



## **Reconstructing Dark Matter relic density from colliders and direct detection experiments**

Based on the paper (in preparation) by G. Bertone, D. G. Cerdeno, M.F. and R. Ruiz de Austri

> Mattia Fornasa University of Padova – INFN Padova

#### Dark Matter and experimental techniques



DM evidences:

- angular spectrum of anisotropies in the CMB
- rotation curves of galaxies
- weak lensing reconstruction in interacting clusters of galaxies



Distance



#### Dark Matter and experimental techniques



DM evidences:

- angular spectrum of anisotropies in the CMB
- rotation curves of galaxies
- weak lensing reconstruction in interacting clusters of galaxies

Additional evidences and future detections are expected from:

- colliders
- direct detection
- indirect detection





Distance





#### DM direct detection

Based on the possibility of detecting the recoil energy deposited by a DM particles to the nuclei of the detector when the particle passes through the detector itself.



From XENON10 Collaboration, Phys. Rev. Letters, 100, 021303 (2008)

#### Predicted event rate:

$$\lambda = \epsilon \int_{E_{th}}^{\infty} \frac{dR}{dE} (E) F^2(E) dE = \int_{E_{th}}^{\infty} c_1 R_0 e^{-E/(E_0 c_2)} F^2(E) dE$$
(1)  
$$R_0 = \frac{\sigma_{\chi,p}^{\text{SI}} \rho_{\chi} A^2 c^2 (m_{\chi} + m_p)^2}{\sqrt{\pi} m_{\chi}^3 m_p^2 v_0} \qquad E_0 = \frac{2m_{\chi}^2 v_0^2 A m_p}{(m_{\chi} + A m_p)^2 c^2}$$
(2)

#### Reconstructing DM properties: direct detection

We choose a benchmark SUSY model and we want to determine the experimental capability of reconstructing observables relevant for DM searches:  $m_{\chi}$ ,  $\sigma^{SI}_{\chi,p}$ ,  $\Omega_{\chi}h^2$ .

A direct detection experiment (CDMS-like) is associated to a likelihood, depending on the output of the experiments  $(N, \{E_i\})$ :

$$\mathcal{L} = \frac{e^{-N}\lambda^N}{N!} \prod_{i=1}^N f(E_i)$$
(3)

#### Maximum-likelihood

estimators for  $m_{\chi}$  and  $\sigma^{SI}_{\chi,p}$ can be obtained imposing the constraints  $\partial L/\partial m = 0$  and  $\partial L/\partial \sigma = 0$ .



## Colliders (LHC)

LHC (starting November 2009) will access an unexplored range of energies, with the possibility of detecting new, heavy particles beyond the Standard Model.

From Tovey, Eur. Phys. J., direct C4, N4

M<sub>1/2</sub> (GeV)

DM particle may be present as a decay product of primarly produced particles. Leaving the detector and being detectable only as missing energy.



M<sub>0</sub> (GeV)



#### Reconstructing DM properties: colliders

- SUSY parameters' space is 24 dimensional
- our benchmark model is in the coannihilation region

LHC response to that benchmark model is simulated and a collection of M experimental measurements  $\{d_i, \sigma_i\}$  is assumed.



#### Reconstructing DM properties: MC Markov chains

SUSY parameters' space is scanned with the use of MCMCs (based on the Bayesian theorem) and a likelihood is associated to each point:

$$\mathcal{L} = \prod_{i=1}^{M} \exp\left(-\frac{(d_i - d_i^{(j)})^2}{2\sigma_i^2}\right)$$
(4)



Posterior probability distribution function (pdf) of physical observables  $(m_{\chi}, \sigma^{SI}_{\chi,p}, \Omega_{\chi}h^2)$  is obtained by the counting the multeplicity within the chains.

# Reconstructing DM properties: $\sigma^{SI}_{\chi,p}$



#### Combining colliders with direct detection

Relic density  $\Omega_{\gamma}h^2$ :

• assuming a signal at LHC

 assuming that the same particle leaves a signal in a direct detection experiment

From the reconstruction of  $\Omega_{\chi}h^2$  (breaking of degeneracies) it is possible to identify that particle as the cosmological DM (comparison with WMAP value).

MCMCs can be sampled in order to account for informations from direct detection, i.e. the multeplicity of each point is changed by a factor:

$$m_i \longrightarrow m_i \exp\left(-\frac{(\lambda - n^{(i)})^2}{2n^{(i)}}\right) \prod_{\text{bins, } j=1}^4 \exp\left(-\frac{(n_j - n_j^{(i)})^2}{2n_j^{(i)}}\right)$$
(5)

Local density should be rescaled in the case of multi-component DM by a factor  $\Omega_{\chi}{}^{(i)}/\Omega_{\chi}{}^{\text{WMAP}}.$ 



### Conclusions

- Direct detection provides a good reconstruction of  $\sigma^{SI}_{\gamma,p}$
- LHC can constrain DM observables with the use, e.g., of MCMCs
- $\sigma^{SI}_{\gamma,p}$  is very undetermined
- Combination of the two experimental techniques may largely improve the situation
- Breaking the degeneracies for the reconstruction of  $\Omega_{\gamma}h^2$
- The particle detected at LHC that, at the same time, leaves a signal in a direct detection experiment, can be identify as the DM and
- LHC may be used as a DM experiment

#### Underestimation of $\Omega_{\gamma}h^2$



The underestimate of  $\Omega_{\chi}h^2$  is due to the preference for large values of  $\sigma^{SI}_{\chi,p}$  in the original chains (without direct detection data).

#### Neutralino nature

 $m_1$ ,  $m_2$  and  $\mu$  are the parameters that determines the nature of neutralino.

Our benchmark model has  $m_1 < m_2 < \mu$ , but the fact that only the two lightest neutralinos are measured create some degeneracies:



- $m_1 < \mu < m_2$ : Bino/Higgsino neutralino
- $\mu < m_1 < m_2$ : Higgsino neutralino

Models with non-negligeble Higgsino fraction (large  $\sigma^{SI}_{\chi,p}$ ) are possible.