Holographic non-Fermi liquids

many-body physics through a gravitational lens

Hong Liu
Massachusetts Institute of Technology
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Two Pillars of condensed matter
physics

1. Landau’s Fermi liquid theory

Almost all metals, semiconductors, Helium 3,
superconductors .....

2. Landau’s theory of order and Landau-Ginsburg-Wilson
paradigm for phase transitions

Different orders characterized different symmetries
Phase transitions: symmetry breaking



Strongly correlated fermionic
systems at finite density

During the last two decades, these pillars are challenged at
both experimental and theoretical level.
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Plan

1. Holographic non-Fermi liquids:

« Experimental motivation
« Gauge/gravity duality for a finite density system

» Holographic non-Fermi liquids

2. Holographic phase transitions (a separate talk)

« Experimental motivation

* Holographic quantum phase transitions going beyond
Landau-Ginsburg-Wilson paradigm
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Holographic non-Fermi liquids



Fermi Liquids theory

Landau: a finite density of
interacting fermions

1. ground state:
characterized by a sharp
Fermi surface in
momentum space

Thermodynamic,
2. Low energy excitations: ‘ collective behavior,

weakly interacting transports

quasi-particles N
around the Fermi surface. ~ Does not depend on specific
microscopic dynamics of an

iIndividual system.




Non-Fermi Liquids: Strange metals

Resistivity linear in temperature:
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In sharp contrast with that of a Fermi Liquid:

0.2 0= po + CTQ
< Simple, robust, universal,
0t long standing puzzle

Other anomalous behavior: specific
¢ heat, scattering rate, .......
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Does one or both Laudau’s postulates
for Fermi liquids break down?

1. Fermi surface

2. Quasi-particles



Signature of Fermi surfaces (I)

How to characterized a Fermi surface

Fermi surface: nonanalyticity
in the small frequency
behavior of A(w,k) near some
finite momentum shell in
momentum space.

Electron

7 energy analyzer

hy spectral function
9 |
~ ) A(w.k)=—ImG,(w.k)
7T

Crystal

ARPES Y : electron operator



Signature of Fermi surfaces (ll)

Fermi liquids: with Fermi surface at:
Gr(w, k) z 0, ki=k—kp=0
W, R) = = W = — — p—
Lo 5 ’UF]C_L -+ Al 7 = F
Rew Alwk)
200
Quasi-particle 9 g "
uasi-par < 150}
decay rate [Moxw @’
> %o}

Z: quasi-particle weight

02 ~01 0.0 0.1 02%

(Varma, Littlewood, Schmitt-Rink,

Marginal Fermi liquid” for cuprates Abrahams, Ruckenstein 1989)

kL +cwlogw "‘@ ¢, : complex

Quasi-particle decay rate I o 0, weight vanishes as

1
[ logw]




Fermi surface without quasi-particles

o>

From transport and spectral function,

......

ST

Strange metals:

-
- -
- -

Has a sharp Fermi surface s

Quasi-particle picture
breaks down

Theoretical challenges: : ery strange
g 5 metal
= \?3.
How to describe a Fermi surface N
without quasi-particles? g L
g ~messy
% | insulator
Can we find a general theory for 5 Y.

CuO,

strange metals? Square




RG perspective

Landau Fermi Liquid: free fermion fixed point of the
RG toward the Fermi surface. Shankar, Polchinski
Benfatto, Gallavotti

non-Fermi liquids:
likely controlled by some
interacting fixed points.

Unusual: gapless excitations at a
finite momentum shell.

Need to develop a proper language
N RG scale to think about such fixed points



Summary

Strange metals and other non-Fermi liquids:

no systematic theoretical understanding of their properties

not clear what are organizing principles

Strongly correlated systems, famous theoretical challenge

Numerical: fermionic sign problem (NP-hard) Troyer. Wiese (04)

Important:

high Tc cuprates

Novel quantum phase transitions



Geometrization of RG flow

Many-body system / _ \ quantum gravity in

without gravity in d

= o1 d _
spacetime dimension \ /d dimensions

Holographic principle

uv
t’x RG scale
[,X
2 v IR

‘Organizing principle: UV/IR connection




Power of holographic approach:

Large N and | |
strong coupling ﬁ Classical gravity

limit

highly quantum si_mple geometric
mechanical, ﬁ picture or

strong coupling gravitational dynamics
phenomena

Many dynamical/geometric features do not depend on specific
theories under consideration.
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CFT: Scale invariance of the boundary
- theory requires that the bulk metric

Is invariant under scaling:

o (1) = A (1,x), 2=z

v
Tz ='o0>
z=0
- For a theory with a mass gap,

such as a confining theory,
spacetime ends smoothly at
a finite proper distance

from any interior point.

RS

AdS spacetime

X




Finite temperature

z =0

boundary system at
a finite temperature

Entropy, energy, Entropy, energy,

Euclidean action of BH ﬁ f:]ee energy of YM
theory

Boundary




Finite chemical potential (finite density)
Start with your favorite field theories with a gravity dual:

D=3+1: N=4 super-Yang-Mills theory h E;g;’*ffdﬁ';ﬁ?;ge

—2+1- ABJM scalars and fermions.
D=2+1: - Gauge group: SU(N)

Take a U(1) global symmetry. Put the system at a finite
chemical potential for this U(1

“A

Field theory at finite
“ A charged black hole
chemical potential J

Chamblin, Emparan, Johnson, Myers

Gravity description : large N limit charge density: O(N?)



Fermi surfaces from AdS/CFT?

Start with your favorite field theories with a gravity dual:

Take a U(1) global symmetry. Put the system at a finite
chemical potential for this U(1), which is described by a
charge BH.

This generates a metallic (finite density) state:
does it have a Fermi surface?

Not obvious: since both scalars and fermions carry the same
U(1) charge.

At strong coupling: dual gravity should tell us.

~ O: some fermionic (bulk spinor
We want to compute: operator “ W field)

GR(t: E) — Zg(t)<{(9(t,f)(9(0,0)}> A(w, E) = |Im GR(LU,ZL:)



"Photoemission experiments” on
bIaCk hOIeS ﬁl_s hl_/li(z;reevy, Vegh

Cubrovic, Zaanen, Schalm

Solving Dirac
equation for i,
extracting
boundary values

Universality of 2-
point functions:
(controlled by Dirac
equation)

do not depend on which specific theory and operator we use.
Results will only depend on charge q and dimension m .

Will now use g and m as input parameters



Extremal charged black hole

Boundary uv T=0: extremal

Horizon
Z = Z«

charged BH with a
degenerate horizon
at z =z.

2

R
Zx — R

emergent scaling symmetry in IR

Horizon [’ 7£ 0

' AdS, x R? AdS,

t— A, (. — AC

IR

'X When T << y, only

Z AdS, region is heated
UV up.




An emergent IR CFT

2 2,,2
Metric for d82 _ & —dt2 +d 2 4+ R H da—:ﬂ
AdS, x R? ¢? ( Iy

Gravity in the AdS, region <¢m==) 3 (0+1)-d CFT (QM)

At low frequencies, the parent theory at finite density should
be controlled by an emergent IR CFT !

Scaling symmetry is only in the time direction, spatial directions
become labels.

Each operator will develop new scaling dimensions in the IR.

AdS, gravity # Operator dimensions, correlation functions



Conformal dimension in IR CFT

/ Conformal dimension of O
in the vacuum
AdS, x R? AdS
J \ :_+V’V_\/m2+‘
IR

<€

In the IR Oj; match to an operator Oz in the IR CFT.

IR scaling ~ _ 1 _ L\/ 2 2_q_2 §
dimensions for Op o= 9 TVE VRS V6 me ok 2 T3

IR correlation
gk (w) 2V

functions for OE = c(vp)w



This insight now allows us to obtain analytically the low
frequency behavior of the retarded function for the full
theory

—

GR(wa k)

in terms of that of the AdS, region  Gi.(w) = c(k)w™

7

—t
N\

IR < uv

’ g G
i) = e — +—e T

Faulkner, HL, McGreevy, Vegh; Faulkner, Polchinski




Fermionic black hole hair and

Fermi surface
An extremal charged black hole can admit
fermionic hair of nonzero momentum at some
finite k=K.

When this happens P develops a

free fermion Fermi surface, but after
coupling to AdS, region /
\ uv

h d P
h

w—vp(k—kp)+ E(w)IR<

GR(w, /C) =

Y(w) = haGp (W)



Small excitations at the Fermi surface

\

competition

Will treat v, as a

K: trolled by UV physi
tunable parameter (ke: controlled by UV physics)

Quasi-particle decay rate: V>3 long-lived quasi-particles,
2 . : .
[N« @ v =1 No long-lived quasi-particles
(decay by falling into the asin high
black hole) v=y Tow cuprates !

Finite temperature: Replace > by a universal scaling
function T% g(w/T) (known analytically)



Marginal Fermi liquid

1
For Vi, =5
N hy c, . real
GR ~ e
ki + cwlogw + cyw ¢, : complex

Pseudogapped metal

Precisely that for

“"Marginal Fermi liquid”
proposed on phenomenological
ground for high Tc cuprates
near optimal doping.

N Crossover

Fermi liquid

Varma, Littlewood, Schmitt-Rink,

v dopin
Abrahams, Ruckenstein (89) Q x (doping)

\
\Supcru)nducli\'il_v



Bulk physical picture

Single-particle —
decay rate :

How fast it can decay depends on the scaling dimension
in the AdS, region.



Summary

Operator dimensions @ Scaling exponents
inthe IR CFT near the Fermi surface

Self-energy is analytic in k/u: local quantum criticality

Depending on values of m and g, we can have

* Fermi surface with stable quasi-particles ( v,, >1/2 )
* Fermi surface without quasi-particles (v, <1/2 )

Marginal Fermi liquid for high Tc cuprates arises

1

for Vi, )

How about resistivity?



Important:

None of the leading order (in 1/N) thermodynamical or
transport properties of the system will be sensitive to the
presence of the Fermi surface.

Ke is of order O(1), which implies a charge density of order O(1).

The total charge density is O(N?)

Thus the charge density associated with
the Fermi surface is only a tiny bit of the
whole system.



Finite fermion density

Consider a charged fermionic field outside the black hole:

bulk charged

Boundary )
fermion gas

y—=x® Gas of

: ® - /;’;i;?:ni
©

L X,

a finite O(1) density of
______________________ fermions in a strongly

Horizon . 4+  + + + interacting boundary
r=r, theory

Fermion: reflection probability R < 1 , leading to an equilibrium

Scalar: R > 1 (superradiance) , will grow and condense.



In boundary theory:

1 . elA) g’

O O0) ~ = +

€2A N2 62A—2

) o= (0(0)'00)) ~

1

i
EQA




Conductivity

(W) = — (o) o (=)} recanin

LW

ONV)

+ + + + + + + +



Conductivity from fermions

Faulkner, Igbal, HL, McGreevy,Vegh
Science 329, 1043 (2010)

One-loop calculation

In gravity:
__________ ON) o e . many subtleties and
- - S L potential pitfalls ......
A(w,, k)

mm) O () =
after an A w,w,; k

epic i
calculation A(w — _k)
19

Ao, 0, k)



In the low temperature limit, the contribution near the Fermi
surface dominates, for which

Aw,0;k)~0(1) )

_a .
Opg X1 with @ =2v,
1
For marginal fermi liquid (relevant for cuprates) V., =5
O ... o T—l . . TR
FS leading to linear resistivity !

The precise prefactor can also be calculated (in progress)



Vi,

2

1
. O'(w) — T_1F2 (%, 10gT>

Optical conductivity

o) =T F () BB a(iw) ™, T<w<

Scaling form, no quasi-particle

% quasi-particle lifetime I’ ! ~ T2k > 71

2
w2 .

{1 P wn~ T 1NF
‘_——‘ZUJ

o(w) ~

THbw) T T <w < p

U

( 1 1 1+rm
0(w)o<;< + )+---, w>T

log %~ (log ‘;—j)z 2



Bulk physical picture

Single-particle : j

decay rate

Decay of a current




Summary

Fermi surface with or without
quasi-particles

AdS, x R2 AdS,

and
I
: \ Transport behavior
IR Ty

<€

All boil down to the interplay between

IR physics outside

Strong coupled physics in AdS, | hybridized | AdS,
(local, non-analytic, dissipative) | with (analytic, mean-field

like, non-dissipative)




AdS, x R? AdS,

TN

<€

When consider a bosonic field in this geometry,
it could condense when dialing external parameters,
leading to a new phase.

Exactly the same kind of interplay between the AdS, and
outside region leads to novel quantum phase transitions
of non-Landau type!



Finite N and back reaction of fermionic gas

Hartnoll,Polchinski,
Silverstein, Tong

Boundary Gas of

y —> o0
charged :
J Backreaction of the

/ fermions
fermionic gas: the

spacetime becomes
Lifshitz at a sufficiently
small scale)

A e e—cN

Horizon + + + + +

r=T, 2

Genuine vacuum physics below A appears to be a Fermi
liquid.



Generalizations:

1. Turn on a magnetic field, quantum oscillations

Albash and Johnson; Basu, He, Mukherjee, Shieh;
Denef, Hartnoll and Sachdev; Hartnoll, Hofman, ....

2. Couple fermions to a superconducting condensate

Chen, Kao, Wen; Faulkner et al; Gubser, Rocha, Talavera,
Gubser, Rocha, Yarom, ....

3. Pairing instability of (non)-Fermi liquids

Hartman, Hartnoll, ...

There are many other questions to explore:

specific heat, hydrodynamics of non-Fermi liquids, thermal
conductivity, Hall conductivitly, .... .....



Some perspective

|
| have talked about two aspects of the gravity example at v, = 5
which matches perfectly with high Tc cuprates.

‘ a good laboratory for studying many other
guestions related to high Tc or other materials

9 Could it be that our IR CFT
. BVY g oo lie in the same universality
N Yy Femiliad class of the (conjectured)
' quantum critical

Fermi liquid

point for high Tc cuprates?

x (doping)



Thank You



Additional materials



Imaginary exponent

2V1. ].
Grr(w) = c(k)w™ Ok =5+ U

v, = —iA, is pure imaginary for small enough k when

bJr + B ek )w= 2

G}{(W,]ﬁ'?) ~
(1(3) 4+ a% c(k)w—22A

+ O(w)  Note: no instability




Log-periodic behavior

This leads to a discrete scaling symmetry and

Or
4f

o

vvvvvvvvvvvvvvvvvvvvvvvvvvvvv

| —log|wl|



Conditions for Fermi surface

For what values of g and A, are Fermi surfaces allowed? i.e.
when fermionic hair exists

A < la] T a
3 2
It always lies inside the region lq| d
which allows log-periodic = 5
behavior ‘
d—1 d |q

Except for T <AL 5 — E (alternative quantization)



How does k- depend ongand A ?

-
/ ~

...............

/ 4

S

..........

6
4
o)
0

For fixed A, k¢ increases
with q.

For fixed q, ke decreases
with A.



UV data: Fermi Velocity

Vg

1.0
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0.2}

T30
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Fermi velocity goes to zero as the marginal limit is approached,
so does the residue.



Landscape of exponents

1
5E:§+VE’ Vp =

~04 -02 00 02 04 -04 -02 00 02 04



Small frequency expansion

™

) + Gi(w)b_(w, k)
k) + Gr(w)a_(w, k)

Gy (w): retarded function for Or in the IR CFT, depending
only on the AdS, region. (IR data)

(generically) non-analytic in w and complex (dissipative)
a,,b, : from solving the Dirac equation in the UV region

Real, analytic in w and k, expressed in power series of w.
(UV data)



e | g e e
_H)/_Jf—ﬂf"' | 0.5 : 1.0
1 —0.001 1 : .
FOF Vkp > pOIe w = W, — lr [ :(h)-
2 —0.002¢
-0.003%
F(k) QI/A, —1
w, (k) = vpk +-- -, xk, 'F =0, Z=hwp

wy(k)

Linear dispersion relation, the quasi-particle becomes stable
approaching the Fermi surface,
non-vanishing residue at the Fermi surface.

Quasi-particle picture applies, like in Fermi liquids.

But T o ¥+




For v, <1/2 pole w = w, —il’

L, Iy

welk) ~ k5, z= 2
»

Imaginary part is always comparable to the real part
(quasi-particle never stable)

WFF Residue of the pole vanishes
Z ok = =0, ki =0 gt the Fermi surface

Fermi surface without sharp quasi-particles !
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