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Photon/axion oscillations

Axions were postulated to solve the CP problem in the 70s.

Good Dark Matter candidates (axions with masses = ueV-meV could account for the total Dark
Matter content).

They are expected to oscillate into photons (and viceversa) in the presence of magnetic fields:
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Photon/axion oscillations are the main vehicle used at present in axion searches (ADMX, CAST...).



Mixing in astrophysical environments

* Some astrophysical environments fulfill the mixing requirements:
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M, Astrophysical sources with B¢'s,. = 0.01 will be valid.
M., = 0.114 GeV (CAST limit)

Bgs,. also determines the Emax to which sources can accelerate cosmic rays:
Ena= 9:3:10%0 -Bgs, eV (Hillas criterion)

We observe cosmic rays up to 3-10° eV -> Bg's up to 0.3 must exist!

In IGMFs, B.~10- -> Mixing also possible for cosmological distances (Spe = 108)

* |mportant implications for astronomical observations (AGNs, pulsars, GRBs...).
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Mixing in the source
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1 The main effect is an ATTENUATION of the
photon flux above the critical energy:
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For typical AGN numbers, the effect is present in
1 gamma-rays below axion masses = 10 eV
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Effect of the Cotton-Mouton term



Intensity

Mixing in the IGMF

* We compute the photon/axion mixing in N coherent domains with equal size and random B

orientation.
* The EBL introduces an additional absorption. The more attenuating the EBL, the more

important the mixing in the final intensity.
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The effect can be an ATTENUATION or an ENHANCEMENT of the photon flux,
depending on distance, B field and EBL model considered.

The effect will be present in the gamma-ray band for axion masses = 10-1? eV



Source and intergalactic mixing
working together

AGN | Y Earth

B Bicmr

source

* AGNs located at cosmological distances will be affected by both mixing in the source
and in the IGMF.

* In order to observe both effects in the gamma-ray band, we need ultralight axions.
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Two examples: 3C279 and PKS 2155-304

Parameter 3C 279 PKS 2155-304
B (G) 1.5 0.1 E . 3C)= 4.6 eV
Source eqd (cm™?) 25 160 cnt,source( )
parameters | L domains (pc) |0.003 3 x 1074 E . PKS) = 69 eV
B region (pc) | 0.03 0.003 atsourcelFK>)
z 0.536 0.117
Intergalactic| eq ins (cm™>) 1077 1077 _
parameters | Bin: (nG) 0.1 0.1 Ecrit,interg = 28.5 GeV (bOth)
L domains (Mpc)| 1 1
T0 10 .
ALP M (GeV) 1.1_410>< 10 1.1_410>< 10 CAST limit
parameters | ALP mass (eV) |10 10
ultralight axions
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Axion boost factor

Axion boosts
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Attenuation due to intergalactic mixing

Larger axion boosts for distant sources.

» The more attenuating the EBL, the larger the axion boosts.
»  Same critical energies for different objects -> clear signature for detection!



Axion boost factor

The impact of changing B
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The critical energy varies accordingly.
For distant sources, weaker intergalactic B fields could lead to higher axion boosts.



Detection prospects for Fermi and I1A(CTs

* If we accurately knew the intrinsic spectrum of the sources and/or the density of the
EBL, we should be able to observationally detect axion signatures or to exclude some
portions of the parameter space.

* We lack this knowledge... Detection challenging but still possible!

» Before going to axions:

* (Observe several AGNs located at different redshifts, as well as the same AGN
undergoing different flaring states, from radio to TeV.
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* Try to describe the observational data with “conventional” theoretical models

for the AGN emission and for the EBL.

* |If these “conventional” models for the source emission and EBL fail (important
residuals for the best-fit model), then the axion scenario should be explored.



Axion boost factor

Observational strategy with
ACTs

Fermi and |
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Look for intensity drops in the residuals
(“best-model”-data).

Source model dependent.

Powerful, relatively near AGNs.

Look for intensity drops in the residuals.

Only depends on the IGMF and axion properties (mass
and coupling constant).

Independent of the sources -> CLEAR signature!



Are we detecting axions already?

* Recent gamma observations might already pose substantial challenges to the conventional
models to explain the observed source spectra and/or EBL density.

— The VERITAS Collaboration recently claimed a detection above 0.1 TeV coming from
3C66A (z=0.444). EBL-corrected spectrum harder than 1.5 (Acciari+09).

— TeV photons coming from 3C 66A? (Neshpor+98; Stepanyan+02). Difficult to explain with
conventional EBL models and physics.

— The lower limit on the EBL at 3.6 wm was recently revised upwards by a factor ~2,
suggesting a more opaque universe (Levenson+08).

— Some sources at z = 0.1 — 0.2 seem to have harder intrinsic energy spectra than
previously anticipated (Krennrich+08).

» While it is still possible to explain the above points with conventional physics, the axion/photon
oscillation would naturally explain these puzzles:

— More high energy photons than expected.
— Softer intrinsic spectrum when including axions.



Axions are our friends

3C279, Kneiske+04 bestfit, B=0.1nG
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[3C279 data points from the MAGIC Collaboration, Albert et al. 2008]



CONCLUSIONS

If axions exist, they could distort the spectra of astrophysical sources importantly,

If photon/axion mixing in the IGMFs, then also mixing in the source.

Form_. = 10-1%eV -> gamma ray energy range.

axion

Photon/axion mixing in both the source and the IGM are expected to be at work over
several decades in energy -> joint effort of Fermi and current IACTs needed.

— Fermi/LAT instrument expected to play a key role, since it will detect thousands of
AGNs (up to z~5), at energies where the EBL is not important.

— |ACTs specially important at higher energies (>300 GeV), where the EBL is present.

Main problem: the effect of photon/axion oscillations could be attributed to conventional
physics in the source and/or propagation of the gamma-rays towards the Earth.

However, detailed observations of AGNs at different redshifts and different flaring
states could be used to identify the signature of an effective photon/axion mixing.



BACKUP



Variation of source attenuation with the
size domain

TABLE I: Maximum attenuations due to photon/axion oscil-
lations in the source obtained for different sizes of the region
where the magnetic field is confined (“B region”) and differ-
ent lengths for the coherent domains. Only length domains
smaller than the size of the B region are possible. The B
field strength used is 1.5 G (see Table II). The photon flux
intensity without ALPs was normalized to 1. In bold face, is
the attenuation given by our fiducial model.

B region (pc) Length domains (pc)

3x107* 3x10™° 0.03 0.3
0.3 0.84 0.67  0.67 0.75
0.03 0.98 0.84 0.77 -

3x107° 0.99 098 - -




IGMF mixing equations
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Axion boost factor

i.e. SN1987A coupling constant

M=4e11 GeV
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