Small-x partons

Finite–*T* **plasma : Space–like current**


- The current can now decay due to the parton interactions in the plasma $\implies \text{Im }\Pi_{\mu\nu}$: a contribution to $F_2(x, Q^2)$
 - thermal rescattering
 - medium-induced radiation



Space–like current with $Q \gg T$

 \blacksquare Gravitational interaction grows with the energy $\omega \sim k$

High energy: The fall

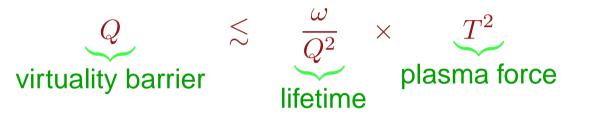
Gravitational attraction becomes stronger with increasing


The wave falls into the BH along a massless geodesics

Saturation momentum

	Gia\
Introduction	dens
Outline	
	■ The
Motivation	
Partons and jets in pQCD	
Partons and currents in	
AdS/CFT	
e+e- at strong coupling	
DIS off the plasma	
• DIS	
 High energy 	0
 Saturation momentum 	Grav
DIS: Large x	000
Meson	ener
Small-x partons	
Branching in the plasma	
Jet quenching	$\blacksquare Q_s(a$
O	
Conclusions	
Backup	

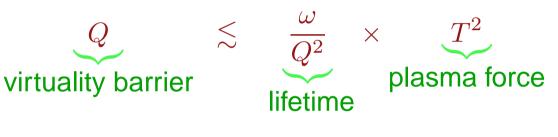
- Gravitational interactions are proportional to the energy density in the wave (ω) and in the plasma (T)
- The criterion for strong interaction within the plasma



- Gravitational attraction must overcome the barrier due to energy conservation
- $Q_s(x)$: plasma saturation momentum

Saturation momentum

- Introduction Outline Motivation Partons and jets in pQCD Partons and currents in AdS/CFT e+e- at strong coupling DIS off the plasma DIS High energy Saturation momentum • DIS: Large x Meson Small-x partons Branching in the plasma Jet quenching Conclusions Backup
- Gravitational interactions are proportional to the energy density in the wave (ω) and in the plasma (T)
 - The criterion for strong interaction within the plasma


- The partonic fluctuation must live long enough to feel the effects of the plasma
- \square $Q_s(x)$: plasma saturation momentum

Saturation momentum

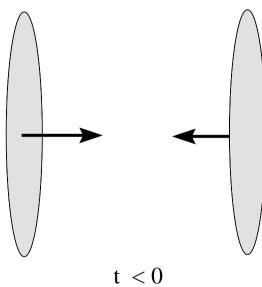
Introduction Outline Motivation Partons and jets in pQCD Partons and currents in AdS/CFT e+e- at strong coupling DIS off the plasma DIS High energy Saturation momentum DIS: Large x Meson Small-x partons Branching in the plasma Jet quenching Conclusions Backup

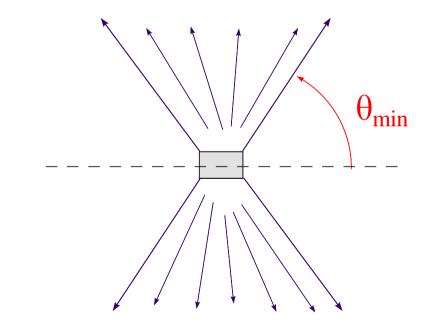
- Gravitational interactions are proportional to the energy density in the wave (ω) and in the plasma (T)
- The criterion for strong interaction within the plasma

High energy, or high T, or low Q: $Q \leq Q_s$ with

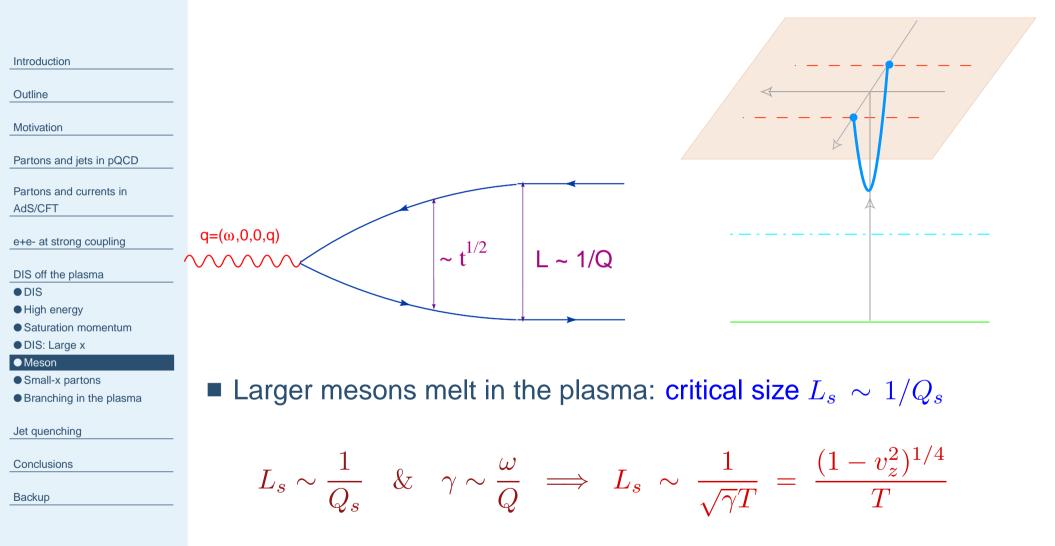
$$Q_s \simeq (\omega T^2)^{1/3} \simeq \frac{T}{x}$$
 where $x \equiv \frac{Q^2}{2\omega T}$

Recall: the parton picture involves 2 variables : x and Q^2 $Q_s(x)$: plasma saturation momentum


DIS at large x : No partons !


• Low energy, or large x: $x > x_s(Q) \simeq T/Q$

- Introduction
- Outline
- Motivation
- Partons and jets in pQCD
- Partons and currents in AdS/CFT
- e+e- at strong coupling
- DIS off the plasma
- DIS
- High energy
- Saturation momentum
- DIS: Large x
 Meson
- Small-x partons
- Branching in the plasma
- Jet quenching
- Conclusions
- Backup


■ No scattering (except through tunneling) \implies $F_2(x, Q^2) \approx 0$ \implies no partons with large momentum fractions $x > x_s$

No forward/backward jets in hadron-hadron collisions !

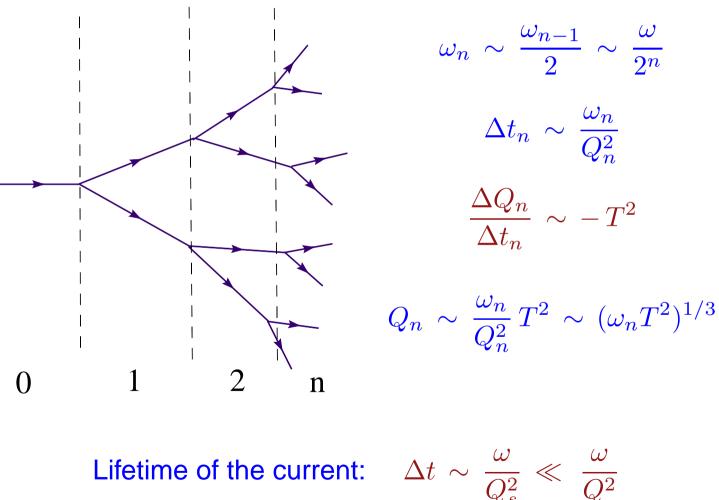
"No drag force on a small meson in the plasma"

[cf. Liu, Rajagopal, Wiedemann; Chernicoff et al; Caceres et al (2006)]

Low *x* : Parton saturation

• $x \leq x_s = T/Q$: strong scattering $\implies F_2(x,Q^2) \sim xN_c^2Q^2$ Introduction ■ Parton occupation numbers of $\mathcal{O}(1) \implies$ 'saturation' (CGC) Outline Physical interpretation: 'Quasi-democratic' parton branching Motivation Partons and jets in pQCD $Y = \ln 1/x$ Partons and currents in AdS/CFT e+e- at strong coupling Total absorption DIS off the plasma р DIS Parton Saturation High energy Saturation momentum DIS: Large x p/2 $\ln Q_s^2(Y) = 2 Y$ Meson Small-x partons Branching in the plasma p/4 No partons Jet quenching Quasi-elastic scattering Conclusions p/8 Backup $\ln Q^2$

All partons have branched down to small values of x !


Medium induced parton branching

Quasi-democratic branching in the presence of the uniform transverse force $\sim T^2$ exerted by the plasma

Outline Motivation Partons and jets in pQCD Partons and currents in AdS/CFT e+e- at strong coupling DIS off the plasma DIS High energy Saturation momentum DIS: Large x Meson Small-x partons • Branching in the plasma Jet quenching Conclusions Backup

(A)

Introduction

Heavy Quark: Energy loss

Outline

Motivation

Partons and jets in pQCD

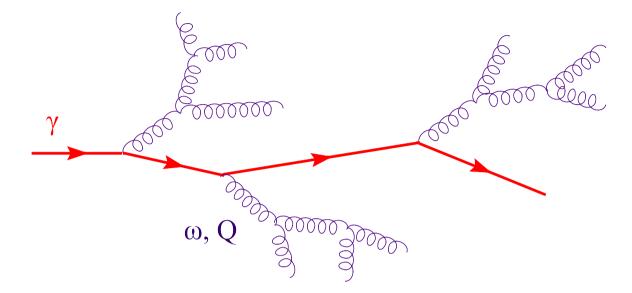
(A)

Partons and currents in AdS/CFT

e+e- at strong coupling

DIS off the plasma

Jet quenching


Energy loss

Broadening

String fluctuations

Conclusions

Backup

Virtual quanta with $Q \leq Q_s$ are absorbed by the plasma
Maximal energy loss: $\omega \sim \gamma Q_s$

$$Q_s \simeq \frac{\omega}{Q_s^2} T^2 \simeq \frac{\gamma}{Q_s} T^2 \implies Q_s^2 \sim \gamma T^2$$
$$-\frac{\mathrm{d}E}{\mathrm{d}t} \simeq \sqrt{\lambda} \frac{\omega}{(\omega/Q_s^2)} \simeq \sqrt{\lambda} Q_s^2 \simeq \sqrt{\lambda} \gamma T^2$$

Herzog, Karch, Kovtun, Kozcaz, and Yaffe; Gubser, 2006 (trailing string)

Momentum broadening

Fluctuations in the medium-induced emission process

Introduction	

Outline

Motivation

Partons and jets in pQCD

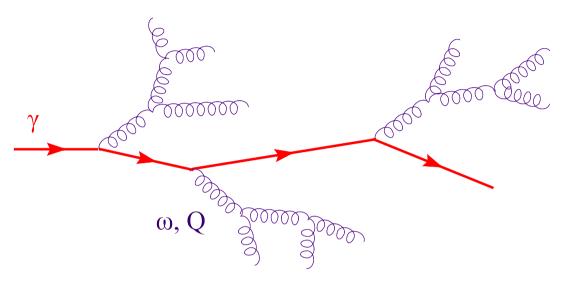
Partons and currents in

AdS/CFT

e+e- at strong coupling

DIS off the plasma

Jet quenching


• Energy loss

Broadening

String fluctuations

Conclusions

Backup

$$\frac{\mathrm{d}\langle p_T^2 \rangle}{\mathrm{d}t} \sim \sqrt{\lambda} \frac{Q_s^2}{(\omega/Q_s^2)} \sim \sqrt{\lambda} \frac{Q_s^4}{\gamma Q_s} \sim \sqrt{\lambda} \sqrt{\gamma} T^3$$

 $\frac{\mathrm{d}\langle p_L^2 \rangle}{\mathrm{d}t} \sim \sqrt{\lambda} \frac{\omega^2}{(\omega/Q_s^2)} \sim \sqrt{\lambda} \sqrt{\gamma} \gamma^2 T^3$

Casalderrey-Solana, Teaney; Gubser, 2006 (from trailing string)

Momentum broadening

Strong coupling : fluctuations in the emission process

Introduction	

Outline

Motivation

Partons and jets in pQCD

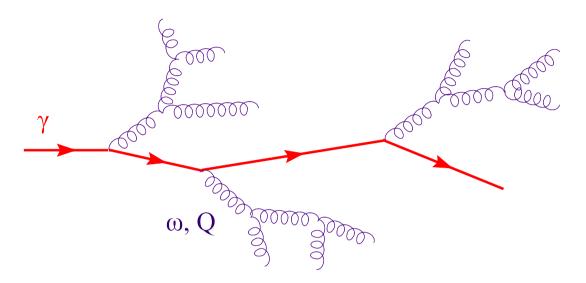
Partons and currents in

AdS/CFT

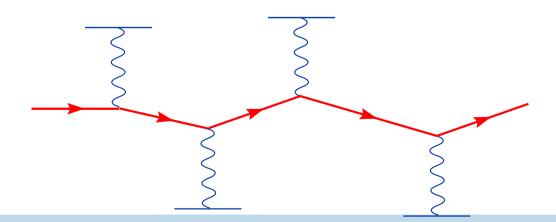
e+e- at strong coupling

DIS off the plasma

Jet quenching

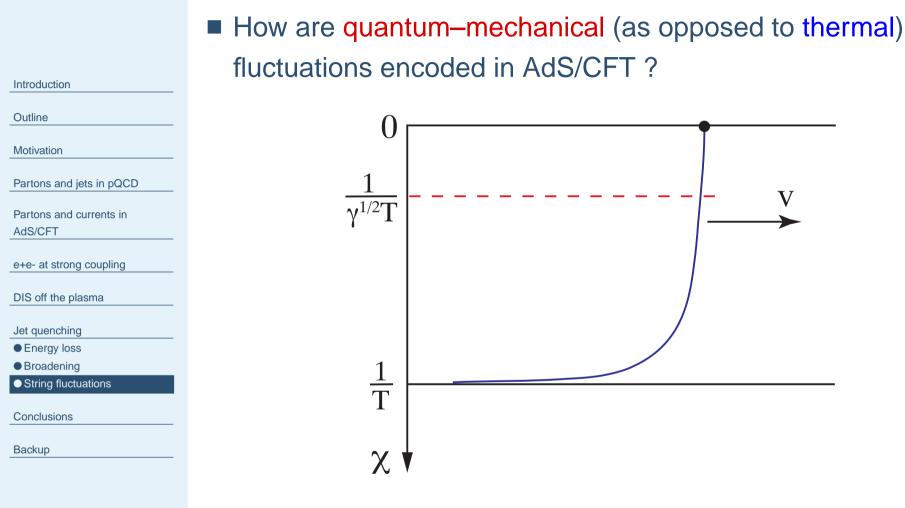

Energy loss

Broadening

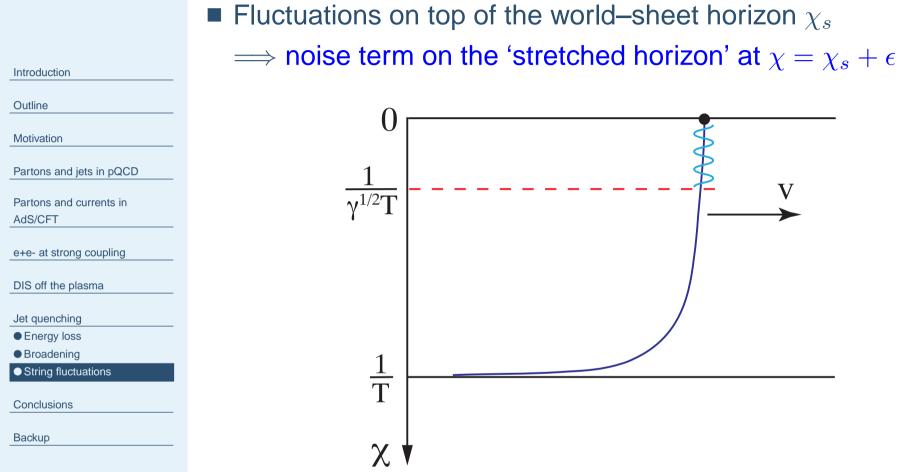

String fluctuations

Conclusions

Backup



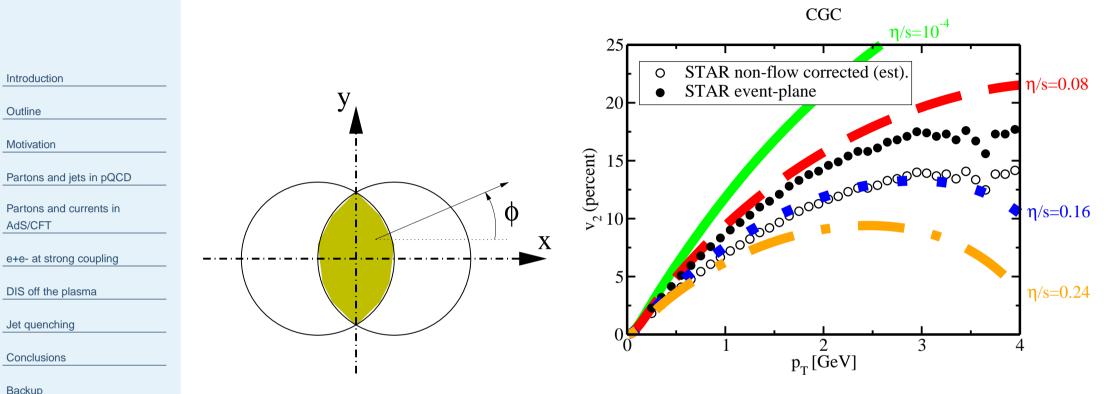
pQCD : thermal rescattering (different physics !)


Stochastic trailing string

• World–sheet horizon at $\chi_s = 1/Q_s \sim 1/(\sqrt{\gamma}T) \ll 1/T$

Hawking radiation (= thermal flucts.) plays no role (in contrast to a static string; cf. talk by Rangamani)

Stochastic trailing string


Langevin equation for the upper part of the string & the heavy quark (G. Giecold, E.I., A. Mueller: to appear)

Physics: Fluctuations in the parton cascades

Conclusions

- Introduction Outline Motivation Partons and jets in pQCD Partons and currents in AdS/CFT e+e- at strong coupling DIS off the plasma Jet quenching Conclusions Backup
- Hard probes & high-energy physics appears to be quite different at strong coupling as compared to QCD
 - no forward/backward particle production in HIC
 - no jets in e^+e^- annihilation
 - different mechanism for jet quenching
 - Not so surprising: by asymptotic freedom, hard & high-energy physics in QCD is weakly coupled
 - Are AdS/CFT methods useless for HIC ? Not necessarily so !
 - some observables receive contributions from several scales, from soft to hard: use AdS/CFT in the soft sector
 - long-range properties (hydro, thermalization, etc) might be controlled by strong coupling
 - Many (simple) physical ideas appear to smoothly interpolate from weak to strong coupling !

Elliptic flow at RHIC: The perfect fluid

- Elliptic flow
- Viscosity/entropy

(A)

- Lattice QCD
- Resummations
- perfect fluid
- Jets
- Screening length
- Gluons at HERA
- Saturation momentum
- Saturation line
- Branching
- Momentum broadening

• Non–central AA collision: Pressure gradient is larger along x

$$\frac{\mathrm{d}N}{\mathrm{d}\phi} \propto 1 + 2v_2 \cos 2\phi, \qquad v_2 = \text{"elliptic flow"}$$

Well described by hydrodynamical calculations with very small viscosity/entropy ratio: "perfect fluid"

Viscosity over entropy density ratio

■ Viscosity/entropy density ratio at RHIC (in units of ħ)

$$\frac{\eta}{s} = 0.1 \pm 0.1 \text{(theor)} \pm 0.08 \text{(exp)} \ [\hbar]$$

This ratio is small when the coupling is strong !

Kinetic theory: viscosity is due to collisions among molecules

 $\eta \sim \rho v \ell = \text{mass density} \times \text{velocity} \times \text{mean free path}$

Conjecture (from AdS/CFT) : [Kovtun, Son, Starinets, 2003]

 $\frac{\eta}{s} \ge \frac{\hbar}{4\pi}$ [lower limit = infinite coupling]

• The RHIC value is at most a few times $\hbar/4\pi$!

Outline

Motivation

Introduction

Partons and jets in pQCD

Partons and currents in

AdS/CFT

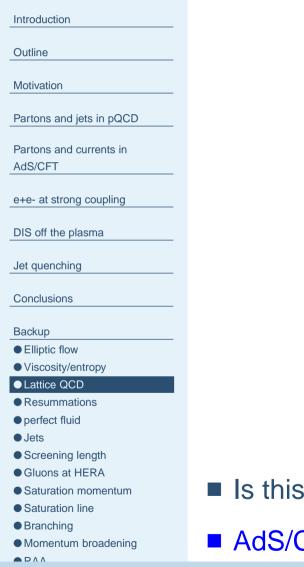
e+e- at strong coupling

DIS off the plasma

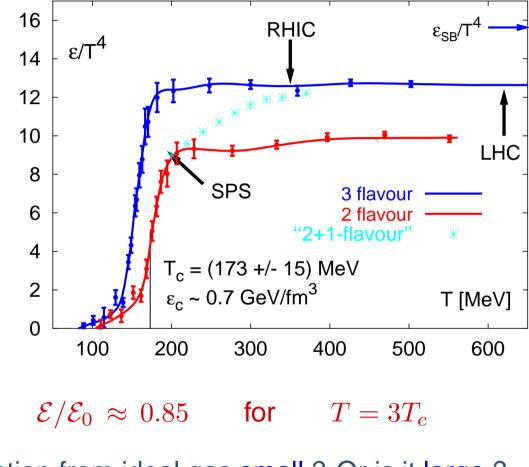
Jet quenching

Conclusions

Backup


• Elliptic flow

Viscosity/entropy

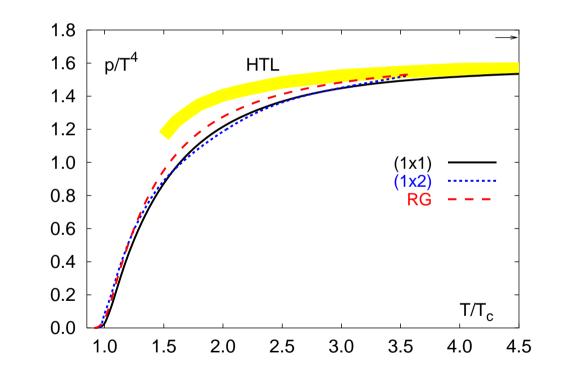

- Lattice QCD
- Resummations
- perfect fluid
- Jets
- Screening length
- Gluons at HERA
- Saturation momentum
- Saturation lineBranching
- Momentum broadening

Heating QCD : Lattice results

Energy density as a function of T (Bielefeld Coll.)

(A)

Is this deviation from ideal gas small? Or is it large?
AdS/CFT: $\mathcal{E}/\mathcal{E}_0 \rightarrow 3/4$ when $\lambda \rightarrow \infty$ ($\mathcal{N} = 4$ SYM)



Finite–*T* : **Resummed perturbation theory**

This ratio $p/p_0 \approx 0.85$ can be also explained by resummed perturbation theory

(collective phenomena: screening, thermal masses)

(J.-P. Blaizot, A. Rebhan, E. lancu, 2000)

First principle calculation without free parameter

Introduction

Outline

Motivation

Partons and jets in pQCD

Partons and currents in

AdS/CFT

e+e- at strong coupling

DIS off the plasma

Jet quenching

Conclusions

Backup

Elliptic flow

Viscosity/entropy

Lattice QCD

Resummations

perfect fluid

- Jets
- Screening length

Gluons at HERA

Saturation momentum

Saturation lineBranching

Momentum broadening

The 'perfect fluid'

Uncertainty principle applied to viscosity:

Introduction

Outline

Motivation

Partons and jets in pQCD

Partons and currents in

AdS/CFT

e+e- at strong coupling

DIS off the plasma

Jet quenching

Conclusions

Backup

Elliptic flow

Viscosity/entropy

Lattice QCD

Resummations

perfect fluidJets

- Screening length
- Gluons at HERA
- Saturation momentum
- Saturation line
- Branching
- Momentum broadening

Weakly interacting systems have $\eta/S \gg \hbar$

Strongly coupled $\mathcal{N} = 4$ SYM plasma

$$\frac{\eta}{S} \to \frac{\hbar}{4\pi}$$
 when $\lambda \to \infty$

 $\eta \sim \rho v \lambda_f, \qquad S \sim n \sim \frac{\rho}{m}$

 $\frac{\eta}{S} \sim m v \lambda_f \sim \hbar \frac{\text{mean free path}}{\text{de Broglie wavelength}} \gtrsim \hbar$

(Policastro, Son, and Starinets, 2001)

- This bound is believed to be universal : $\eta/S \ge \hbar/4\pi$
- The data at RHIC are consistent with the lower limit being actually reached : 'sQGP'

Jets

Introduction

Outline

Motivation

Partons and jets in pQCD

 $\cap \square$

Partons and currents in

AdS/CFT

e+e- at strong coupling

DIS off the plasma

Jet quenching

Conclusions

Backup

Elliptic flow

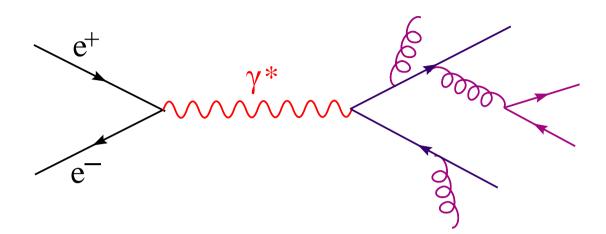
Viscosity/entropy

Lattice QCD

Resummations

perfect fluidJets

• Screening length


Gluons at HERA

Saturation momentum

Saturation line

Branching

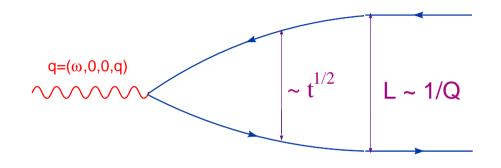
Momentum broadening

• 'Multi–jet event' : large emission angle & $x \sim \mathcal{O}(1)$

$$k_{\perp} \sim k \sim \sqrt{s} \implies \mathcal{P}_{\text{Brem}} \sim \alpha_s(s) \ll 1$$

small probability for emitting an extra gluon jet !

Intra-jet activity' : collinear and/or soft gluons


$$\Lambda_{\rm QCD} \ll k_{\perp} \ll k \ll \sqrt{s} \implies \mathcal{P}_{\rm Brem} \sim \alpha_s \ln^2 \frac{\sqrt{s}}{\Lambda_{\rm QCD}} \sim \mathcal{O}(1)$$

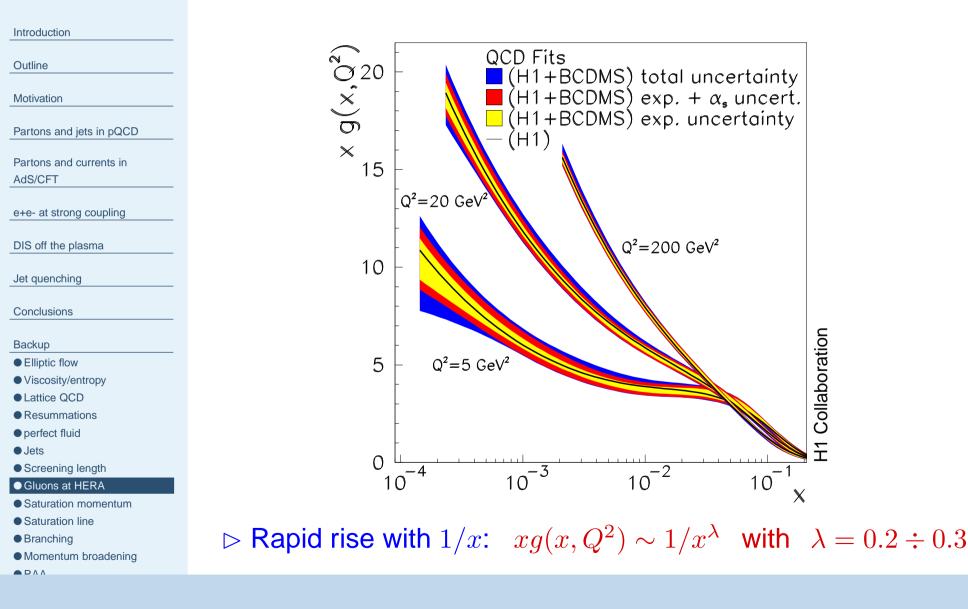
modifies particle multiplicity but not the number of jets

Screening length

- Introduction Outline
- Motivation
- Partons and jets in pQCD
- Partons and currents in
- AdS/CFT
- e+e- at strong coupling
- DIS off the plasma
- Jet quenching
- Conclusions
- Backup
- Elliptic flow
- Viscosity/entropy
- Lattice QCD
- Resummations
- perfect fluid
- Jets
- Screening length
- Gluons at HERA
- Saturation momentum
- Saturation line
- Branching
- Momentum broadening

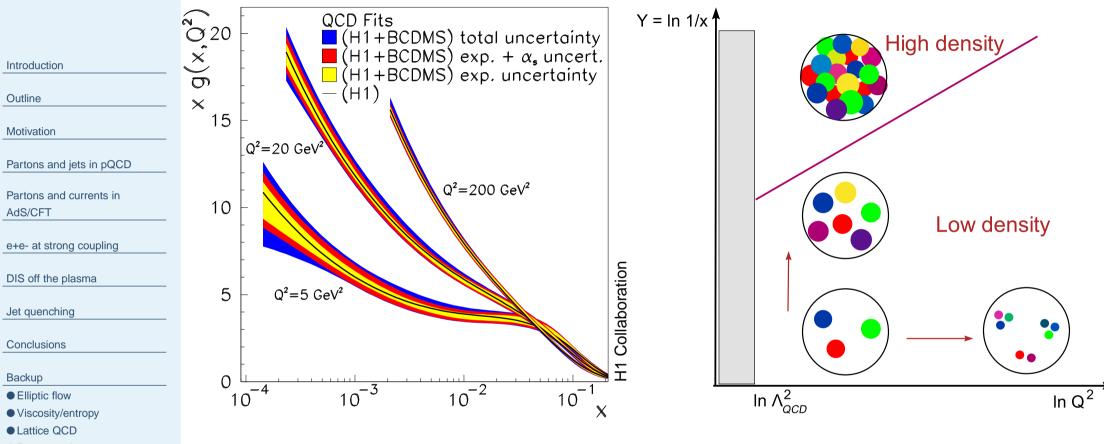
A small color dipole ('meson') with transverse size $L \ll 1/Q_s$ propagates through the strongly–coupled plasma with almost no interactions !

Larger dipoles with $L \gtrsim 1/Q_s$ cannot survive in the plasma


$$L_s \sim \frac{1}{Q_s} \quad \& \quad \gamma \sim \frac{\omega}{Q} \implies L_s \sim \frac{1}{\sqrt{\gamma}T} \ll \frac{1}{T}$$

The dipole lifetime is short on natural time scales:

$$\Delta t \sim \frac{\omega}{Q_s^2} \sim \frac{\sqrt{\gamma}}{T} \ll \frac{\gamma}{T}$$


Gluons at HERA

 $xg(x,Q^2) = #$ of gluons with transverse area $\sim 1/Q^2$ and $k_z = xP$

Gluons at HERA

- Resummations
- perfect fluid
- Jets
- Screening length
- Gluons at HERA
- Saturation momentum
- Saturation line
- BranchingMomentum broadening

- High– Q^2 evolution : The parton density is decreasing
- Small–*x* evolution: An evolution towards increasing density
- The gluon density cannot become arbitrarily high !

Introduction

Outline

Motivation

AdS/CFT

Partons and jets in pQCD

Partons and currents in

e+e- at strong coupling

DIS off the plasma

Viscosity/entropy
Lattice QCD
Resummations

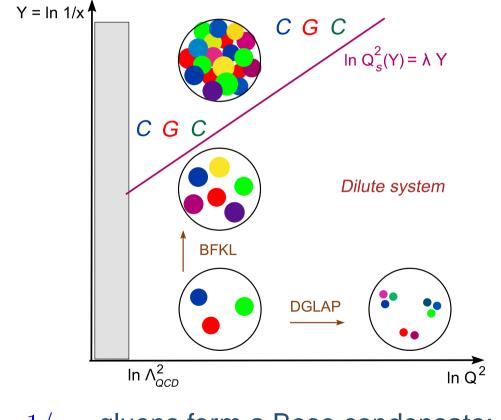
Screening lengthGluons at HERA

Saturation momentumSaturation lineBranching

Momentum broadening

perfect fluidJets

Jet quenching

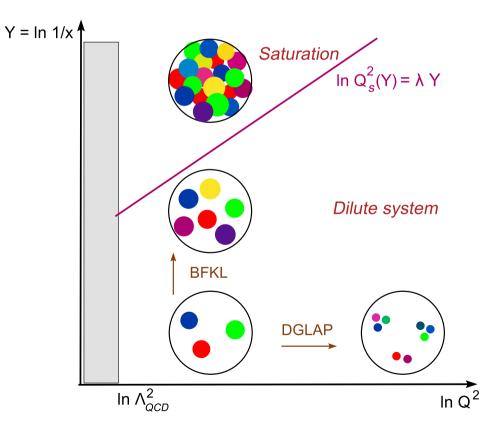

Conclusions

BackupElliptic flow

Color Glass Condensate

The gluon occupation number cannot be larger than $1/\alpha_s$:

$$n(x,Q^2) \sim \frac{1}{Q^2} \times \frac{xG(x,Q^2)}{\pi R^2}$$



• When $n \sim 1/\alpha_s$, gluons form a Bose condensate: CGC

The Saturation Momentum

■ $n(x,Q^2) \sim 1/\alpha_s \Longrightarrow$ the saturation line $Q^2 = Q_s^2(x)$

$$Q_s^2(x) \simeq \alpha_s \frac{xG(x,Q_s^2)}{\pi R^2} \sim \frac{1}{x^{\lambda_s}}$$

Partons and jets in pQCD

(A)

Partons and currents in AdS/CFT

Introduction

Outline

Motivation

e+e- at strong coupling

DIS off the plasma

Jet quenching

Conclusions

Backup

• Elliptic flow

Viscosity/entropy

Lattice QCD

Resummations

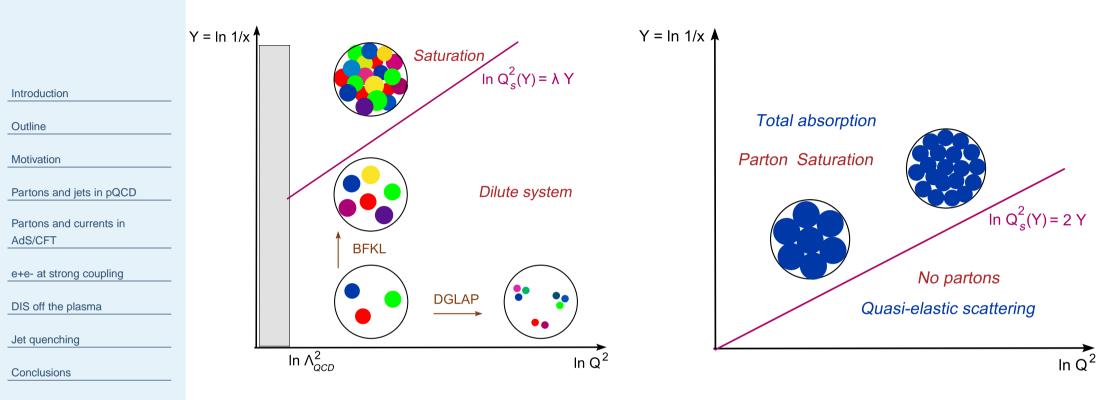
perfect fluid

Jets

Screening length

Gluons at HERA

• Saturation momentum

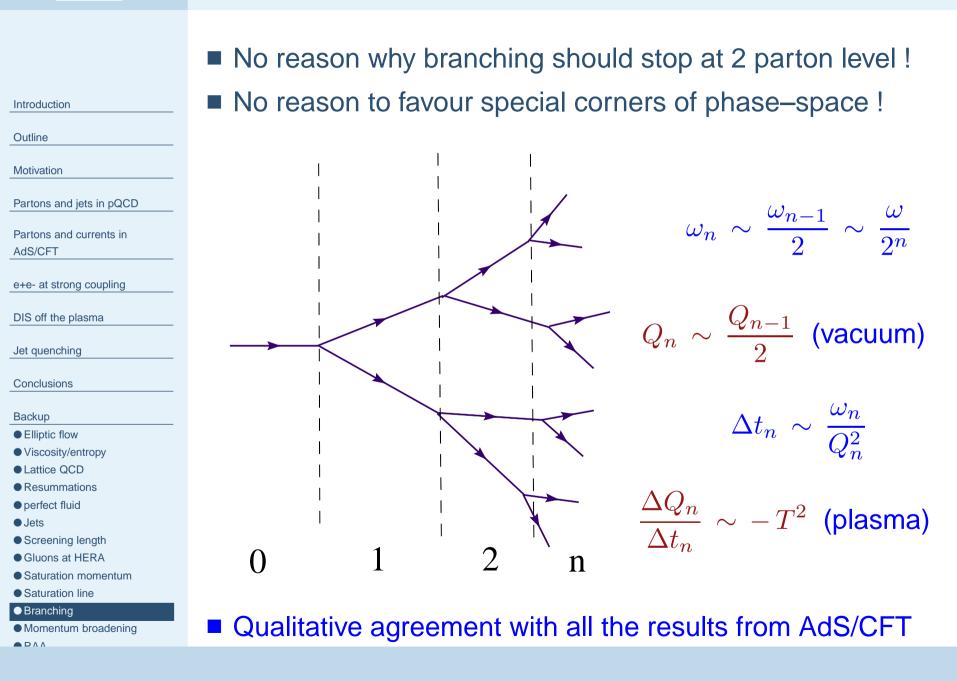

Saturation line

Branching

Momentum broadening

\mathbb{C}

Saturation line: weak vs. strong coupling

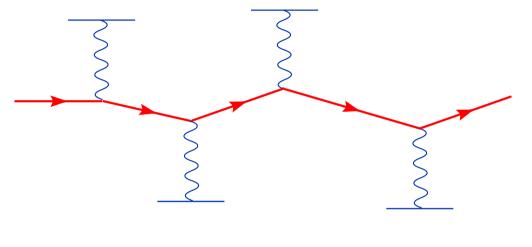


- Backup
- Elliptic flow
- Viscosity/entropy
- Lattice QCD
- Resummations
- perfect fluid
- Jets
- Screening length
- Gluons at HERA
- Saturation momentum
- Saturation line
- Branching
- Momentum broadening

Saturation exponent : $Q_s^2(x) \propto 1/x^{\lambda_s} \equiv \mathrm{e}^{\lambda_s Y}$

- weak coupling (LO pQCD): $\lambda_s \approx 0.12 g^2 N_c$
- phenomenology & NLO pQCD: $\lambda_s \approx 0.2 \div 0.3$
- strong coupling (plasma): $\lambda_s = 2$ (graviton)

Quasi-democratic parton branching



(A)

Transverse momentum broadening

A parton (say, heavy quark) undergoes multiple scattering (random kicks) off the plasma constituents

$$\frac{\mathrm{d}\langle p_{\perp}^2 \rangle}{\mathrm{d}t} \equiv \hat{q} \simeq \alpha_s N_c \, \frac{xg(x,Q^2)}{N_c^2 - 1}$$

• $xg(x,Q^2)$: gluon distribution per unit volume in the medium

Weakly–coupled QGP : incoherent sum of the gluon distributions produced by thermal quarks and gluons

$$xg(x,Q^2) \simeq n_q(T) xG_q + n_g(T) xG_g$$
, with $n_{q,g}(T) \propto T^3$

Outline

Motivation

Introduction

Partons and jets in pQCD

Partons and currents in

AdS/CFT

e+e- at strong coupling

DIS off the plasma

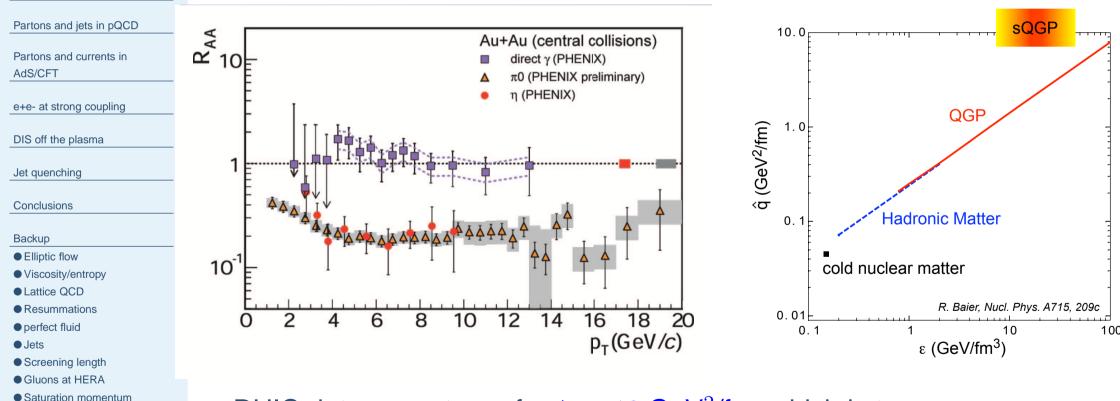
Jet quenching

Conclusions

Backup

• Elliptic flow

Viscosity/entropy


- Lattice QCD
- Resummations
- perfect fluid
- Jets
- Screening length
- Gluons at HERA
- Saturation momentum
- Saturation line

BranchingMomentum broadening

Nuclear modification factor

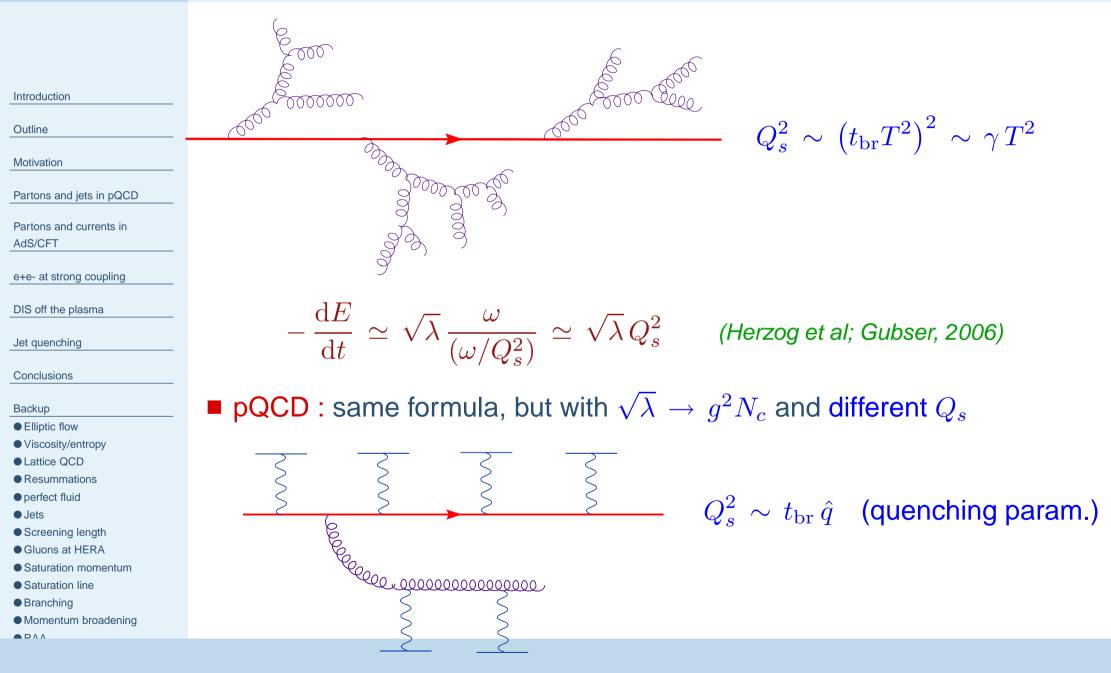
• How to measure \hat{q} ? Compare AA collisions at RHIC to pp

$$R_{AA}(p_{\perp}) \equiv \frac{Yield(A+A)}{Yield(p+p) \times A^2}$$

RHIC data seem to prefer $\hat{q} \simeq 10 \text{ GeV}^2/\text{fm}$, which is too large to be accounted for by weakly–coupled QGP (??)

(A)

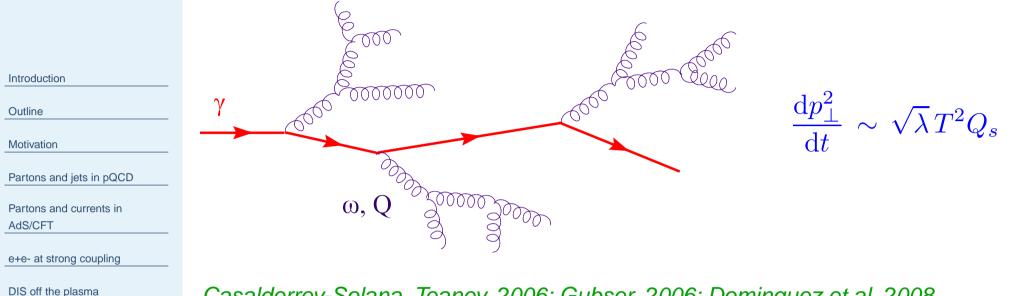
Introduction


Outline

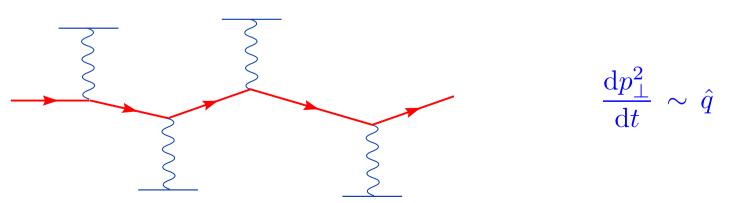
Motivation

Saturation lineBranching

Momentum broadening


Heavy Quark: Energy loss

(A)



Transverse momentum broadening

Casalderrey-Solana, Teaney, 2006; Gubser, 2006; Dominguez et al, 2008 see talks by Al Mueller and Cyrille Marquet

pQCD : different physics ! thermal rescattering


```
Jet quenching
```

Conclusions

Backup

- Elliptic flow
- Viscosity/entropy
- Lattice QCD
- Resummations
- perfect fluid
- Jets
- Screening length
- Gluons at HERA
- Saturation momentum
- Saturation line
- Branching
- Momentum broadening
- DAA