The Geometry of Flavor in F-theory GUTs

Jonathan J. Heckman

Based on work with C. Vafa, as well as:

C. Beasley, V. Bouchard, S. Cecotti, M. Cheng, J. Seo, A. Tavanfar

Upcoming Review: arxiv:10??.???? [hep-th]

Outline

Motivation

• F-theory GUTs

Quark Models

Lepton Models

Conclusions

Motivation

High Energy Constraints ⇒ Low Energy Predictions?

Low Energy Observations ⇒ High Energy Constraints?

Focus for this talk: Flavor in the Standard Model/MSSM

SM/MSSM Flavor

$$L_{eff} \supset m_u^{ij} \cdot U_L^i U_R^j + m_d^{ij} \cdot D_L^i D_R^j + m_l^{ij} \cdot E_L^i E_R^j + m_\nu^{ij} \cdot N_L^i N^j$$

Diagonalize: $V_L \cdot m \cdot V_R^{\dagger} = \operatorname{diag}(\widetilde{m}_1, \widetilde{m}_2, \widetilde{m}_3)$

$$V_{PMNS}^{(lepton)} = V_l^L \cdot V_{\nu}^{L\dagger} \qquad W^- - - - -$$

Some Flavor Questions:

Why do quarks mix so little?

$$W^+$$
 - - $<$

$$|V_{CKM}| \sim \begin{bmatrix} 0.97 & 0.23 & 0.004 \\ 0.23 & 0.97 & 0.04 \\ 0.009 & 0.04 & 0.99 \end{bmatrix} \begin{bmatrix} u \\ c \\ t \end{bmatrix}$$

Why do leptons mix so much?

$$\left|V_{PMNS}^{obs(3\sigma)}\right| \sim \left[egin{array}{cccc} 0.77 - 0.86 & 0.50 - 0.63 & 0.00 - 0.22 \\ 0.22 - 0.56 & 0.44 - 0.73 & 0.57 - 0.80 \\ 0.21 - 0.55 & 0.40 - 0.71 & 0.59 - 0.82 \end{array}
ight.$$

Some More Flavor Questions:

What about quark mass hierarchies?

$$(m_u, m_c, m_t) \sim (0.003 \text{ GeV}, 1.3 \text{ GeV}, 170 \text{ GeV})$$

$$(m_d, m_s, m_b) \sim (0.004 \text{ GeV}, 0.1 \text{ GeV}, 5 \text{ GeV})$$

Why are charged leptons similar but neutrinos so different?

$$(m_e, m_\mu, m_\tau) \sim (0.0005 \text{ GeV}, 0.1 \text{ GeV}, 1.8 \text{ GeV})$$

$$m_{\nu} \sim 0.05 \text{ eV}$$

+ Strings?

There is an entire landscape of string vacua

Presumably some reproduce the Standard Model

But which ones?

A Strategy:

- 1) Focus on UV motivated gauge theories
- 2) Worry about gravity later

UV Motivated Models

String theory predicts supersymmetry

Assume it persists to TeV scale

Supersymmetric Grand Unification:

SUSY GUT Structures

$$SU(5)_{GUT} \supset SU(3)_C \times SU(2)_L \times U(1)_Y$$

$$10_{M} = \begin{bmatrix} 0 & U & U & Q & Q \\ -U & 0 & U & Q & Q \\ -U & -U & 0 & Q & Q \\ -Q & -Q & -Q & 0 & E \\ -Q & -Q & -Q & -E & 0 \end{bmatrix} \qquad 5_{H} = \begin{bmatrix} T_{u} \\ T_{u} \\ T_{u} \\ H_{u} \\ H_{u} \end{bmatrix}$$

$$\overline{5}_M = \begin{bmatrix} D & D & D & L & L \end{bmatrix}$$

$$\overline{5}_H = \begin{bmatrix} T_d & T_d & T_d & H_d & H_d \end{bmatrix}$$

$$L_{GUT} \supset 5_H \times 10_M \times 10_M \Rightarrow t \text{ quark mass}$$

 $L_{GUT} \supset \overline{5}_H \times \overline{5}_M \times 10_M \Rightarrow b \text{ quark } \& \tau \text{ lepton mass}$

Focussing on Particle Physics

Gravity and Gauge Fields from Different Strings:

Open String Building Blocks

 \Rightarrow Gauge Groups: U(N), SO(2N), USp(2N)

 \Rightarrow Interactions Link

Qualitative Features

Can this be combined with Grand Unification?

GUTs and Open Strings

Open strings for gauge theory \Rightarrow Problems with GUTs:

No
$$5_H \times 10_M \times 10_M \Rightarrow \text{pert. massless t quark}$$

But
$$\overline{5}_H \times \overline{5}_M \times 10_M \Rightarrow$$
 massive b quark

Wrong Prediction: $m_b > m_t$

The Main Idea:

Perturbative open strings somewhat limited

Increasing $g_s \to O(1)$ allows new bound states

Roadmap

Motivation

F-theory Review

Vafa '96

F-theory = Strongly Coupled Formulation of IIB in 12d

$$\tau(y_6) = C_0 + \frac{i}{g_s}$$
 is shape of a T^2 :

Terminology: p-brane = extended object in p spatial directions

$g_s \sim O(1) \Rightarrow \text{Extra Ingredients}$

Matter: 5, 10 of
$$SU(5)$$
, 16 of $SO(10)$, 27 of E_6

$$g_s \ll 1 \qquad g_s \sim O(1)$$

Interactions:
$$\overline{5} \times \overline{5} \times 10$$
 of $SU(5)$, $5 \times 10 \times 10$ of $SU(5)$
$$g_s \ll 1 \qquad g_s \sim O(1)$$

\cap 7-branes

10D: Gravity

8D: Gauge Group (7)

6D: Matter $(7 \cap 7')$

4D: Yukawas $(7 \cap 7' \cap 7'')$

Example: Quarks

View from 7_{GUT} :

Getting Chiral Matter

6d Matter:
$$\mathbb{R}^{3,1} \times$$
 \bigcirc + gauge field flux on Σ

$$(\cancel{\mathbb{D}}_{\mathbb{R}^{3,1}} + \cancel{\mathbb{D}}_{\Sigma})\Psi_{6d} = 0 : \text{Massless modes} \iff \cancel{\mathbb{D}}_{\Sigma}\Psi_{(0)} = 0$$

Generations =
$$\frac{1}{2\pi} \int_{\Sigma} F$$

F-theory GUTs

Beasley JJH Vafa I II '08, Donagi Wijnholt I II '08 (see also Hayashi et al. '08 '09)

 $7 \cap 7' \Rightarrow \overline{5}, 10 \in SU(5), 16 \in SO(10)...$

Roadmap

• F-theory GUTs

Minimal Ingredients

On 7_{GUT} worldvolume need (at least):

Quark Yukawas:

$$R^{3,1}$$
: $W \supset \lambda_u^{ij} \cdot Q^i U^j H_u + \cdots$

$$\mathcal{M}_6$$
: $\overline{\mathcal{D}}\Psi = 0$: Ψ_Q^i , Ψ_U^i , Ψ_{H_u} , ...

Overlap Integral: $\lambda_u^{ij} = \int \Psi_{H_u} \Psi_Q^i \Psi_U^j$

Geometry \Rightarrow One Heavy Gen

 Ψ_Q has sharp falloff off of curve

 m_u (outer product) m_c

See Beasley JJH Vafa II '08 And Hayashi et al. '09

$$\begin{bmatrix} m_t \end{bmatrix} = \begin{bmatrix} 0 & & & \\ & 0 & & \\ & & m \end{bmatrix}$$

Minimality

Adding more points leads to higher rank:

$$\lambda_u^{ij} = \sum_p \Psi_Q^i(p) \Psi_U^j(p) \Psi_{H_u}(p) + \cdots$$

One heavy generation $\Rightarrow \# p = 1$

In principle can tune $p_i \to p$ to maintain nearly rank one

Getting Hierarchies

Geometry \Rightarrow Rank 1; Hierarchy = Higher order corrections:

Hierarchy = Higher order corrections:

Main Idea

 $\Psi^i \sim z^i$ exhibits rephasing symmetry

JJH Vafa '08 see also Froggatt Nielsen '79

Fluxes violate internal Lorentz symmetry \Rightarrow hierarchical corrections

Which Fluxes?

Geometry \Rightarrow Rank 1

Cecotti, Cheng, JJH, Vafa '09

Flux \Rightarrow Rank 3:

Available gauge potentials: $A_I B_{IJ}$, ...

 \Rightarrow Fluxes: F_{IJ}, H_{IJK}

 F_{IJ} alone does nothing to Yukawas CCHV (see also Font Ibanez '09 And Conlon Palti '09)

But $F'_{IJ} = F_{IJ} + B_{IJ}$ does distort Yukawas CCHV

H-flux & Yukawas

Crude estimates suggest two structures: JJH, Vafa '08

$$\lambda(\partial^{N} \operatorname{Flux}) \sim \begin{bmatrix} \varepsilon^{5} & \varepsilon^{4} & \varepsilon^{3} \\ \varepsilon^{4} & \varepsilon^{3} & \varepsilon^{2} \\ \varepsilon^{3} & \varepsilon^{2} & 1 \end{bmatrix} & & \lambda((\partial \operatorname{Flux})^{N}) \sim \begin{bmatrix} \varepsilon^{8} & \varepsilon^{6} & \varepsilon^{4} \\ \varepsilon^{6} & \varepsilon^{4} & \varepsilon^{2} \\ \varepsilon^{4} & \varepsilon^{2} & 1 \end{bmatrix}$$

$$\varepsilon^2 \sim \text{Flux}^2/M_*^4 \sim \alpha_{GUT} \sim 1/25$$

Explicit computations in toy models corroborate much of this

Compute H-flux in terms of Non-Commutative Geometry:

Cecotti, Cheng, JJH, Vafa '09

$$x * y - y * x = \theta(x, y)$$

See also Marchesano Martucci '09

Quark Masses

Crude estimates suggest $\sqrt{\alpha_{GUT}} \sim 0.2$ which is close:

One parameter fit of up masses to $\lambda((\partial \text{ Flux})^N)$:

$$(m_u, m_c, m_t) \sim (\varepsilon_U^8, \varepsilon_U^4, 1) \cdot m_t \Rightarrow \varepsilon_U \sim 0.26$$

$$(m_u^{F-th}, m_c^{F-th}, m_t^{F-th}) \sim (0.004, 0.8, 170) \text{ GeV}$$

$$(m_u^{obsrv}, m_c^{obsrv}, m_t^{obsrv}) \sim (0.003, 1.3, 170) \text{ GeV}$$

Down quarks similar (fitting to $\lambda(\partial^N \text{Flux})$)

Quark Mixing

Mixing is more subtle; determined by local Ψ overlaps

Problem: $\Psi_{near\ p_{down}}^{Q} \neq \Psi_{near\ p_{up}}^{Q} \Rightarrow O(1)$ Mixing

$p_{down} \rightarrow p_{up}$

Solution: $\Psi_{near\ p_{down}}^Q \to \overline{\Psi_{near\ p_{up}}^Q}$

Numerology

$$|V_{CKM}^{F-th}| \sim \begin{bmatrix} 1 & \alpha_{GUT}^{1/2} & \alpha_{GUT}^{3/2} \\ \alpha_{GUT}^{1/2} & 1 & \alpha_{GUT} \\ \alpha_{GUT}^{3/2} & \alpha_{GUT} & 1 \end{bmatrix}$$

$$|V_{CKM}^{F-th}| \sim \begin{bmatrix} 1 & 0.2 & 0.008 \\ 0.2 & 1 & 0.04 \\ 0.008 & 0.04 & 1 \end{bmatrix}$$

$$\left|V_{CKM}^{obs}\right| \sim \left[egin{array}{cccc} 0.97 & 0.23 & 0.004 \\ 0.23 & 0.97 & 0.04 \\ 0.009 & 0.04 & 0.99 \end{array}
ight]$$

Roadmap

Quark Models

Lepton Models

Charged Leptons vs Neutrinos

 $L \subset \overline{5}_M$ and $E \subset 10_M \Rightarrow$ Similar to ups and downs

What about neutrinos?

Majorana and Dirac can both have $m_{\nu} \sim M_{weak}^2/\Lambda_{UV}$:

Majorana:
$$\int d^2\theta \frac{(H_u L)^2}{\Lambda_{UV}}$$
 $m_\nu N_L N_L$ $\langle H \rangle \sim M_w + M_w^2 \theta^2$

Dirac:
$$\int d^4\theta \frac{H_d^{\dagger}LN_R}{\Lambda_{UV}} \longrightarrow m_{\nu}N_LN_R$$

Majorana Scenarios

$$L_{eff} \supset \int d^2\theta \frac{(H_u L)^2}{\Lambda_{UV}}$$
 from $L \supset \int d^2\theta H_u L N_R + \Lambda_{UV} N_R N_R$

 N_R are heavy $SU(5)_{GUT}$ singlets given by:

1) Moduli: Λ_{UV} set by flux Tatar, Tsuchiya, Watari '09

2) KK modes: $\Lambda_{UV} \sim 10^{15} \; {\rm GeV}$ Bouchard, JJH, Seo Vafa '09

Dirac Scenario

 $L_{eff} \supset \int d^4\theta \frac{H_d^{\dagger}LN_R}{\Lambda_{UV}}$ is equally natural:

Majorana has H_u instead of H_d

Heavy States & U(1)

Integrating out Heavy States ⇒ Neutrinos Light

Bouchard, JJH, Seo Vafa '09

 $\overline{\mathcal{D}}\Psi_{HEAVY} \neq 0 \Rightarrow \text{Bigger } U(1) \text{ Violation}$

 \Rightarrow Less Hierarchy:

$$\lambda_{
u} \sim \left[egin{array}{cccc} arepsilon_N^2 & arepsilon_N^{3/2} & arepsilon_N^{1/2} &$$

ν Masses

Predict:
$$\frac{m_{\nu_2}^2 - m_{\nu_1}^2}{m_{\nu_3}^2 - m_{\nu_2}^2} \sim \alpha_{GUT} \sim 0.04$$

Observe:
$$\frac{m_{\nu_2}^2 - m_{\nu_1}^2}{m_{\nu_3}^2 - m_{\nu_2}^2} = \frac{m_{sol}^2}{m_{atm}^2} \sim 0.03$$

Neutrino Mixing

 p_l and p_{ν} Far Apart \Rightarrow Misaligned Eigenbases \Rightarrow Large Mixing

But tension with $V_{PMNS}^{1,3} < 0.2$

ν Mixing Hierarchy

PMNS Matrix

Bouchard, JJH, Seo Vafa '09

$$|V_{PMNS}^{F-th}| \sim \begin{bmatrix} 0.87 & 0.45 & 0.2 \\ 0.45 & 0.77 & 0.45 \\ 0.2 & 0.45 & 0.87 \end{bmatrix} \begin{array}{c} \nu_e \\ \nu_{\mu} \\ \nu_{\tau} \end{bmatrix}$$

$$\left|V_{PMNS}^{obs(3\sigma)}\right| \sim \left[egin{array}{cccc} 0.77 - 0.86 & 0.50 - 0.63 & 0.00 - 0.22 \\ 0.22 - 0.56 & 0.44 - 0.73 & 0.57 - 0.80 \\ 0.21 - 0.55 & 0.40 - 0.71 & 0.59 - 0.82 \end{array}
ight]$$

 \Rightarrow Predict $V_{PMNS}^{1,3}$ close to current bound

Dirac or Majorana?

 ν -less $\beta\beta$ decay for Majorana Neutrinos:

 $m_{\beta\beta} \lesssim 6 \text{ meV} \Rightarrow \text{Predict No Detection}$

Near Future Limits: $\sim 50 \text{ meV}$

Point Unification

Beasley JJH Vafa II '08

Point Unification

Point Unification

$CKM + PMNS \Rightarrow E_8$

Minimal Scenario

Minimal E_8 is very constraining: MSSM

+ deformⁿ of min. gauge medⁿ

Conclusions

Bottom Up GUTs and F-theory

• Geometry + H-flux \Rightarrow Flavor

Quark and Lepton Masses and Mixing

• Flavor and E_8