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® There is a established relation between black hole geometry and equilibrium thermodynamics.

dM = —"_dA + QydJ de = Tds + pdp
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Euclidean action Free energy

® Does the horizon dynamics capture near - equilibrium thermodynamics as well ?

Quasinormal modes

Transport coefficients
Membrane paradigm < > P

Fluctuation dissipation th.

® AdS-CFT correspondence gives a guide:

|- helps pose well defined questions from QFT onto gravity and viceversa
2- strong consistency checks both ways (Onsager’s relations, relativistic hydro.)




Consider a particle moving in a medium mo(t) = —vyo(t) + F(t)

For a constant force we can study conduction

Ft)=Fy = v=3uF, ==

For a random force we can study diffusion
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where the equilibrium susceptibility X — 874
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n relation

An argument for the Einstein relation comes from comparing

0
J,=DVp=DLvu=DyVu and Jo = oE = oV
H 8u
-
in equilibrium J,=Jp & pu=29° b D = ;

Questions
|. How general is this relation: no-quasiparticles, strong coupling, etc.

2. s this relation still valid at finite chemical potential © = L
with the prescription for dp

3. Can it be naturally mapped onto the geometry of black holes?

4. Same for other generalized Einstein relations

D — UT/Cp D, = 77/Xp




The static geometry of black holes contains information about thermodynamics
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It also contains information about transport coefficients close to the horizon (membrane paradigm)
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The relation with AdS/CFT

/ remained unclear until recently
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N. Igbal & H. Liu (2008)




Linear response theory allows to compute transport coefficients in terms of retarded
Green’s function. For a vector current J*

dP x

Gl (w.a) = =i [ e = H (@) ()

In a thermal vacuum rotational symmetry leaves a basis of two scalar functions

R SaT, Bl B
Gl (w,q) = Py, T (w,q) + P, 1T (w, q)

for example for  k# = (0,0, q)




The DC conductivity measures the response to an external field (Ohm’s law)
J=0E

Microscopically it can be obtained from 11,

Im 11 =0
o = lim o(w) = lim s G o)

w—0 w—0 W

The diffusion constant measures the current generated in response to a density gradient

J=-DVp
In the “hydro” limit, the diffusion coefficient shows up as a pole in H”
st ()
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The simplest example with chemical potential is the R-charged black hole. The STU black
hole has U/ (1)*

—i(wt+qz)

For perturbations like ™~ € we expect them to group up as follows
Vector = As, Mz, Nos and (7 < y) — 11,
Scalar — At 3 Az 3 htt 3 htz 3 h:m: = hyy 9 hzz R HH

The charge (k, K, K ) case has been analyzed in  Ge, Matsuo, Shu, Sin &Tsukioka (2008)
Matsuo, Sin , Takeuchi, Tsukioka & Yoo (2009)
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Parametrize the Dq brane profile through cos(r) = ¥ (r)
The g+1=1+d+1+n dimensional induced metric adapted to intersection is given by

ds® = Goo(r)dt® + Gii(r)dZ5 + Grr (1) dr? + Goo(r)dQ2+ Jab = Gap(r, ¥(r))

The dynamics is governed by

Sppr = —NyTp, /dd+2+nx N Yab = Gab + (QWO‘/)Fab

This allows for several gauge field configurations. For a chemical potential Yo, = 2ma/ Ay ()




The degrees of freedom (1, Ag) obey equations of motion
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This is interpreted as a condensate of Fl strings.

S. Kobayashi, D. Mateos, S. Matsuura, R. Myers & R.Thomson (2007)
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aphIC Dp/Dq flavor system: fluctuations

To compute correlators we need the perturbations of the world-volume fields

Y(r,x) — P(r) + ee_i(“’t_qz)\lf(r) ; Au(ryr) — Au(r) + ee_i(“’t_qz)/lu('r)

the expansion of the DBI lagrangian to second order gives

TG /dx.Q+2 Fe—qb ( ab cd ’)/ad’}/Cb) Fab(A)ch(.A)

Yab = gab + (271—0/)Fab

gives the equations of motion
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From the transverse correlator we can obtain the conductivity using the Kubo formula

, ImHL(w,q:O)
o= — lim
w—0 99,

With little more we may capture the whole conductivity tensor J; = oFy Ej

Switch on AO i At (7“)
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SRR
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Solve in the limit w1 ; q=0

. 1w
By = f(r) 2 (EQ) g + By + ) = By +wED,, DB log f(r) + .

Undo the combination
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Plug into the boundary action
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Speculative: how to introduce finite [, field? .The singular shell appears at position 7, (Ex, Bz)
defined by

dt—z :O;Z.,.Zt,l‘,
)] I J =t z,y)

Hence it looks like a horizon of the effective metric. Naively we would just replace 75 — 7(F,, B.)

Oz = N €_¢\/”77007W7m

r—7«(FEy,Bz)
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A.Karch & A. O’Bannon (2007)

Physical picture:

The DC conductivity measures the response to an external force (Ohm’s law) J. = o0,.F,
switch on a macroscopic /. and [, and observe how a current flows J, = 0,.E,
Holographic picture:
n
Afr)=pn+ 2+ Ay = —E,t +ag(r) A, =B,z + a,(r)

Egs. of motion become imaginary at ry <r < r.(E,)
unless CL:E(”I“) and ay(r) are turned on

Solving for them, one finds an expansion near 7y, — OC
Jz(ng, Bz, B:)
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ductivity 0 from Ohm’s law

A. O’Bannon (2007)
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Inthelimit T -0 = 7, =rg(l+E2+.)—=0 = g.(r,)—0

the relativistic expression is recovered




In this case we are interested in the hydrodynamic pole of the longitudinal part of the propagator. Hence we

study longitudinal fluctuations.

Let us first set Ng = 0

B + 0, log

this can be integrated in the hydro limit
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And we obtain the dispersion relation from the pole in HH
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arge diffusion: /)

e

Now we set 71, # 0  The equations of motion mix up F) with the scalar fluctuations \/

L+ WE|+ 3.5+ U+, V' + £, 0 = 0,
[+ WE) + BBy + U+ D,V + £V = 0

Still in the hydro limit we can show that
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At zero quarkmass ¢ =0 — A(Yw,0) = =(Yw,0) =0 hence b=l

O(1, q?)
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At generic quark mass we don’t have an expression in terms of background quantities (%b, w)

if Einstein relation holds /) = o /Y then we have a bonus




The holographic dual expression for the chemical potential is

1= Ao(rs) — Ao(ry) = / A ()

With this we can express the thermodynamical susceptibility
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Notice that there is also an implicit dependence through ¢(nq)
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At vanishing baryon number 7, = () and/formass m =0 = A===0
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holds analytically




At non-vanishing baryon number 1, =% () and mass m = () we need to resort to numerics

For the particular case of the D3/D7 with

2o’

— 0.001, 0.005, 0.05, 0.2, 0.4, 0.8

a

Mg

3
N3

w)
=<

2.5 1.2

20 1.0

0.8
1.5

0.6

1.0
0.4

0.5 0.2

S

0.0 IS N I T T T N T N N Y Y I | 0.0 - T—— i e e e e e e S ) 0 - L T I Y T Y R I |
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4
2mal
ng—7— = 0, 0.002, 0.00315, 0.004
D NTH X o

04 ~ 0.030 - 0.10

0.025 [ e

0.020 F I
- 0.06
0015
: 0.04
0.010 i

DINZE

0.005 -

O‘O-|||||||||||||||||||||||||||||| 0'000:||||||||||||||||||||||||||||||0.00-||||

1.28 1.29 1.30 1.31 1.32 1.33 1.34 1.28 1.29 1.30 1.31 1.32 1.33 1.34 1.28 1.29 1.30 1.31 1.32 1.33

m



1.4 -

1.2 -

ein relation D =
U te e X

2ma’

3
N3

ng — 0.005, 0.05, 0.2, 0.4, 0.8

1.0

0.8 -

0.6 -

0.4 -

02

0.0




- We provided general expressions for O in terms of background

quantities (V4(7), % (7)) in presence of finite (£, B.) and found
agreement with the macroscopic analysis.

- We have checked Einstein relations for massless flavors and also for
massive flavors in the D3/D7 system.This permits to write a general formula
for the diffusion constant on Dp/Dq flavor systems
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Other generalized Einstein relations can be also checked
Dy = o7/Cy Dy =1/Xp

D = €_¢ fyfyOO,yfrrfy

For finite [~ we must make fluctuation analysis in presence
of a singular shell. Interesting even at zero temperature.




