Relaxing a large cosmological constant

Florian Bauer

Departament d'Estructura i Constituents de la Matèria (ECM), Institut de Ciències del Cosmos (ICC), Universitat de Barcelona (UB)

Theoretical miniWorkshop on Dark Matters IFT-UAM/CSIC, Madrid, 16.-18.09.2009

- FB, Joan Solà, Hrvoje Štefančić, PLB 678 (2009) 427, arXiv:0902.2215
- FB, arXiv:0909.2237

★ 3 → < 3</p>

References Introduction CC Problems Outline

Introduction

- Accelerating cosmos
- Dark energy
- Cosmological constant (CC), scalar fields, modified gravity $f(R), \ldots$
- Always: CC
 - Quantum field zero-point energy
 - Phase transitions (electro-weak, GUT, ...)
 - Non-zero minimum of scalar potential (inflaton)

- A 🗇 🕨 - A

References Introduction CC Problems Outline

CC problems

- Large CC expected: $ho_{\Lambda}^{i}\sim\pm\left(10^{2}\ldots10^{19}\,\mathrm{GeV}
 ight)^{4}$
- Problem: No Big Bang universe.
 - de Sitter with large Hubble rate $H \gg H_0$
 - Big Crunch at early times
- Standard way to get rid of ρ_{Λ}^{i} : Add a counter-term

$$ho_{\Lambda}^{i} +
ho_{\Lambda}^{ct} \leq
ho_{\Lambda}^{0} \sim \left(10^{-12} \, \mathrm{GeV}\right)^{4}$$

- Extreme fine-tuning needed: $\rho_{\Lambda}^i = -\rho_{\Lambda}^{ct}$ almost perfectly \rightsquigarrow CC Relaxation
- Why $\rho_m \sim \rho_\Lambda$ now? Coincidence problem \rightsquigarrow Tracking

・ 同 ト ・ ヨ ト ・ ヨ

References Introduction CC Problems Outline

Outline

- CC Relaxation mechanism
- 2 Tracking
- Perturbations
- Output ion of perturbations
- Onclusions

э

Image: A image: A

Simple model Stability Full model Examples

CC Relaxation mechanism

• CC Relaxation: Add ρ_{DE} component without fine-tuning

 $\left|\rho_{\Lambda}^{i}+\rho_{DE}\right|\ll\left|\rho_{\Lambda}^{i}\right|$

- Model in the AXCDM framework
 - Variable CC, $\dot{\rho_{\Lambda}} \neq 0$
 - Equation of state EOS = -1
 - Interaction with another component: X
 - Here: X is identified with CDM

► < Ξ > <</p>

Simple model Stability Full model Examples

Relaxation model

• Variable CC: Large constant initial CC + dynamical part

$$\rho_{\Lambda} = \rho_{\Lambda}^{i} + \frac{\beta}{f}, \quad \beta = \text{const.}$$

- Example: $f = H^2$ for today (close to de Sitter cosmos with Hubble rate $H_* \approx H_0 \sim 10^{-42} \,\text{GeV}$)
- Einstein equation:

$$\rho_{c} = \frac{3H^{2}}{8\pi G} = \left(\rho_{X} + \rho_{\Lambda}^{i} + \frac{\beta}{f}\right)$$

• Fix parameter $\beta = -\rho_{\Lambda}^{i} H_{*}^{2}$

イロト イポト イラト イラト

Simple model Stability Full model Examples

Relaxation model

Solution

۲

$$H^{2} = -\frac{\beta}{\rho_{\Lambda}^{i}} \left(1 + \frac{\rho_{X} - \rho_{c}}{\rho_{\Lambda}^{i}}\right) \approx -\frac{\beta}{\rho_{\Lambda}^{i}} = H_{*}^{2}$$

• What happened?

$$\rho_{c} = \frac{3H^{2}}{8\pi G} = \left(\rho_{X} + \rho_{\Lambda}^{i} + \frac{\beta}{H^{2}}\right)$$

- $f = H^2$ becomes small at late times
- β/H^2 gets large and compensates ρ^i_Λ
- Only the magnitude of β is important \rightsquigarrow No fine-tuning

→ < Ξ → <</p>

Simple model Stability Full model Examples

Counter-term method

• Without fine-tuning in ρ_{Λ}^{ct}

$$\rho_{c} = \frac{3H^{2}}{8\pi G} = \rho_{X} + \rho_{\Lambda}^{i} \left(1 + \frac{\rho_{\Lambda}^{ct}}{\rho_{\Lambda}^{i}}\right) = \mathcal{O}\left(\rho_{\Lambda}^{i}\right)$$

• No Big Bang universe!

・ 同 ト ・ ヨ ト ・ ヨ ト

Stability

• Einstein equation in the case $\rho^i_{\Lambda} < 0, \ (\beta > 0)$

$$\rho_{c} = \frac{3H^{2}}{8\pi G} = \left(\rho_{\text{other}} + \rho_{\Lambda}^{i} + \frac{\beta}{H^{2}}\right)$$

• $\rho_{\Lambda}^i < 0$ and $\beta/H^2 > 0$ act in different directions until a stable point is achieved:

$$\begin{split} |\rho_{\Lambda}^{i}| \gg \frac{\beta}{H^{2}} \\ \rho_{\Lambda}^{i} < 0 \rightsquigarrow \text{Hubble rate } H \searrow 0 \\ \text{until } \frac{\beta}{H^{2}} \approx |\rho_{\Lambda}^{i}| \end{split} \qquad \begin{aligned} |\rho_{\Lambda}^{i}| \ll \frac{\beta}{H^{2}} \\ \frac{\beta}{H^{2}} > 0 \rightsquigarrow \text{Hubble rate } H \nearrow \\ \text{until } \frac{\beta}{H^{2}} \approx |\rho_{\Lambda}^{i}| \end{split}$$

Dynamical relaxation without fine-tuning.

Simple model Stability Full model Examples

Matter and radiation epochs

Late-time de Sitter cosmos

 $f = H^2$ works well

Matter era

Scale factor $a \propto t^{\frac{2}{3}}$, deceleration $q = -\frac{\ddot{a}}{a}/H^2 = \frac{1}{2} \rightsquigarrow f \sim (q - \frac{1}{2})$

Radiation era

Scale factor
$$a \propto t^{rac{1}{2}}$$
, $q = 1 \rightsquigarrow f \sim (q-1)$

Stabilisation similar to $f = H^2$

 $(q-rac{1}{2})$ (or (q-1) for radiation) will change slightly to compensate ho_Λ^i with $q \approx rac{1}{2}$

 CC Relaxation mechanism
 Simple model

 Tracking
 Stability

 Perturbations
 Full model

 Evolution of Perturbations
 Examples

Full model

Complete ACDM-like cosmos

$$f = 4 rac{(2-q)}{(1-q)} \cdot H^2 igg(rac{1}{2} - q igg) + y \cdot 72(1+q^2) \cdot H^6(1-q).$$

- Term $H^2(\frac{1}{2} q)$: matter era for small $(\frac{1}{2} q)$, and final de Sitter era for small H^2
- Term $y \cdot H^6(1-q)$ for the radiation era for large H. Parameter $y \sim H_{eq}^{-4}$ with the Hubble scale $H_{eq} \sim 10^5 H_0$ at the radiation-matter transition.

イロト イポト イヨト イヨ

Simple model Stability Full model Examples

Covariant form

• Function f in covariant form

$$\rho_{\Lambda} = \rho_{\Lambda}^{i} + \beta \frac{R}{B} \quad \text{with} \quad B := R^{2} - S + y \cdot R^{2}T.$$

- Ricci scalar $R = g^{ab}R_{ab} = 6H^2(1-q)$
- Ricci tensor squared $S = R_{ab}R^{ab} = 12H^4(q^2 q + 1)$
- Riemann tensor squared $T = R_{abcd}R^{abcd} = 12H^4(q^2+1)$
- Here: S and T can be replaced by R^2 and the Gauß-Bonnet term G: $S_* = \frac{1}{3}R^2 \frac{1}{2}G$, $T_* = \frac{1}{3}R^2 G$.

.

$$\rho_{\Lambda}^{i}=-10^{40}\,\rho_{c}^{0}$$

◆□ > ◆□ > ◆豆 > ◆豆 >

æ

$$\rho_{\Lambda}^{i} = -10^{40} \rho_{c}^{0}$$

<ロ> (日) (日) (日) (日) (日)

æ

 CC Relaxation mechanism
 Simple model

 Tracking
 Stability

 Perturbations
 Full model

 Evolution of Perturbations
 Examples

Parameter β

Mass scale M

$$|\beta| = M^6$$

• β is fixed in the final de Sitter era with Hubble rate H_* , q = -1

$$\beta = -\rho_{\Lambda}^{i} 9H_{*}^{2}$$

• Example: $ho_{\Lambda}^i = \mathcal{O}(M_{Pl}^4)$, $H_* pprox H_0 \sim 10^{-42}\,{
m GeV}$

$$M=|eta|=\mathcal{O}(100\, ext{MeV})$$

(日) (同) (三) (三)

Radiation era Matter era

Friedmann equations

• Friedmann equations for H and q:

$$H^{2} = \frac{H_{0}^{2}}{\rho_{c}^{0}}(\rho_{X} + \rho_{\Lambda} + \rho_{r})$$
$$qH^{2} = \frac{H_{0}^{2}}{\rho_{c}^{0}}\left(\frac{1}{2}\rho_{X} - \rho_{\Lambda} + \rho_{r}\right)$$

• Bianchi identity for X/dark matter (dust) and $\Lambda:$

$$\dot{\rho}_{\Lambda} + \dot{\rho}_{X} + 3H\rho_{X} = 0$$

Radiation

$$\rho_r = \rho_{r0} \, a^{-4}$$

・ 同 ト ・ ヨ ト ・ ヨ

Radiation era Matter era

Relaxation regime

- CC Relaxation means $|\rho_{\Lambda}| = |\rho_{\Lambda}^{i} + \frac{\beta}{f}| \ll |\rho_{\Lambda}^{i}|$
- Minimum of f = B/R in the radiation era $(q \approx 1)$:

$$B = -12H^4 + 2y \cdot 24H^4R^2 = 12H^4(2yR^2 - 1)$$

B minimal for $R
ightarrow 1/\sqrt{2y} \sim H_{eq}^2$

• R from Friedmann equations

$$R = \frac{6H_0^2}{\rho_c^0} \left(\frac{1}{2}\rho_X + 2\rho_\Lambda\right).$$

• R, B in ρ_{Λ} :

$$\rho_{\Lambda} = \rho_{\Lambda}^{i} + \beta \frac{R}{B} = \rho_{\Lambda}^{i} + \frac{\gamma}{\epsilon \cdot (\frac{1}{2}\rho_{X} + 2\rho_{\Lambda}) - 1}$$

Solve for $\rho_{\Lambda}!$

• • • • • • •

Radiation era Matter era

Tracking solutions

Two solutions for ρ_{Λ}

$$\rho_{\pm} \simeq \frac{1}{8} \left[4\rho_{\Lambda}^{i} - \rho_{X} \pm \left| 4\rho_{\Lambda}^{i} + \rho_{X} \right| \right]$$

$ho_{\Lambda}^{i} < 0$

• Early times: $\rho_X \gg |\rho_{\Lambda}^i|$

$$\rho_{\Lambda} = \rho_{+} \simeq \rho_{\Lambda}^{i} = \text{const.}$$

• Late times: $ho_X \ll |
ho_\Lambda^i|$

$$\rho_{\Lambda} = \rho_{+} \simeq -\frac{1}{4}\rho_{X}$$

 $ρ_{\Lambda}^{i} > 0$ • Always tracking: $ρ_{\Lambda} = ρ_{-} \simeq -\frac{1}{4}ρ_{X}$

イロト イポト イヨト イヨト

э

Radiation era Matter era

Conservation equation

AXCDM framework

- Dark/X matter and the vacuum are interacting
- Bianchi identity \rightsquigarrow Conservation equation

$$\dot{\rho}_{\Lambda} + \dot{\rho}_{X} + 3H\rho_{X} = 0$$

• Tracking regime in the radiation era:

$$\rho_{\Lambda} \simeq -\frac{1}{4}\rho_X$$

X and the vacuum scale like radiation

$$\rho_{\Lambda}, \rho_X \propto \rho_r = \rho_{r0} a^{-4}$$

Florian Bauer Relaxing a large cosmological constant

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Radiation era Matter era

Example:
$$\rho_{\Lambda}^{i} = -10^{40} \rho_{c}^{0}$$

イロト イポト イヨト イヨト

æ

Radiation era Matter era

Relaxation regime

Matter era: $q \approx \frac{1}{2}$

• Friedmann equations

$$H^2\left(\frac{1}{2}-q\right) = \frac{H_0^2}{\rho_c^0}\left(\frac{3}{2}\rho_{\Lambda}-\frac{1}{2}\rho_r\right),$$

• Vacuum energy

$$\begin{split} \rho_{\Lambda} &= \rho_{\Lambda}^{i} + \frac{\beta}{f} \approx \rho_{\Lambda}^{i} + \frac{\beta}{12H^{2}(\frac{1}{2} - q) + 45H^{6}y} \\ &= \rho_{\Lambda}^{i} + \frac{1}{d(\frac{3}{2}\rho_{\Lambda} - \frac{1}{2}\rho_{r}) + c} \\ d &:= 12H_{0}^{2}/(\rho_{c}^{0}\beta), \ (d\rho_{\Lambda}^{i}) < 0 \end{split}$$

Radiation era Matter era

Tracking solution

Two solutions for ho_{Λ}

$$ho_{\pm} \simeq rac{1}{6d} \left[3d
ho^i_{\Lambda} \pm |3d
ho^i_{\Lambda}| \pm rac{6d(-d
ho^i_{\Lambda})}{|3d
ho^i_{\Lambda}|} \cdot
ho_r
ight]$$

Only ρ_+ relaxes the CC

$$\rho_{\Lambda} \simeq \frac{1}{3} \rho_{r}$$

Tracking in the matter era!

Conservation equation

$$\dot{\rho}_{\Lambda} + \dot{\rho}_{X} + 3H\rho_{X} = 0 \implies \rho_{X} = \rho_{X0} a^{-3} - \frac{4}{3}\rho_{r}$$

Deviation from ACDM are of order $\rho_r \propto a^{-4}$.

CC Relaxation mechanism Tracking Perturbations Evolution of Perturbations Gravitational pote

Newtonian gauge

• Perturbed metric $g_{ab} = \overline{g_{ab}} + \delta g_{ab}$ in linear order

$$g_{00} = 1 + 2\Psi(t, \vec{x}), \ g_{ij} = -\delta_{ij}a^2(t)(1 + 2\Phi(t, \vec{x})), \ g_{0i} = 0$$

Gravitational scalar potentials: Φ and Ψ

Perturbed versions of

$$\Gamma_{bc}^{a}, R, R_{ab}, G_{ab}, R_{abcd}, S, T, \ldots$$

$$\delta R = 6\ddot{\Phi} + 24H\dot{\Phi} - 6H\dot{\Psi} - 2a^{-2}\nabla^{2}\Psi - 4a^{-2}\nabla^{2}\Phi - 12H^{2}(1-q)\Psi$$

・ 同 ト ・ ヨ ト ・ ヨ

Gravity Varying CC and dark/X matter Radiation Gravitational potential Φ

Varying CC term

Energy-momentum tensor of the CC

$$T^{\mu}_{\ \nu} = \rho_{\Lambda} \, \delta^{\mu}_{\ \nu} \quad \text{with} \quad \rho_{\Lambda} = \rho^{i}_{\Lambda} + \beta/f$$
$$\delta T^{\mu}_{\ \nu} = \delta^{\mu}_{\ \nu} \, \delta\rho_{\Lambda}$$

Vacuum energy perturbation

$$\delta \rho_{\Lambda} = \beta \, \delta \left(\frac{R}{B}\right) = \frac{\beta R}{B} \cdot \frac{N}{BR}$$
$$N := -(R^2 + S)\delta R + R\delta S - y(R^2 T \delta R + R^3 \delta T)$$

э

イロト イポト イヨト イヨト

Gravity Varying CC and dark/X matter Radiation Gravitational potential Φ

Varying CC term

Relaxation regime

$$\begin{aligned} |\rho_{\Lambda}| &= |\rho_{\Lambda}^{i} + \beta R/B| \ll |\rho_{\Lambda}^{i}| \\ \delta\rho_{\Lambda} &= \frac{\beta R}{B} \cdot \frac{N}{BR} \stackrel{\text{Relax}}{=} -\mathcal{O}(\rho_{\Lambda}^{i})\frac{N}{BR} \end{aligned}$$

Final de Sitter era with Hubble rate H_*

Parameter $\beta = -\rho_{\Lambda}^{i} 9 H_{*}^{2}$

 $BR \stackrel{\text{Relax}}{=} 9H_*^2R^2$

< ロ > < 同 > < 回 > < 回 > < 回 > <

э

Gravity Varying CC and dark/X matter Radiation Gravitational potential Φ

Interacting X- Λ components

Covariantly conserved energy-momentum tensor

$$T^{a}_{\ b} = \rho_{X} u^{a} u_{b} + \rho_{\Lambda} g^{a}_{\ b}.$$

Perturbed version

$$ho_i
ightarrow
ho_i(t) + \delta
ho_i(t, \vec{x}), \ \ i = X, \Lambda; \ \ u^a
ightarrow u^a(t) + \delta u^a(t, \vec{x}),$$

• 4-velocity u^a , 3-velocity perturbation v^j

$$u^a = \delta_0^a, \ \delta u^0 = -\Psi = -\delta u_0, \ \delta u^j = \frac{v^j}{a}, \ \delta u_j = -av^j$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Gravity Varying CC and dark/X matter Radiation Gravitational potential Φ

Conservation equations

• Wave number $k = |\vec{k}|$ in Fourier space

$$\Psi(t,ec{x}) = \int rac{d^3k}{(2\pi)^3} \exp(-iec{k}ec{x}) \Psi(t,ec{k})$$

• Bianchi identity $T^a_{b;a} = 0$

$$\dot{\delta\rho}_{\Lambda} + \dot{\delta\rho}_{X} + 3\dot{\Phi}\rho_{X} + 3H\delta\rho_{X} - i\rho_{X}v\frac{k}{a} = 0$$
$$\delta\rho_{\Lambda}\left(\frac{k}{a}\right)^{2} - \rho_{X}\Psi\left(\frac{k}{a}\right)^{2} - i\frac{d}{dt}\left(\rho_{X}v\frac{k}{a}\right) - i5H\left(\rho_{X}v\frac{k}{a}\right) = 0$$

・ 同 ト ・ ヨ ト ・ ヨ ト

 CC Relaxation mechanism
 Gravity

 Tracking
 Varying CC and dark/X matter

 Perturbations
 Radiation

 Evolution of Perturbations
 Gravitational potential Φ

Radiation

- No changes in the baryon, photon and neutrino sector.
- Radiation perturbations: Monopole Θ_0 , dipole Θ_1 , ...

$$\delta T^0_0 = 4\rho_r \Theta_0, \ \delta T^0_j = 4i\rho_r \Theta_1 k^j \frac{a}{k}.$$

 $\bullet\,$ The evolution equations for $\Theta_{0,1}$ read

$$\dot{\Theta}_0 = -\dot{\Phi} + \frac{k}{a}\Theta_1,$$

$$\dot{\Theta}_1 = -\frac{1}{3}\frac{k}{a}(\Psi + \Theta_0) + \frac{2}{3}\frac{k}{a}\Theta_2.$$

$$(1)$$

(1日) (1日) (1日)

CC Relaxation mechanism Tracking Perturbations Evolution of Perturbations CC and dark/X matter Gravity Varying CC and dark/X matter Gravitational potential Φ

Einstein equations

• Perturbed $\delta G^a_{\ b} = 8\pi G \, \delta T^a_{\ b}$

$$6H\dot{\Phi} - 6H^{2}\Psi + 2\left(\frac{k}{a}\right)^{2}\Phi = 8\pi G(\delta\rho_{\Lambda} + \delta\rho_{X} + \delta\rho_{r}),$$

$$\rho_{X}v\frac{k}{a} = 4i\rho_{r}\Theta_{1}\frac{k}{a} - \frac{2i}{8\pi G}\left(\frac{k}{a}\right)^{2}(\dot{\Phi} - H\Psi)$$

$$\frac{1}{8\pi G}\frac{2}{3}\left(\frac{k}{a}\right)^{2}(\Psi + \Phi) = -\frac{8}{3}\rho_{r}\Theta_{2} = \text{anisotropies}$$

• Neglect anisotropies, $\Theta_2 \rightsquigarrow \Psi = -\Phi$

< ロ > < 同 > < 回 > < 回 > < 回 > <

э

 CC Relaxation mechanism
 Gravity

 Tracking
 Varying CC and dark/X matter

 Perturbations
 Radiation

 Evolution of Perturbations
 Gravitational potential Φ

How large is $\delta \rho_{\Lambda}$?

• Einstein equations + conservation equations

$$\delta \rho_{\Lambda} = \rho_X \Psi + \frac{4}{3} \rho_r (\Theta_0 + \Psi - 2\Theta_2) \\ + \frac{2}{8\pi G} [\ddot{\Theta} + 3H\dot{\Theta} - H\dot{\Psi} - \dot{H}\Psi - 3H^2\Psi]$$

•
$$\Psi, \Theta_0 \leq \mathcal{O}(\Phi) \text{ and } \rho_r, \rho_X, \rho_\Lambda \leq \mathcal{O}(\rho_c)$$

$$\delta \rho_{\Lambda} = \mathcal{O}(\rho_{c} \Phi)$$

2 Relaxation regime

$$\delta \rho_{\Lambda} = \frac{\beta R}{B} \cdot \frac{N}{BR} \stackrel{\text{Relax}}{=} -\mathcal{O}(\rho_{\Lambda}^{i}) \frac{N}{BR}$$

$$\langle \Box \rangle \langle \overline{\partial} \rangle \langle$$

 CC Relaxation mechanism
 Gravity

 Tracking
 Varying CC and dark/X matter

 Perturbations
 Radiation

 Evolution of Perturbations
 Gravitational potential Φ

How large is $\delta \rho_{\Lambda}$?

$$\delta \rho_{\Lambda} = \frac{\beta R}{B} \cdot \frac{N}{BR} \stackrel{\text{Relax}}{=} -\mathcal{O}(\rho_{\Lambda}^{i}) \frac{N}{BR} = \mathcal{O}(\rho_{c} \Phi)$$
$$\frac{N}{BR} = \mathcal{O}\left(\frac{\rho_{c} \Phi}{\rho_{\Lambda}^{i}}\right) \ll 1$$

in addition $BR \stackrel{\text{Relax}}{=} 9H_*^2 R^2$

Evolution equation for Φ

$$0 = N = -(R^2 + S)\delta R + R\delta S - y(R^2 T\delta R + R^3 \delta T)$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Matter era Final de Sitter era Radiation era

Gravitational Potential

Matter era

$$q = \frac{1}{2}$$
, $H = 2/(3t) \ll H_{eq}$, $R = 3H^2$, $S = 9H^4$, $T = 15H^4$, $y = H_{eq}^{-4}$ part neglected.

$$N = -2R^{2}\delta R + R\delta S$$

= -18H⁴[6 $\ddot{\Theta}$ + 18H $\dot{\Phi}$ - 6H $\dot{\Psi}$ - 2 $a^{-2}\nabla^{2}(\Psi + \Phi)$
= -6 \cdot 18H⁴[$\ddot{\Theta}$ + 4H $\dot{\Phi}$] (with Ψ = - Φ)

$$0 = N \propto \ddot{\Theta} + 4H\dot{\Phi}$$
 has two solutions
 $\Phi = ext{const.}, \ \Phi \sim t^{-rac{5}{3}}$ will die out.

イロト イヨト イヨト イヨト

э

Matter era Final de Sitter era Radiation era

Vacuum perturbations $\delta \rho_{\Lambda}$

• Einstein, conservation and tracking $(\rho_{\Lambda} = \frac{1}{3}\rho_r)$ relations

$$\delta \rho_{\Lambda} = \rho_X \Psi + \frac{4}{3} \rho_r (\Theta_0 + \Psi - 2\Theta_2) + \\ + \frac{2}{8\pi G} [\ddot{\Theta} + 3H\dot{\Theta} - H\dot{\Psi} - \dot{H}\Psi - 3H^2\Psi] \\ = 4\rho_{\Lambda}\Theta_0$$

Radiation equations $\langle \Theta_0 \rangle = \Phi \rightsquigarrow$ Vacuum energy contrast $\frac{\delta \rho_{\Lambda}}{\rho_{\Lambda}} = 4\Phi = \text{const.}$

< ロ > < 同 > < 回 > < 回 > < 回 > <

Matter era Final de Sitter era Radiation era

X/dark matter perturbations $\delta \rho_X$

$$\delta \rho_X = -\rho_X \Psi - \frac{4}{3} \rho_r (4\Theta_0 + \Psi) - \frac{2}{8\pi G} \left[\ddot{\Theta} - H \dot{\Psi} - \dot{H} \Psi - (k/a)^2 \Phi \right]$$
$$\approx \rho_X \Phi \left[2 + \frac{2k^2}{3H_0^2 \Omega_{X0}} \cdot a \right]$$

Sub-horizon modes, $k/(aH) \gg 1$: ACDM result

$$\frac{\delta\rho_X}{\rho_X} = \frac{2k^2\Phi}{3H_0^2\Omega_{X0}} \cdot a$$

Dark/X matter density contrast grows with scale factor a

イロト イポト イヨト イヨト

Matter era Final de Sitter era Radiation era

Gravitational Potential

Final de Sitter era

$$q = -1$$
, $H = H_* = \text{const.}$, $R = 12H^2$, $S = 36H^4$, $T = 24H^4$, $y = H_{eq}^{-4}$ terms neglected

$$N = -18 \cdot 36H^4 \left[\ddot{\Phi} + 5H\dot{\Phi} + \frac{1}{3} \left(\frac{k}{a} \right)^2 \Phi + 4H^2 \Phi \right]$$

N = 0 has two decaying solutions

$$\Phi_{1} = x^{2}(\sin x + x^{-1}\cos x)$$

$$\Phi_{2} = x^{2}(x^{-1}\sin x - \cos x), \quad x := \frac{k}{\sqrt{3}aH} \propto \frac{1}{a}$$

Matter era Final de Sitter era Radiation era

Vacuum and X/DM perturbations $\delta \rho_{\Lambda,X}$

For $\Phi = \Phi_1$ (Φ_2 similar) we find

$$\begin{split} \delta \rho_{\Lambda} &= -\rho_X \Phi_1 + \frac{3H^2}{8\pi G} \left(\frac{2}{3} x^3 \cos x - \frac{2}{3} x^2 \Phi_1 \right), \\ \delta \rho_X &= \rho_X \Phi_1 + \frac{3H^2}{8\pi G} \left(-\frac{8}{3} x^3 \cos x + \frac{8}{3} x^2 \Phi_1 \right). \end{split}$$

Λ density contrast is decreasing

$$\frac{\delta \rho_{\Lambda}}{\rho_{\Lambda}} = -\frac{2}{3}(x^4 \sin x).$$

No perturbative instabilities expected in the future

イロト イポト イヨト イヨト

Matter era Final de Sitter era Radiation era

Gravitational Potential

Radiation era

$$q = 1$$
, $S = 12H^4$ and $T = 24H^4$
Relaxation regime

$$R \approx rac{1}{\sqrt{2y}} \sim H_{eq}^2 \ll H^2, \ BR = 9 H_*^2 R^2 pprox rac{9 H_*^2}{2y}.$$

Numerator N

$$N = -\left(R^{2} + S + \frac{1}{2}T\right)\delta R + R\delta S - \frac{1}{2}R\delta T$$
$$\approx -24H^{4}\delta R$$
$$\delta R = 6\left(\ddot{\Phi} + 5H\dot{\Phi} + \frac{1}{3}\left(\frac{k}{a}\right)^{2}\Phi\right)$$

Matter era Final de Sitter era Radiation era

Gravitational Potential

N = 0 has two solutions

$$\begin{aligned} \Phi_1 &= 3\Phi_0 x^{-2} (\sin x + x^{-1} \cos x) = \Phi_0 \left(3x^{-3} + \mathcal{O}(x^{-1}) \right) \\ \Phi_2 &= 3\Phi_0 x^{-2} (x^{-1} \sin x - \cos x) = \Phi_0 \left(1 + \mathcal{O}(x^2) \right) \end{aligned}$$

$$\mathbf{x} := \sqrt{rac{k^2}{3a^2H^2}} \propto \mathbf{a} \propto \sqrt{t}$$

The same solutions exist in ΛCDM , where radiation determines Φ .

Only Φ_2 has a regular early-time behaviour $\Phi(t o 0) = \Phi_0$ $\Phi_1 \sim t^{-rac{3}{2}}, \ \Phi_2 o \Phi_0 = ext{const.}$

< ロ > < 同 > < 回 > < 回 > < 回 > <

э

Matter era Final de Sitter era Radiation era

Radiation, Vacuum and X/DM perturbations $\delta \rho_{r,\Lambda,X}$

Radiation multipoles

$$\Theta_0(x) = c_1 \cos x + c_2 \sin x - \Phi(x) + 3\Phi_0 x^{-1} \sin x \Theta_1(x) = (-c_1 \sin x + c_2 \cos x - x\Phi(x)) / \sqrt{3}$$

Tracking relation for $\delta \rho_{X,\Lambda}$

$$\delta \rho_X = 4\Theta_0 \rho_X - \frac{2}{3}\rho_c \left((8c_1 + 12\Phi_0) + 8c_2 \sin x \right) = -4\delta \rho_\Lambda$$

Relaxation regime + Λ CDM initial conditions ($c_1 = -\frac{3}{2}\Phi_0, c_2 = 0$)

$$\frac{\delta\rho_X}{\rho_X} = 4\Theta_0 = \frac{\delta\rho_\Lambda}{\rho_\Lambda} = \frac{\delta\rho_r}{\rho_r}$$

Perturbations of Λ , X and radiation evolve in the same manner.

Conclusions

• Dynamical CC Relaxation model without fine-tuning

$$\left|\rho_{\Lambda}\right| = \left|\rho_{\Lambda}^{i} + \frac{\beta}{f}\right| \ll \left|\rho_{\Lambda}^{i}\right|$$

- Tracking relations
 - Radiation era

$$\rho_{\Lambda} = -\frac{1}{4}\rho_X \propto \rho_r$$

• Matter era

$$\rho_{\Lambda} = \frac{1}{3}\rho_{r}$$

- Linear perturbations
 - $\bullet\,$ Gravitational potentials Φ controlled by the vacuum
 - No unexpected instabilities
 - Matter era: Similar to ACDM with growing dark/X matter density contrast

Effective equation of state

Effective equation of state

EOS $\omega_{\rm eff}$ of a self-conserved DE component $\rho_{\rm DE}$

- Hubble rate H(z) of the relaxation model
- DM with standard dust scaling law $ilde{
 ho}_X \propto (z+1)^3$

•
$$\rho_{\text{DE}} = \rho_{\text{tot}} - \tilde{\rho}_X - \rho_r - \rho_b$$

 $\omega_{\text{eff}} = -1 + \frac{1+z}{3} \frac{1}{\rho_{\text{DE}}(z)} \frac{d\rho_{\text{DE}}(z)}{dz}$

Effective equation of state

Florian Bauer Relaxing a large cosmological constant

э