

γ-ray searches of neutralino annihilations in the Milky Way

Miguel A. Sánchez-Conde

(Instituto de Astrofísica de Andalucía - CSIC)

"Theoretical miniWorkshop on Dark Matters" – IFT-UAM/CSIC, Madrid, September 16 – 18, 2009

Gamma-ray Dark Matter searches

- THIS TALK: gamma-ray searches with IACTs and neutralino as the DM particle.
- Gamma-ray DM searches: detection of gamma-rays coming from neutralino annihilations.
- Why gammas?
 - The energy scale of the annihilation products is determined by the mass of the DM particle.
 - Gamma-rays will travel following straight lines
 - Gamma-rays do not suffer from attenuation, therefore retaining the spectral information.
- In gamma-rays, IACTs and satellites: MAGIC, HESS, VERITAS, CANGAROO, Fermi, AGILE...

Leading IACTs at present

Tucsòn, Arizona

VERITAS (USA & England) 2006 4 telescopes 12 meters each **MAGIC** (Germany, Italy, Spain) 2003 2 telescopes 17 meters each

Canary Islands, Spain

Windhoek, Namibia

HESS (Germany & France) 2002 4 telescopes 12 meters each

THE "BIG FOUR" IACTs

Woomera, Australia

CANGAROO-III

(Australia & Japan) 2004 4 telescopes 10 meters each

The 17m MAGIC telescope

- Located in the Roque de los Muchachos Observatory (Canary Islands, 2200m a.s.l.)
- Energy threshold: 60 GeV (for small zenith angles)
- Sensitivity: 1.6% of the Crab in 50h
- Energy resolution: 20-30%
 - Angular resolution: 0.1°
- FoV: 3.5°

A factor of 2 better sensitivity Lower energy threshold Inauguration: May 2009

The Galactic Center

In principle the best option...

- Very near, so flux should be high. Adiabatic contraction expected to be really important.
- HESS and MAGIC reported a point-like source: a very massive neutralino, no compatible with WMAP cosmology. (Aharonian et al. 2004; Albert et al. 2005)
- Later an extended emission was discovered, but associated to the galactic plane and molecular clouds.

(Aharonian et al. 2006)

 More recently, new HESS data and analysis: DM not excluded (α>1.2) (Aharonian et al. 2006)

Gamma ray flux predictions

(Prada et al. 2004)

HESS observations of the central 200 pc

Gamma sources at the GC (Hinton for the HESS collaboration 2006)

SED including best-fit curves of different predictions of DM annihilation models.

(Aharonian et al. 2006)

GC is a very crowded region !

Why not dSph galaxies?

- DSphs are the most DM dominated systems known in the Universe: very high M/L ratios.
- Many of them nearer than 100 kpc from the GC (e.g. Draco, UMi and new SDSS dwarfs).
- Most of them are expected to be free from any bright astrophysical gamma source.
 - Low content in gas and dust.
 - In contrast with that expected in the GC, nearby galaxies and galaxy clusters.

Bullock et al. (2009)

New promising dwarfs

Recently discovered dSph (SDSS): Coma, Willman 1, Segue 1...

- Same M/L than classical dwarfs or higher
- Some of them more than a factor 2 nearer.

A tentative list of good candidates

More than 20 satellite galaxies known at present, many of them discovered from SDSS data in the recent years

dSph	D (kpc)	L (10 ³ L _{sun})	M/L ratio	Reference	Best positioned IACTs
Carina	101	430	40	(1)	HESS, CANGAROO
Draco	80	260	320	(1)	MAGIC, VERITAS
Fornax	138	15500	10	(1)	HESS, CANGAROO
Sculptor	79	2200	7	(1)	HESS, CANGAROO
Sextans	86	500	90	(1)	HESS, CANGAROO
UMi	66	290	580	(1)	MAGIC, VERITAS
Coma Berenices	44	2.6	450	(2)	MAGIC, VERITAS
UMa II	32	2.8	1100?	(2)	MAGIC, VERITAS
Willman 1	38	0.9	700	(2)	MAGIC, VERITAS
Segue 1	23	0.3	1300?	(3)	MAGIC, VERITAS
Sagittarius**	24	58000	25	(4)	HESS, CANGAROO

(1) Mateo et al. (1998) (2) Simon & Geha (2007)

(3) Geha et al. (2008)

(4) Helmi & White (2001)

** Not a dSph, but listed here because of its interest

Annihilation flux predictions

- Segue 1 and Willman 1 the best candidates.
- No substructure included!

Sánchez-Conde et al. (2009, in prep.)

γ-ray IACTs observations of dSphs

[Present status]

Observations of Draco with MAGIC

Why Draco?

- Draco is probably the dSph with more observational constraints.
- Near (80 kpc from the GC).
- M/L ~ 300
- High in the Northern Sky --> suitable for MAGIC

MAGIC observations and analysis

- Total Observation Time of **7.8 HOURS** (may 2007)
- Zenith Angle ranges between 29° and 42°
- Calibration of the data and Hillas parameterization of the shower images
- Hadronic background supression and energy estimation by Random Forest method

A Dark Matter model for Draco

Density profile

proposed by Kazantzidis et al. (2004)

For a=1, essentially NFW + cut-off

Estimations for r_b and C according to the latest data analysis

MAGIC results for Draco

[Albert et al. 2007]

Alpha plot

- $E_{th} = 140 \text{ GeV}$
- Signal region $\alpha < 12^{\circ}$
- No excess signal was found

Flux (2 σ , E>140 GeV) = 1.1 x 10⁻¹¹ ph cm⁻² s⁻¹

(assuming a power-law with spectral index -1.5 and a point-like source)

$\kappa < \sigma \cdot v > vs m\chi$ for mSUGRA models

- Battaglia et al. (2004) benchmark models
- Our upper limits are O(10³-10⁹) above the predicted values.
- Very high flux enhancement can be excluded.
- Internal Bremsstrahlung effect -which may boost the signal-, not yet included (Bringmann et al 2007)

Observations of Willman 1 with MAGIC

Why Willman 1?

- Near (38 kpc from the GC).
- M/L ~ 700
- High in the Northern Sky --> suitable for MAGIC
- Recently discovered by SDSS team -> more atractive!

MAGIC observations and analysis

- Total Observation Time of 15.5 HOURS (march-may 2008)
- Zenith Angle ranges between 29° and 42°
- Calibration of the data and Hillas parameterization of the shower images
- Hadronic background supression and energy estimation by Random Forest method

DM halo modeling for Willman 1

- Exact modeling difficult to carry out, since observational data are very scarce.
- Only 47 stars were used in Strigari et al. (2007) to derive $(\rho_{0,} r_{s})$ (by means of a likelihood analysis).

 $\rho(r) =$

- Removal of interlopers.
- Only the inner half of the galaxy.

• They adopt a NFW DM density profile.

Results for Willman 1

Nul

	Parameter	Value
	distance (kpc)	38
	Mass (<100 pc) (M_{\odot})	1.3×10^{6}
$(r_{\rm s})^2$	M/L	~ 700
	r_s (kpc)	0.18
	$\rho_s (M_{\odot})$	4×10 ⁸

• $E_{th} = 100 \text{ GeV}$

 $\frac{\rho_0}{(r/r_s)(1+r)}$

- Signal region $\alpha < 12^{\circ}$
- No excess signal was found:

Flux (2 σ , E>100 GeV) = 6 x 10⁻¹² ph cm⁻² s⁻¹

(power-law with spectral index -1.5 and a point-like source)

- Our upper limits are O(10³-10⁵) above the predicted values.
- Very high flux enhancement can be excluded.
- IB effect ALREADY included

Results from other experiments

Results from other experiments

HESS observations of <u>Saggitarius</u>

- 11 hours of exposure time in June 2006.
- Average ZA of 19° ; $E_{th} = 250$ GeV.
- No significant excess was found.
- They exclude some pMSSM models with a core DM density profile for Sgr.

Aharonian et al. (2007)

Whipple observations of Draco and UMi

- 14.3h (Draco) and 17.2h (UMi) of observation time in 2003.
- $E_{th} = 400 \text{ GeV}.$
- No significant excess was found.
- Not possible to exclude any MSSM models. Wood et al. (2008)

Latest results

[Results presented at the ICRC high-energy meeting in July]

• VERITAS (100h):

- E_{th}=150 GeV.
- They observed Draco, Ursa Minor, Willman 1, M5, M33, M32.
- No signal was found.
- For mSUGRA models, minimum required boost factors of the order of 1000.

• Fermi satellite (9 months of data):

- E_{th}=200 MeV.
- They observed 10 dSphs: Segue 1, Ursa Major II, Segue 2, Willman 1, Coma Berenices, Ursa Minor, Sculptor, Draco, Sextans, Fornax.
- No signal found.
- They also looked for possible DM spectral line signatures all over the sky: no hint of lines up to 300 GeV.

Boost factors

[Or how to increase the chances of detection]

Substructure

- Enhancement of the DM annihilation signal
 - A factor 2-3 for dwarfs according to VL-II
 - A factor >10 for MW size halos and galaxy clusters.
- Nearby subhalos good candidates for DM searches (microhalos?)
- Recent Aquarius simulation (Springel et al. 2008):
 - More subestructure than VL I-II simulations.
 - Less (sub-)subestructure than VL I-II simulations.
 - Different boost factors! More than 200 for clusters.
- VL-II vs Aquarius: substructure dominates the annihilation signal or not?

(Diemand et al. 2006)

(Springel et al. 2009)

Sommerfeld effect

 $<_{O} v>_{today} = S \cdot <_{O} v>_{freeze-out}$ where $S \sim 1/v$ or $S=1/v^2$

- Typical velocities in the halo are v/c ≈ 10⁻³, compared to v/c ≈ 0.1-1 in the early Universe, so S could be as high as 10³ (10⁶).
- Specially important for colder substructures (e.g. dSph galaxies).
- Neutralino masses of some TeV.

But... how to be sure?

Despite the uncertainties in the flux, critical features in the spectrum will be universal:

- 1) Monoenergetic lines -> smoking gun!
- 2) Continuum gamma-ray spectrum
- 3) Cut-off at the energy of the mass particle

Independent of the source!

Direct detection should confirm it

Typical gamma ray spectrum

Bringmann et al. (2008)

Future of γ -ray DM searches

- No gamma-ray signal from DM annihilation has been detected up to now.
- DSph galaxies satellites of the MW probably the best candidates at present. However, galaxy clusters could be at the same flux level.
- Fermi especially important in DM searches:
 - All-sky survey -> great to seach for subestructure and new candidates!
 - IACT follow-up of the new DM candidates discovered by Fermi (complementary spectral ranges!).
- Instruments that join an improved sensitivity with a Large FoV: MAGIC II, CTA...
- Spectral information is crucial!
- From the theoretical side:
 - Explore and make predictions for other possible DM scenarios: IMBHs, microhalos, other particle physics models...
 - LHC will reduce the uncertainties coming from particle physics.
 - IB may be important, specially for IACTs.
 - Sommerfeld effect could be specially important for dwarfs.

IACT technique

Detection prospects for Draco

(Sánchez-Conde et al. 2007)

Galaxy Clusters

- Similar DM annihilation fluxes than those expected from dwarfs.
- Role of substructure more important in clusters (not included in figures).
- Gamma-ray observations also justified by non exotic physics -> problem: possible "contamination"

	r ai aiiititi s		
	Distance (Mpc)	101.	3
	M _{vir} (M _{sun})	0.9 x 10	15
	r _s (Mpc)	0.27	8
	$\rho_{s}~(\text{M}_{\text{sun}}/\text{Mpc}^{3})$	1.06 x 10	16
luster D (Mpc) c $M_{vir} (10^{15} M_{\odot})$) r_s (Mpc) ρ_s	$_{\rm s}~(10^{15}M_{\odot}~{ m Mpc})$
erseus 77	6 0.9	0.463	9.26
rirgo 17	6.4 0.7	0.238	1.81
1018			
10 ¹⁸ 10 ¹⁷ 10 ¹⁶	Perseus		Virgo
10 ¹⁸ 10 ¹⁷ 10 ¹⁶ 10 ¹⁶	Perseus	K	Virgo
10 ¹⁸ 10 ¹⁷ 10 ¹⁶ 10 ¹⁶ 10 ¹⁴ 10 ¹⁴ Cor	Perseus	L	Virgo

VL-II vs Aquarius

GAW: Gamma Air Watch

GAW is a R&D path-finder experiment for gamma-ray astronomy:

- 3 identical telescopes working in steoroscopic mode (80m side).
- Energy range: above 0.7 TeV.
- PSF around 0.2 deg.
- 24 x 24 deg. FoV (current IACTs 4x4 deg. Typically!).

- Main Goal: To test the feasibility of a new generation of IACT Cherenkov telescopes, which join high sensitivity with large Field of View.

astro-ph/0707.4541

Science with GAW

The GAW main scientific goal is to perform an all-sky survey above 0.7 TeV.

Phase I (6 x 6 deg)

- Ultra-High Energy Photons from Blazars
- Ultra-High Energies from SNRs
- Ultra-High Energies from GRBs
- Microquasars
- Follow-up of EGRET, AGILE and GLAST sources

Phase II (24 x 24 deg; 3 telescopes) (Topics of Phase I also included!)

- Dark Matter Searches
- GAW all-sky survey

GAW and DM searches: (far from) the GC

GC flux estimations and GAW prospects