Horizon formation and far-from-equilibrium isotropization in strongly coupled plasma

Laurence G. Yaffe

University of Washington

based on work with P. Chesler

AdS Collective workshop, IFT UAM/CSIC 2/18/2009

Thermal plasma physics from AdS/CFT

- Equilibrium (\mathcal{N} = 4 SYM)
 - equation of state
 - correlation lengths, screening
 - flavor physics
 - finite volume
 - confinement/deconfinement
 - chemical potentials
 - rotation

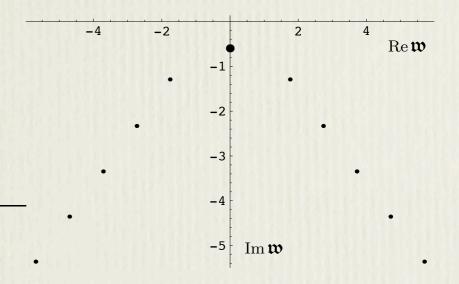
• Near-equilibrium

- viscosity, diffusion
- quasi-normal modes, late time expansions
- photo-emission
- second-order transport coefficients
- non-linear conductivity

(static, Euclidean signature)

SUGRA mode	$\mathcal{J}_{R_y}^{CR_t}$	SYM operator	$mass/\pi T$	
G ₀₀	0^{++}_{+}	T ₀₀	2.3361	
a	0^{+-}_{-}	$\operatorname{tr} E \cdot B$	3.4041	
G_{ij}	2^{++}	T_{ij}	3.4041	
ϕ	0^{++}_{+}	L	3.4041	
G_{i0}	1+-	T_{i0}	4.3217	
B_{ij}	0^{-+}_{-}	\mathcal{O}_{ij}	5.1085	
C_{ij}	$0^{}_{+}$	\mathcal{O}_{30}	5.1085	
B_{i0}	1	\mathcal{O}_{i0}	6.6537	
C_{i0}	1-+	\mathcal{O}_{3j}	6.6537	
G^a_a	0^{++}_{+}	${ m tr}F^4$	7.4116	

(real-time response, Minkowski signature)

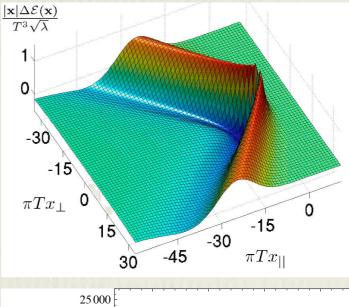


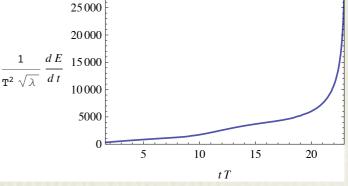
Thermal plasma physics from AdS/CFT

• Probe dynamics

(classical string dynamics)

- heavy quark drag
- wakes, Brownian motion
- heavy meson stability, dispersion
- light quark jets



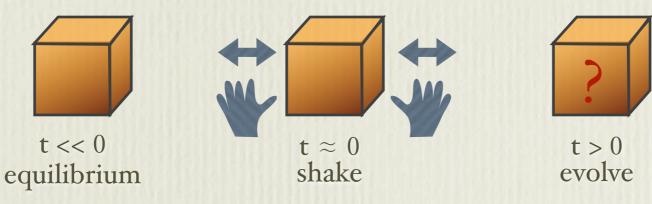


- Far-from-equilibrium dynamics ???
 - plasma formation
 - early thermlization
 - turbulence

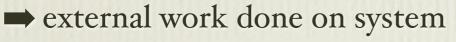
initial value problems with non-trivial time-dependent bulk geometry

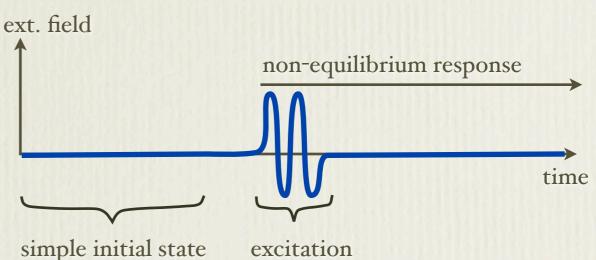
Non-equilibrium initial states

- Specify complete density matrix ρ ? Ugh!
- Pick geometry on initial Cauchy surface ? Ugh!
- Want "operational" description:



- . Specify time-dependent external fields
 - time-dependent dynamics





Anisotropy dynamics

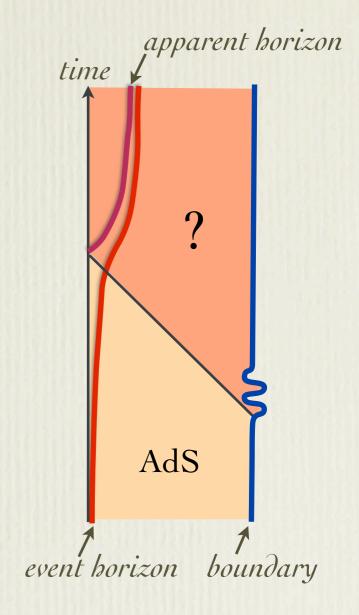
- Metric $g^{\mu\nu}$ = external field coupling to stress-energy $T^{\mu\nu}$
 - \therefore time-dependent geometry \Rightarrow non-equilibrium $\langle T^{\mu\nu} \rangle$
- "Simple" case: perfect spatial homogeneity, arbitrary anisotropy

Ex:
$$ds^2 = -dt^2 + e^{f(t)}(dx^2 + dy^2) + e^{-2f(t)} dz^2$$

$$\Rightarrow \langle T^{\mu\nu}(t, \mathbf{x}) \rangle = \begin{bmatrix} \varepsilon(t) & & \\ & p_{\perp}(t) & \\ & & p_{\parallel}(t) \\ & & & p_{\parallel}(t) \end{bmatrix}$$

Gravitational description

- Solve 5-*d* Einstein equations with time-dependent boundary condition $G^{AB} \rightarrow g^{\mu\nu}$ and simple initial condition (AdS or AdS-BH)
- Extract $\langle T^{\mu\nu} \rangle$ from sub-leading near-boundary asymptotics
- Note:
 - time-dependent boundary conditions produce dynamic event horizon
 - "Teleological" event horizon growth occurs outside causal future of boundary time dependence
 - event horizon area (pulled back to boundary) cannot. represent entropy in non-equilibrium setting



Practical issues (I)

- Coordinate choice:
 - X Bad: Fefferman-Graham or similar (r, t, x)
 - ✓ Good: Incoming Eddington-Finklestein

$$ds^{2} = -A(v,r) dv^{2} + 2 dv dr + \Sigma(v,r)^{2} \left[e^{B(v,r)} (dx^{2} + dy^{2}) + e^{-2B(v,r)} dz^{2} \right]$$

- v = const. on incoming (radial) null geodesics
- $dv/dr = \frac{1}{2}A$ on outgoing (radial) null geodesics
 - $g' \equiv \partial_r g =$ directional derivative along incoming null geodesics,
 - $\dot{g} \equiv \partial_v g + \frac{1}{2}A \partial_r g$ = directional derivative along outgoing null geodesics
- Boundary conditions as $r \to \infty$: $A \to r^2$, $\Sigma \to r$, $B \to f(v)$

Einstein equations

- $R_{MN} \frac{1}{2} G_{MN}(R + 2\Lambda) = 0$
- Non-trivial components: vv, rr, vr, zz, xx+yy

→ 5 equations, 3 unknown functions (A, B, Σ)

• Need to separate dynamics from constraints

$$= \Sigma (\dot{\Sigma})' + 2\Sigma' \dot{\Sigma} - 2\Sigma^{2}
0 = \Sigma (\dot{B})' + \frac{3}{2} (\Sigma' \dot{B} - B' \dot{\Sigma})
0 = A'' + 3B' \dot{B} - 12\Sigma' \dot{\Sigma} / \Sigma^{2} + 4
0 = \ddot{\Sigma} + \frac{1}{2} (\dot{B})^{2} \Sigma - \frac{1}{2} A' \dot{\Sigma}$$
boundary value constraint
0 = $\Sigma'' + \frac{1}{2} (B')^{2} \Sigma$ initial value constraint

• N.B.: *A* = non-dynamical auxillary field

Practical issues (II)

• Need to solve for "velocities," $\partial_v B$, $\partial_v \Sigma$, and auxillary field A

$$\begin{split} \dot{\Sigma}(r,v) &= -\frac{2}{\Sigma(r,v)^2} \int_r dw \, \Sigma(w,v)^3 \\ \dot{B}(r,v) &= -\frac{3}{\Sigma(r,v)^{3/2}} \int_r dw \, \frac{B'(w,v)}{\Sigma(w,v)^{3/2}} \int_w d\bar{w} \, \Sigma(\bar{w},v)^3 \end{split}$$

• Discretize $r \rightarrow$ system of coupled ODEs

' *

Must treat near-boundary behavior accurately
 match discretized numerics to large *r* asymptotics

$$A(r,v) = \sum_{n=0}^{\infty} [a_n(v) + \alpha_n(v)\log r] r^{2-n},$$

$$B(r,v) = \sum_{n=0}^{\infty} [b_n(v) + \beta_n(v)\log r] r^{-n},$$

$$\Sigma(r,v) = \sum_{n=0}^{\infty} [s_n(v) + \sigma_n(v)\log r] r^{1-n}.$$

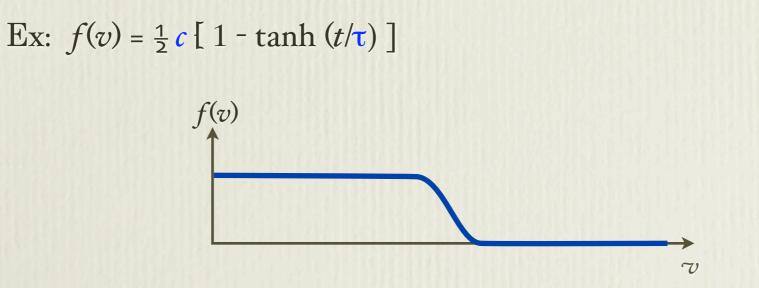
Practical issues (III)

• Must remove residual reparameterize freedom: $r \rightarrow r + \alpha(v)$

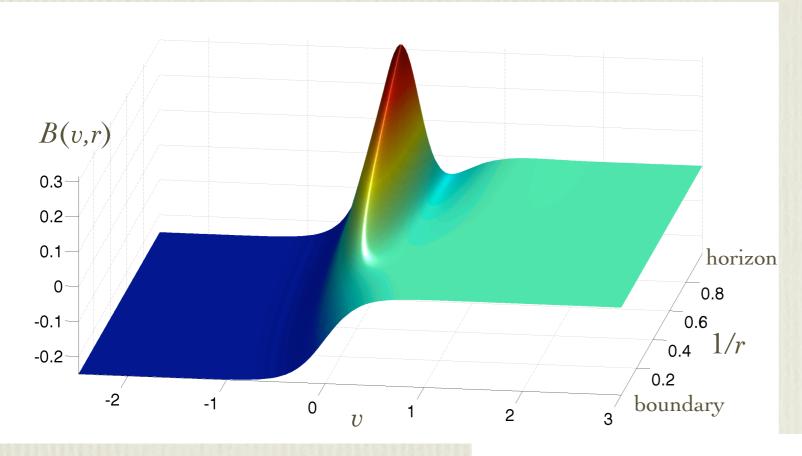
X Bad: fix coordinate location of event horizon

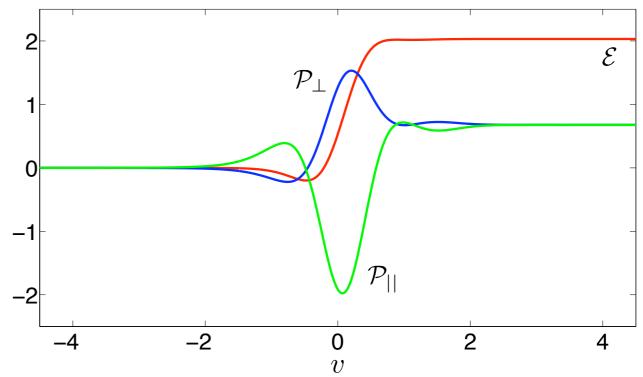
✓ Good: fix $a_1 = 0$

- Must excise region surrounding singularity: $r < r_{\min}(v) < r_{\text{horizon}}(v)$
- Must choose specific boundary time dependence

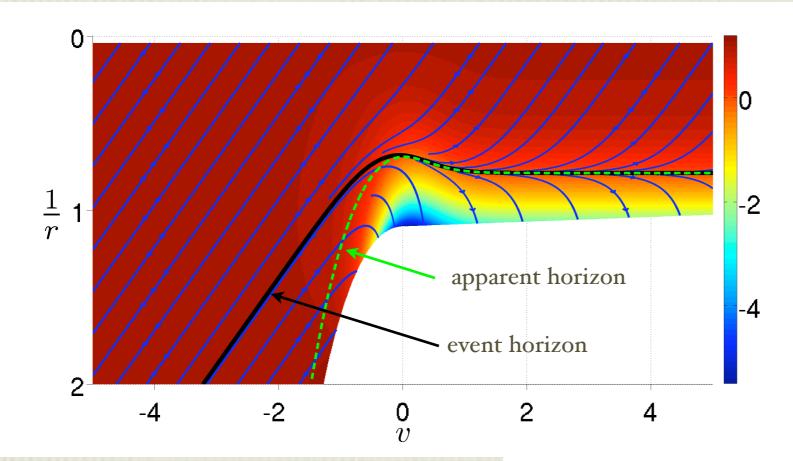


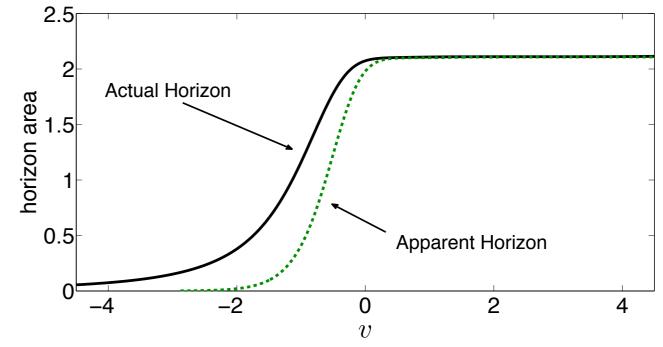
Results (I)





Results (II)





Results (III)

	1						
$rac{ au T}{ au_{ m iso} T}$ $ au_{ m iso}/ au$	0.23	0.31	0.41	0.52	0.65	0.79	0.94
$ au_{ m iso} T$	0.67	0.68	0.71	0.92	1.2	1.5	1.8
$ au_{ m iso}/ au$	3.0	2.2	1.7	1.8	1.8	1.9	1.9

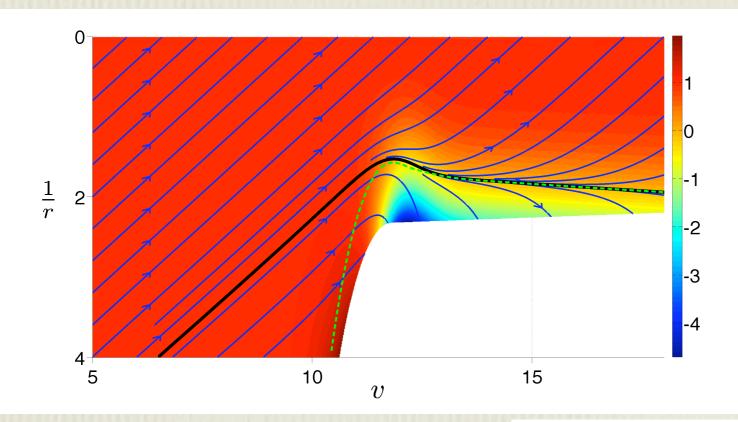
T =final equilibrium temperature

 τ_{iso} = isotropization time

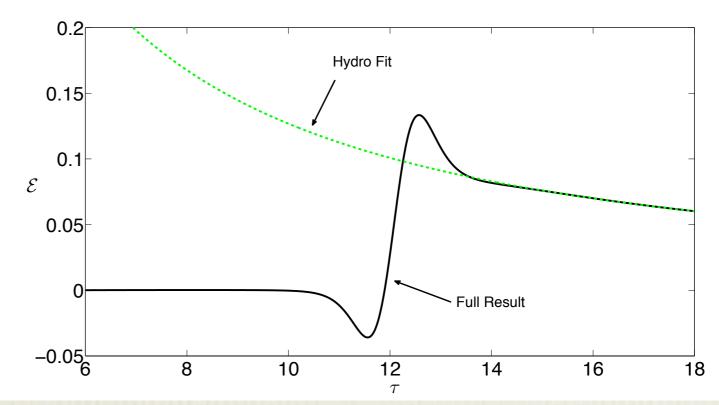
 τ = plasma creation time scale

 $\tau_{iso} \approx 0.7/T \Rightarrow \tau_{iso} \approx 0.5 \text{ fm/}c \text{ at } T \approx 350 \text{ MeV} \cdots \text{ relevant at RHIC}???$

Boost invariant expansion



boundary geometry: $ds^{2} = -d\tau^{2} + \tau^{2}e^{-2f(\tau)} d\eta^{2} + e^{f(\tau)} d\mathbf{x}_{\perp}^{2}$ $f(\tau) = \frac{1}{2}c \left[1 - \tanh(\tau - \tau_{0})\right]$



Open questions

- Sensitivity to choice of boundary time dependence?
 - wider range of amplitudes
 - periodic forcing
- Precise connection between entropy & apparent horizon area?
 - ambiguities in definition of non-equilibrium entropy
 - foliation dependence of apparent horizon area
- Feasibility of evolving anisotropic & inhomogeneous geometries?
 - finite expanding fluids
 - turbulent driven systems
- Relevance for heavy ion collisions?