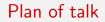
Landscape of superconducting membranes

Sean Hartnoll

Harvard University


Work with: Frederik Denef, Chris Herzog and Gary Horowitz

Jan. 09 - Madrid

Sean Hartnoll (Harvard)

Superconductors

Jan. 09 – Madrid 1 / 20

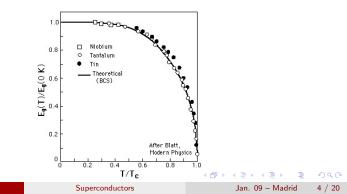
Background

- **1** Motivation I: Nonconventional superconductors
- Ø Motivation II: A take on the string landscape

Holographic superconductors

- Ingredients for a holographic superconductor
- Ø Black hole instabilities
- 8 Electrical conductivity
- 4 Landscape of superconducting membranes

Background

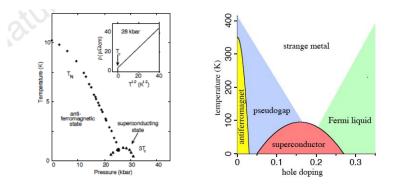

- **1** BCS superconductivity
- 2 Nonconventional superconductors
- **3** What to do with the string landscape?

H 5

A 🖓 h

BCS theory (1957)

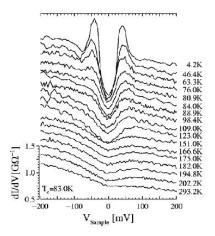
- Repulsive Coulomb force between electrons is screened. Attractive force due to the lattice phonons. Instability of Fermi surface.
- Spontaneous breaking of U(1)_{EM} by condensation of Cooper pairs of (dressed) electrons: O ~ Ψ[†]Ψ[†].
- Higgs mechanism: $\langle j \rangle = \frac{\delta S}{\delta A} \sim A = \frac{iE}{\omega}$.
- Many predictions, for instance $E_g(0) \approx 3.5 T_c$.
- Data:



Two senses of non-BCS

- Many superconductors not describable by BCS theory (eg. high- T_c).
- Non-BCS superconductivity might mean:
 - weak: 'pairing mechanism' does not involve phonons but a different 'glue' such as paramagnons (mediate spin-spin forces).
 - strong: inherently strongly coupled. No charged quasiparticles to 'pair' in the first place.
- Candidates for the stronger case if superconductivity close to a quantum critical point.

イロト イポト イヨト イヨト


Two phase diagrams:

- Left: 'heavy fermion' compound CePd₂Si₂ [Mathur et al. '98]. Clear connection to quantum critical point.
- Right: high-*T_c* cuprate. Experimental evidence for nearby Valence Bond Solid (VBS a.k.a. 'stripes') order and possible quantum critical point.

The pseudogap in $Bi_2Sr_2CaCu_2O_{8+\delta}$ [Renner et al. '98]

• Depletion of states at Fermi energy continuous across $T_c \approx 83K$.

Superconductors

3

(日) (同) (三) (三)

Resistance linear in temperature $(La_{1.6-x}Nd_{0.4}Sr_xCuO_4)$ [Daou et al. '08]

- Resistivity in 'normal phase' linear in temperature (anomalous).
- Applying a large magnetic field shows persistance down to T = 0 at critical doping.

Uses for the string landscape?

- There appear to be many vacua of string theory.
- Methodological problems for stringy cosmology or stringy particle physics (only do experiments in one universe)?
- Resonates well with atomic physics, which also has a landscape:

	Atomic Landscape	String Landscape
Microscopic theory	Standard Model	M theory
Fundamental excitations	Leptons, quarks, photons, etc.	??
Typical vacuum	Atomic lattice	Compactification
Low energy excitations	Dressed electrons, phonons, spinons, triplons, etc.	Gravitons, gauge bosons, moduli, intersectons, etc.
Low energy theory	Various QFTs	Various supergravities

- Logic: Let's look at statistical properties of string AdS₄ vacua from the dual perspective as quantum critical points.
- Find many superconductors.

Holographic superconductors

- 1 Minimal ingredients for a holographic superconductor
- **2** Black hole instabilities
- **8** Hairy black holes
- 4 Electrical conductivities
- **5** Landscape of superconducting membranes

Minimal ingredients for a holographic superconductor

- Minimal ingredients
 - Continuum theory \Rightarrow have $T^{\mu\nu} \Rightarrow$ need bulk g_{ab} .
 - Conserved charge \Rightarrow have $J^{\mu} \Rightarrow$ need bulk A_a .
 - 'Cooper pair' operator \Rightarrow have $\mathcal{O} \Rightarrow$ need bulk ϕ .
- Write a minimal 'phenomenological' bulk Lagrangian

$$\mathcal{L} = rac{M^2}{2} R + rac{3M^2}{L^2} - rac{1}{4g^2} F_{\mu
u} F^{\mu
u} - |
abla \phi - iqA\phi|^2 - m^2 |\phi|^2 \; .$$

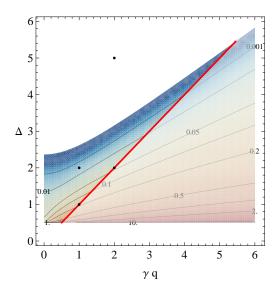
There are four dimensionless quantities in this action.

- The central charge of the CFT is $c = 192(ML)^2$.
- DC conductivity $\sigma_{xx} = \frac{1}{g^2}$.
- $\Delta(\Delta 3) = (mL)^2$. Either root admissible if $\Delta \geq \frac{1}{2}$.
- The charge q is the charge of the dual operator \mathcal{O} .

イロッ イボッ イヨッ イヨッ 三日

Two instabilities of a charged AdS black hole

- To get a critical temperature, need a scale. Will work at constant charge density ρ. By dimensional analysis T_c ∝ √ρ.
- The dual geometry is therefore Reissner-Nordstrom-AdS.
- RN-AdS can be unstable against a (charged) scalar for two reasons.
- Reason 1 [Gubser '08]: Background charge shifts mass:


$$m_{\mathrm{eff.}}^2 \sim m^2 - q^2 A_t^2$$
.

• Reason 2 [SAH-Herzog-Horowitz '08]: Near extremality *AdS*₂ throat with

$$m_{\text{BF-2}}^2 = -\frac{1}{4L_2^2} = -\frac{3}{2L^2} > -\frac{9}{4L^2} = m_{BF-4}^2.$$

• Precise criterion for instability at T = 0 [Denef-SAH '09]

$$q^2\gamma^2 \geq 3+2\Delta(\Delta-3)$$
.

[Denef-SAH '09]

Sean Hartnoll (Harvard)

Jan. 09 – Madrid 13 / 20

- 2

<ロ> (日) (日) (日) (日) (日)

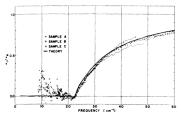
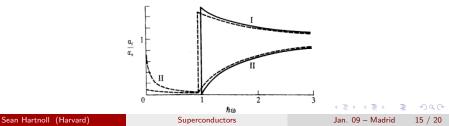
Endpoint – hairy black holes [SAH-Herzog-Horowitz '08]

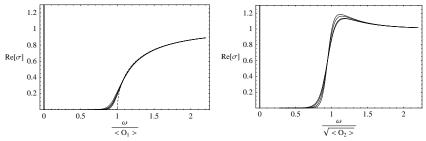
Endpoint of instability is a hairy black hole:

• Compare 8 to \sim 3.5 for BCS and \sim 5 – 8 for High- T_C

Electrical conductivity - some experimental expectations

• BCS theory prediction and some data


Fig. 2. Measured and calculated values of the conductivity ratio σ₁/σ_n of three superconducting lead films as a function of the photon frequency. [After Palmer (39).]

• A figure from a texbook (Tinkham)

Electrical conductivity - AdS/CFT [SAH-Herzog-Horowitz '08]

- Let's focus on the probe limit $(q
 ightarrow \infty)$ for simplicity.
- We computed the conductivity (2 cases). At $T \sim 0$:

If the gap is 2∆ then we found that

$$\operatorname{Re} \sigma(\omega \to 0) \sim e^{-\alpha \Delta/T}.$$

• lpha=1 as $q
ightarrow\infty$, as in BCS theory, weakly coupled?

Puzzle: why is there an exact gap?

Sean Hartnoll (Harvard)

Jan. 09 – Madrid 16 / 20

Superconducting M2 branes [Denef-SAH '09]

Embed holographic superconductors into string theory. Two reasons:
 Gives explicit field theory action ('quiver Chern-Simons' theory)

$$S = \sum_{i} \frac{k_{i}}{4\pi} \int d^{3}x \operatorname{Tr}\left(A_{i} \wedge dA_{i} + \frac{2}{3}A_{i} \wedge A_{i} \wedge A_{i} + \operatorname{superpartners}\right)$$
$$+ \sum_{a} \int d^{3}x \left(|D\phi_{a}|^{2} - \left|\frac{\partial W}{\partial\phi_{a}}\right|^{2} + \operatorname{superpartners}\right).$$

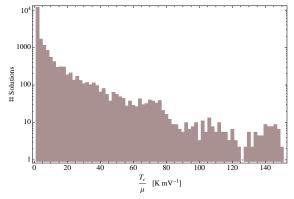
2 Can ask a new question of the landscape: how many superconductors?

- Examples will be M2 branes placed at the tip of a Calabi-Yau cone.
- Dual geometry: $AdS_4 \times X^7$.

(日) (周) (三) (三)

- Studied the stability of $AdS_4 \times X_7$ vacua for Sasaki-Einstein X_7 .
- If X₇ has moduli: can build a 3-form mode that linearly decouples from all other modes, even in a background electric field.
- Calabi-Yau cone over X_7 has an anti-self dual closed (3,1)-form. Contracting with $r\partial_r$ get 3-form on Sasaki-Einstein. Mode is

 $\delta C = \phi Y_3 + \text{c.c.}$


- This mode is always unstable and leads to superconductivity.
- Examples supplied by Brieskorn-Pham cones:

 $z_1^{m_1} + \cdots + z_5^{m_5} = 0$.

• Computed a distribution of superconducting temperatures by scanning.

Distribution of critical temperatures

• Simple scan found 11,821 backgrounds.

- $X_7 = S^7$ has a similar instability
 - \rightarrow ABJM theory has a superconducting phase.

Sean Hartnoll (Harvard)

Superconductors

- Superconductivity is due to spontaneous symmetry breaking.
- Established theories of superconductivity depend on having 'glue' and 'electrons' which are described by quasiparticles.
- Spontaneous symmetry breaking can occur naturally in AdS/CFT.
- Explored basic phenomenology of holographic superconductors.
- Noted a certain 'resonance' between string and condensed matter landscapes.

イロト 人間ト イヨト イヨト