

Measuring the Expansion History of the Universe: Results from the SDSS-II Supernova Survey

> R. Kessler University of Chicago presented at the IFT Christmas Workshop Dec 16-18, 2009

Kavli Institute for Cosmological Physics AT THE UNIVERSITY OF CHICAGO

Contents

Intro/Hubble Diagrams
The SDSS-II Supernova Survey
Analysis
Results & Systematic Issues

Primary Motivation for Supernova Surveys:

measure expansion history of the Universe: in particular, the role of dark energy

Understanding Expansion History is Tricky

Understanding Expansion History is Tricky

5

Understanding Expansion History is Tricky

Fun Facts About Dark Energy

- $\phi \rho_{\Lambda}$ = 10⁻²⁹ g/cm³ everywhere.
- Dark energy increases Earth's orbit by 0.1μm;
 Pluto's orbit is increased by 1μm.
- Gravity and dark energy roughly cancel for Milky-Way and Andromeda galaxies (but galaxy-cluster gravity wins)

$$\oplus \Omega_{\Lambda} = 0.7 \text{ today}$$

- $\oplus \Omega_{\Lambda}/\Omega_{M} \sim 2.3 \text{ today} \text{ (compare } \Omega_{\gamma}/\Omega_{M} < 10^{-4}\text{)}.$
- $\Phi \Omega_{\Lambda} = \Omega_{M}$ at z=0.3 (3-4 billion years ago).
- ⊕ Undetectable in terrestrial experiments (so far).
- A Nobody knows what dark energy (or dark matter) is.

Expansion Basics $H(z)^2 = H_0^2 \Sigma_i \Omega_i (1+z)^{3(1+w)}$

Notes:

- Ω_i are energy density fractions relative to critical density (Ω_{TOT} = 1)
- ♥ w is the pressure/density ratio (p/p)
- R = 1/(1+z) is the "universal scale factor"
- ✤ To determine expansion history, must measure the Ω_i and w_i .

Expansion Basics

 $H(z)^2 = H_0^2 \Sigma_i \Omega_i (1+z)^{3(1+w)}$

Source of		Evolution	Ω at
expansion	W	with z	z=0
Matter (dark, baryon, relic v)	$v^2/c^2 \sim 0$	Ω _M (1+z) ³	0.3
Radiation (CMB)	+1/3	$\Omega_{\gamma}(1+z)^4$	~ 10 ⁻⁵
Cosmological	-1	$\Omega_{\Lambda} =$	0.7
constant (?)		constant	
Curvature	-1/3	$\Omega_{\rm k}(1+z)^2$	< few %

Methods to Measure H(z) H(z)² = $\sum_{i} \Omega_{i} (1+z)^{3(1+w)}$

Method	Difficulties
brightness vs. redshift	Large dispersion in brightness. Evolution ? Dust ?
count galaxy clusters vs redshift.	Need to know cluster-mass selection function.
galaxy clustering; power spectrum or clumpiness	galaxy vs. dark matter clustering
Weak lensing	Systematics of galaxy-shear measurements 10

Methods to Measure H(z) H(z)² = $\sum_{i} \Omega_{i} (1+z)^{3(1+w)}$

Method	Difficulties	
brightness vs. redshift	Large dispersion in brightness.	
for SN Ia	Evolution ? Dust ?	

Natural dispersion ~ factor of 2 : reduced to 15% after 'width-luminosity' correction (Phillips 1993)

Supernova Classifications

Supernova	Hydrogen,	Silicon	Core
type	Helium		collapse
Ia	No, no	Yes	No
Ib	No, yes	No	Yes
Ic	No, yes	No	Yes
II	Yes, yes	No	Yes

Hubble Diagram Basics

Expansion history depends on w, Ω_{Λ} and Ω_{M}

Hubble Diagram Basics

Hubble Diagram Basics

Expansion history depends on w, Ω_{Λ} and $\,\Omega_{\rm M}$

w-sensitivity with Supernova

w-Quest with Supernova

Data Overview

SN Ia Hubble diagram: compilation from Riess et. al., AJ 607 (2004) includes data from Calan Tololo, HZT, SCP, CfA, Higher-Z, ACS.

1st generation surveys: Discovery of accelerated expansion and w within 20% of -1

Data Overview

SN Ia Hubble diagram: compilation from Riess et. al., AJ 607 (2004) includes data from Calan Tololo, HZT, SCP, CfA, Higher-Z, ACS.

Data Overview

SN Ia Hubble diagram: compilation from Riess et. al., AJ 607 (2004) includes data from Calan Tololo, HZT, SCP, CfA, Higher-Z, ACS.

20

Meet the SDSS-II Supernova Team

The Sloan Digital Sky Survey-II Supernova Survey: Technical Summary AJ 135, 338 (2008)

Joshua A. Frieman,^{1,2,3} Bruce Bassett,^{4,5} Andrew Becker,⁶ Changsu Choi,⁷ David Cinabro,⁸ Fritz DeJongh,¹ Darren L. Depoy,⁹ Ben Dilday,^{2,10} Mamoru Doi,¹¹ Peter M. Garnavich,¹² Craig J. Hogan,⁶ Jon Holtzman,¹³ Myungshin Im,⁷ Saurabh Jha,¹⁴ Richard Kessler,^{2,15} Kohki Konishi,¹⁶ Hubert Lampeitl,¹⁷ John Marriner,¹ Jennifer L. Marshall,⁹ David McGinnis,¹ Gajus Miknaitis,¹ Robert C. Nichol,¹⁸ Jose Luis Prieto,⁹ Adam G. Riess,^{17,19} Michael W. Richmond,²⁰ Roger Romani,¹⁴ Masao Sako,²¹ Donald P. Schneider,²² Mathew Smith,¹⁸ Naohiro Takanashi,¹¹ Kouichi Tokita,¹¹ Kurt van der Heyden,⁵ Naoki Yasuda,¹⁶ Chen Zheng,¹⁴ Jennifer Adelman-McCarthy,¹ James Annis,¹ Roberto J. Assef,⁹ John Barentine,^{23,24} Ralf Bender,^{25,26} Roger D. Blandford,¹⁴ William N. Boroski,¹ Malcolm Bremer,²⁷ Howard Brewington,²⁴ Chris A. Collins,²⁸ Arlin Crotts,²⁹ Jack Dembicky,²⁴ Jason Eastman,⁹ Alastair Edge,³⁰ Edmond Edmondson,¹⁸ Edward Elson,⁵ Michael E. Evler,³¹ Alexei V. Filippenko,³² Rvan J. Foley.³² Stephan Frank,⁹ Ariel Goobar.³³ Tina Gueth,¹³ James E. Gunn,³⁴ Michael Harvanek,^{24,35} Ulrich Hopp,^{25,26} Yutaka Ihara,¹¹ Želko Ivezić,⁶ Steven Kahn,¹⁴ Jared Kaplan,³⁶ Stephen Kent,^{1,3} William Ketzeback,²⁴ Scott J. Kleinman,^{24,37} Wolfram Kollatschny,³⁸ Richard G. Kron,³ Jurek Krzesiński,^{24,39} Dennis Lamenti,⁴⁰ Giorgos Leloudas,⁴¹ Huan Lin,¹ Daniel C. Long,²⁴ John Lucey,³⁰ Robert H. Lupton,³⁴ Elena Malanushenko,²⁴ Viktor Malanushenko,²⁴ Russet J. McMillan,²⁴ Javier Mendez,⁴² Christopher W. Morgan,^{9,31} Tomoki Morokuma,^{11,43} Atsuko Nitta,^{24,44} Linda Ostman,³³ Kaike Pan,²⁴ Constance M. Rockosi,⁴⁵ A. Kathy Romer,⁴⁶ Pilar Ruiz-Lapuente,⁴² Gabrelle Saurage,²⁴ Katie Schlesinger,⁹ Stephanie A. Snedden,²⁴ Jesper Sollerman,^{41,47} Chris Stoughton,¹ Maximilian Stritzinger,⁴¹ Mark SubbaRao,³ Douglas Tucker,¹ Petri Vaisanen,⁵ Linda C. Watson,⁹ Shannon Watters,²⁴ J. Craig Wheeler,²³ Brian Yanny,¹ and Donald York^{3,15}

 $^1\mathrm{Center}$ for Particle Astrophysics, Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510.

²Kavli Institute for Cosmological Physics, The University of Chicago, 5640 South Ellis Avenue Chicago, IL 60637.

 $^3\mathrm{Department}$ of Astronomy and Astrophysics, The University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637.

 $^4\mathrm{Department}$ of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701, South Africa.

⁵South African Astronomical Observatory, P.O. Box 9, Observatory 7935, South Africa.

⁶Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195.

⁷Department of Astronomy, Seoul National University, Seoul, South Korea.

⁸Department of Physics, Wayne State University, Detroit, MI 48202.

⁹Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210-1173.

¹⁰Department of Physics, University of Chicago, Chicago, IL 60637.

¹¹Institute of Astronomy, Graduate School of Science, University of Tokyo 2-21-1, Osawa, Mitaka, Tokyo 181-0015, Japan.

¹²University of Notre Dame, 225 Nieuwland Science, Notre Dame, IN 46556-5670.

¹³Department of Astronomy, MSC 4500, New Mexico State University, P.O. Box 30001, Las Cruces, NM 88003.

¹⁴Kavli Institute for Particle Astrophysics & Cosmology, Stanford University, Stanford, CA 94305-4060.

¹⁵Enrico Fermi Institute, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637.

 16 Institute for Cosmic Ray Research, University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa, Chiba, 277-8582, Japan.

¹⁷Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218.

 $^{18} \mathrm{Institute}$ of Cosmology and Gravitation, Mercantile House, Hampshire Terrace, University of Portsmouth, Portsmouth PO1 2EG, UK.

¹⁹Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218.

 $^{20}\mathrm{Physics}$ Department, Rochester Institute of Technology, 85 Lomb Memorial Drive, Rochester, NY 14623-5603.

²¹Department of Physics and Astronomy, University of Pennsylvania, 203 South 33rd Street, Philadelphia, PA 19104.

²²Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Laboratory,

SDSS-II Supernova Survey: Sep 1 - Nov 30, 2005-2007 (1 of 3 SDSS projects for 2005-2008)

GOAL:

Few hundred <u>high-quality</u> type la SNe lightcurves in redshift range 0.05-0.35

SAMPLING: ~300 sq deg in ugriz (3 million galaxies every two nights)

SPECTROSCOPIC FOLLOW-UP: HET, ARC 3.5m, MDM, Subaru, WHT, Keck, NTT, KPNO, NOT, SALT, 22 Magellan, TNG

SDSS Filters

SDSS Filters

SDSS Data Flow One full night collects 4000 fields (800/filter)

Each 'search' field is compared to a 2-year old 'template' field ... things that go "boom" are extracted for human scanning.

Ten dual-CPU servers at APO process g,r,i data in ~ 20 hrs.

one raw g-field (0.15°)

(can you find a confirmed SN la ?)

SDSS Data Flow One full night collects 4000 fields (800/filter)

SDSS Manual Scanning

27

SDSS Manual Scanning

SDSS Manual Scanning

Typical SN Candidate

z = 0.36

30

Lightcurve Fits Update in Real Time

Lightcurve Fits Update in Real Time

2 epochs SN13135_z (Ia) u g r i 😦 mag SN la Fit $\chi^2 = 1.8$ N SN13135__ (The) mag SN lbc Fit $\chi^2 = 39$ 2 SN13135_z (II) ugri mag SN II Fit $\chi^2 = 6.6$ 980 edav dav 1010

> 90% of photometric la candidates were spectroscopically confirmed to be SN la

Follow-up Spectral id

Survey Scan Stats

Sako et al., AJ 135, 348 (2008)

We visually scanned more than 100,000 candidates and discovered > 1000 SN Ia

... 500 were spec-confirmed

... BOSS is getting host-galaxy spec-z for the rest

SN Fakes

Fake SN Ia were inserted into the images in real time to measure software & scanning efficiencies.

Analysis

 Methods & results: arXiv:0908.4274 or ApJS 185, 32 (2009)
 All software (fitters & sim) is public: arXiv:09084280 or PASP 121, 1028 (2009)
 All SDSS-II light curves are public arXiv:0908.4277 or AJ 136, 2306 (2008) SN papers becoming "Methodology" papers as surveys contribute smaller fraction of total SNe Ia

 Astier06: SNLS contributes ~ 70 of 110
 Kowalski 2008: contributes 8 of 307 SNe Ia

SDSS-II 2009: contributes 103 of 288

SDSS Hubble Diagram Analysis: Samples Include

♦ SDSS-II 1st season (103)
♦ Nearby SNe from literature (33)
♦ SNLS 1st season (62)
♦ ESSENCE (56)
♦ HST (34)

SDSS gri Light Curves: <N_{measure} > = 48 per SN

SN Light Curve Sampling

Table 2: Redshift range, number of SNe passing selection cuts, and mean number of measurements for each SN sample.

sample	redshift		
(obs passbands)	range	$N_{\rm SN}{}^{\rm a}$	$\langle N_{\rm meas} \rangle^{\rm b}$
Nearby $(UBVRI)$	0.02 - 0.10	33	52
$SDSS-II \ (gri)$	0.04 - 0.42	103	48
ESSENCE (RI)	0.16 - 0.69	56	21
SNLS $(griz)$	0.25 - 1.01	62	27
HST (F110W, F160W,	0.21 - 1.55	34	11
F606W, F775W, F850LP)			

^aNumber of SNe Ia passing cuts.

 $[^]b\mathrm{Average}$ number of measurements per SN Ia, in the interval $-15 < T_{\mathrm{rest}} < +60$ days.

Lightcurve Fit Overview

- Fit data to parametric model (or template) to get light curve shape and color.
- "Training" relates shape and color to "standardized" intrinsic luminosity (mag) at peak

Lightcurve Fit Overview

- Fit data to parametric model (or template) to get light curve shape and color.
- "Training" relates shape and color to "standardized" intrinsic luminosity (mag) at peak

Distance-modulus (μ) = Observed mag – Intrinsic mag

Light Curve Fit Overview

Use both MLCS2k2 & SALT2 methods without retraining ==> use essentially as-is

 Make necessary & obvious improvements to implementation, but not to underlying method.

Identify problems & evaluate systematic uncertainties.

Analysis with available light curve fitters:

MLCS (A.Riess):

- assumes color variations are
 ONLY from host-galaxy extinction.
- Prior enforces positive extinction: $A_V > 0$

+ SALT2 (J.Guy):

- color variations are not untangled
 from SN and host-galaxy extinction
- no prior (bluer is always brighter)

Color Variations: SN or host-galaxy Dust ?

Original MLCS (Riess et al.) assumed host-galaxy extinction is the same as in Milky Way: R_v = 3.1 & CCM89

Dust scatters blue light more, hence extincted objects appear reddened.

45

Color Variations: SN or host-galaxy Dust ?

Many recent analyses find $R_v \sim 2 \Rightarrow$ more extinction in UV region (compared to $R_v = 3.1$)

Color Variations: SN or host-galaxy Dust ?

Empirical SN color law (SALT-II, Guy 2007) finds even more dimming in UV region (no assumption about dust)

Changes in MLCS Implementation (no changes in training or philosophy)

 Host galaxy dust properties are measured with SDSS SNe (instead of assumptions)

♦ Fit in flux (not mag)

Impact of MLCS Changes (δw ~ 0.3 compared to WV07)

Wood-Vasey et al, 2007: previous MLCS-based analysis from ESSENCE collaboration

Results ...

Combine SDSS SNe with Published Samples

Cosmology Fit

\oplus Priors: BAO, CMB, flat universe \oplus Float w and Ω_{M}

68% + 95% stat-error contours (MLCS)

Tracing the SALT2 - MLCS Discrepancy: Color Variations

MLCS assumes color variations are only from host-galaxy extinction → can only redden: bluer is NOT always brighter.

SALT-II makes no assumption about color variations: bluer is always brighter.

Tracing the SALT2 - MLCS Discrepancy

SALT2 vs. Nominal MLCS

Tracing the SALT2 - MLCS Discrepancy

SALT2 VS. **Nominal MLCS** VS. SALTY MLCS (allows $A_v < 0$ & thus bluer is brighter)

Tracing the SALT2 - MLCS Discrepancy

Either change alone makes small change in w: need both changes

This test does not suggest that either method is right or wrong; only illustrates sources of discrepancy.

Systematics Issues with UV Region ...

Large U-band Systematic for SDSS SNe

Source of largest systematic error.

Large U-band Systematic for SDSS SNe

UV-region

- Evidence points to problem with rest-frame UV in Nearby (z < 0.1) sample.
- UV observations from earth are difficult to calibrate (darn ozone)
- MLCS is sensitive to nearby UV observations because only nearby SNe are used for training.
- SALT-II uses SNe at all redshifts for training
 Alternative straining
 Alternative
 - Iess sensitive to nearby UV problems.

UV-region

SDSS-II SN sample ideally suited to study rest-frame UV region:

☆ few dozen SNe with $u \rightarrow UV$ (z < 0.1)</pre>
☆ hundreds with $g \rightarrow UV$ (z > 0.2)

Very well calibrated !

Summary

Cosmology analysis of 1st season SDSS SNe la is finished; unresolved issues \rightarrow systematic errors + "improved" MLCS and "standard" SALT-II give discrepant results for w: traced to UV model and assumption of color variations. \oplus UV model problem very clear with SDSS SNe; dominates systematic error. SDSS data ideal to study UV region. Starting SDSS-II/SNLS collaboration to reduce
 A starting SDSS-II/SNLS collaboration
 Starting SDSS-II/SNLS
 Starting SDSS-II/SNLS
 Starting SDSS-II/SNLS
 Starting SDSS-II/SNLS
 Starting SDSS-II/SNLS
 Starting SDSS-II/SNL
 Starting SDS
 Starting SDS
 Starting SDS
 Starting SDS
 Starting SDS
 Starting SDS
 Starting SD
 Starting SD calibration systematics by using overlapping fields (and get rid of ancient nearby SNe)