Elementary or Composite: The particle physics dilemma

Alex Pomarol (Univ. Autonoma Barcelona)

Composite vs Elementary

Dilemma since the beginning of particle physics

Search for structure by probing states at shorter distances (high-energies)

At present, extra motivation in the SM:

Why $M_W \ll M_P$?

(hierarchy problem)

Up to now, the only possible dynamical answer comes from "dimensional transmutation":

Quantum running of a dimensionless coupling generates a new scale An example: YM theory ~ QCD:

Explains why

$$\Lambda_{\rm QCD} << M_P$$

At present, extra motivation in the SM:

Why
$$M_W \ll M_P$$
 ? (hierarchy problem)

Up to now, the only possible dynamical answer comes from "dimensional transmutation":

Quantum running of a dimensionless coupling generates a new scale Another example: Coleman-Weinberg mechanism:

But if ϕ has dim=1, exists a relevant operator: $M^2 \phi^2$ Possible if $\mathcal{O} \equiv \phi^2$ composite operator of dim=2 The smallness of the EW scale suggests the existence of a new strong sector, giving an important motivation for searching for **compositeness** in the SM particles

Question to address here:

Are there SM states coming (as composites) from this strong sector?

→ Similarly as in the old good days, when exploring physics below the GeV: muon, pions, kaons,...

e.g. in the known examples Technicolor: WL, ZL Supersymmetry: None (strong sector hidden from the SM)

Here I center in a strong sector at around the TeV-scale such that is possible to be probed at the LHC

Approach this question theoretically:

Impossible to answer today

Hard to get predictions from strongly-interacting theories

New tools:

- Supersymmetry (e.g. Seiberg dualities)
- AdS/CFT correspondence:

Very useful to derive properties of composite states from studying weakly-coupled fields in extra-dimensional models

Approach this question experimentally:

Approach this question experimentally:

At least, this simplifies the approach since we can make use of effective field theories expanding in powers of Energy/Composite-scale: Deviations from elementary states parametrized by higher-dimensional operators added to the SM:

$$\mathcal{L}_{\text{eff}} = \mathcal{L}_{\text{SM}} + \frac{1}{\Lambda^2} \mathcal{O}_{d=6} + \cdots$$

Two types of operators:

a) Extra powers of $\frac{\partial^2}{\Lambda^2}$ Λ = scale of the strong-sector e.g. $(\partial_{\rho}F_{\mu\nu})^2$ b) Extra powers of $\frac{g_{\rho}^2 \psi^2}{\Lambda^2} \equiv \frac{\psi^2}{f^2}$ g_{ρ} = coupling of the composite states e.g. $\frac{(\bar{q}_L^i \gamma_{\mu} q_L^j)^2}{f^2}$ since $g_{\rho} \gg 1 \rightarrow f \ll \Lambda$, operators type (b) are dominant

→ all these operators lead to deviations from SM predictions

What past and present experiments tell us?

(what SM particles "smell" composite or elementary?)

How well the SM particles are tested?

First reaction, one answers "extremely well" Extensive LEP, SLAC LC, Tevatron,... legacy:

\sqrt{s}		Average			\sqrt{s}		Average		
(GeV)	Quantity	value	SM	Δ	(GeV)	Quantity	value	SM	Δ
130	$\sigma(q\overline{q})$	82.1 ± 2.2	82.8	-0.3	192	$\sigma(q\overline{q})$	$22.05 {\pm} 0.53$	21.24	-0.10
130	$\sigma(\mu^+\mu^-)$	$8.62 {\pm} 0.68$	8.44	-0.33	192	$\sigma(\mu^+\mu^-)$	$2.92{\pm}0.18$	3.10	-0.13
130	$\sigma(\tau^+\tau^-)$	$9.02 {\pm} 0.93$	8.44	-0.11	192	$\sigma(\tau^+\tau^-)$	$2.81 {\pm} 0.23$	3.10	-0.05
130	$A_{FB}(\mu^+\mu^-)$	$0.694{\pm}0.060$	0.705	0.012	192	$A_{FB}(\mu^+\mu^-)$	$0.553 {\pm} 0.051$	0.566	0.019
130	$A_{FB}(\tau^+\tau^-)$	$0.663 {\pm} 0.076$	0.704	0.012	192	$A_{FB}(\tau^+\tau^-)$	$0.615 {\pm} 0.069$	0.566	0.019
136	$\sigma(q\overline{q})$	66.7 ± 2.0	66.6	-0.2	196	$\sigma(q\overline{q})$	$20.53 {\pm} 0.34$	20.13	-0.09
136	$\sigma(\mu^+\mu^-)$	$8.27 {\pm} 0.67$	7.28	-0.28	196	$\sigma(\mu^+\mu^-)$	$2.94{\pm}0.11$	2.96	-0.12
136	$\sigma(\tau^+\tau^-)$	$7.078 {\pm} 0.820$	7.279	-0.091	196	$\sigma(\tau^+\tau^-)$	$2.94{\pm}0.14$	2.96	-0.05
136	$A_{FB}(\mu^+\mu^-)$	$0.708 {\pm} 0.060$	0.684	0.013	196	$A_{FB}(\mu^+\mu^-)$	$0.581 {\pm} 0.031$	0.562	0.019
136	$A_{FB}(\tau^+\tau^-)$	$0.753 {\pm} 0.088$	0.683	0.014	196	$A_{FB}(\tau^+\tau^-)$	$0.505 {\pm} 0.044$	0.562	0.019
161	$\sigma(q\overline{q})$	37.0 ± 1.1	35.2	-0.1	200	$\sigma(q\overline{q})$	$19.25 {\pm} 0.32$	19.09	-0.09
161	$\sigma(\mu^+\mu^-)$	$4.61 {\pm} 0.36$	4.61	-0.18	200	$\sigma(\mu^+\mu^-)$	$3.02{\pm}0.11$	2.83	-0.12
161	$\sigma(\tau^+\tau^-)$	$5.67 {\pm} 0.54$	4.61	-0.06	200	$\sigma(\tau^+\tau^-)$	$2.90{\pm}0.14$	2.83	-0.04
161	$A_{FB}(\mu^+\mu^-)$	$0.538 {\pm} 0.067$	0.609	0.017	200	$A_{FB}(\mu^+\mu^-)$	$0.524{\pm}0.031$	0.558	0.019
161	$A_{FB}(\tau^+\tau^-)$	$0.646 {\pm} 0.077$	0.609	0.016	200	$A_{FB}(\tau^+\tau^-)$	$0.539 {\pm} 0.042$	0.558	0.019
172	$\sigma(q\overline{q})$	$29.23 {\pm} 0.99$	28.74	-0.12	202	$\sigma(q\overline{q})$	$19.07 {\pm} 0.44$	18.57	-0.09
172	$\sigma(\mu^+\mu^-)$	$3.57 {\pm} 0.32$	3.95	-0.16	202	$\sigma(\mu^+\mu^-)$	$2.58 {\pm} 0.14$	2.77	-0.12
172	$\sigma(\tau^+\tau^-)$	$4.01 {\pm} 0.45$	3.95	-0.05	202	$\sigma(\tau^+\tau^-)$	$2.79 {\pm} 0.20$	2.77	-0.04
172	$A_{FB}(\mu^+\mu^-)$	$0.675 {\pm} 0.077$	0.591	0.018	202	$A_{FB}(\mu^+\mu^-)$	$0.547 {\pm} 0.047$	0.556	0.020
172	$A_{FB}(\tau^+\tau^-)$	$0.342 {\pm} 0.094$	0.591	0.017	202	$A_{FB}(\tau^+\tau^-)$	$0.589 {\pm} 0.059$	0.556	0.019
183	$\sigma(q\overline{q})$	$24.59 {\pm} 0.42$	24.20	-0.11	205	$\sigma(q\overline{q})$	18.17 ± 0.31	17.81	-0.09
183	$\sigma(\mu^+\mu^-)$	$3.49 {\pm} 0.15$	3.45	-0.14	205	$\sigma(\mu^+\mu^-)$	$2.45 {\pm} 0.10$	2.67	-0.11
183	$\sigma(\tau^+\tau^-)$	$3.37 {\pm} 0.17$	3.45	-0.05	205	$\sigma(\tau^+\tau^-)$	$2.78 {\pm} 0.14$	2.67	-0.042
183	$A_{FB}(\mu^+\mu^-)$	$0.559 {\pm} 0.035$	0.576	0.018	205	$A_{FB}(\mu^+\mu^-)$	$0.565 {\pm} 0.035$	0.553	0.020
183	$A_{FB}(\tau^+\tau^-)$	$0.608 {\pm} 0.045$	0.576	0.018	205	$A_{FB}(\tau^+\tau^-)$	$0.571 {\pm} 0.042$	0.553	0.019
189	$\sigma(q\overline{q})$	$22.47 {\pm} 0.24$	22.156	-0.101	207	$\sigma(q\overline{q})$	$17.49 {\pm} 0.26$	17.42	-0.08
189	$\sigma(\mu^+\mu^-)$	$3.123 {\pm} 0.076$	3.207	-0.131	207	$\sigma(\mu^+\mu^-)$	$2.595 {\pm} 0.088$	2.623	-0.111
189	$\sigma(\tau^+\tau^-)$	$3.20 {\pm} 0.10$	3.20	-0.048	207	$\sigma(\tau^+\tau^-)$	$2.53 {\pm} 0.11$	2.62	-0.04
189	$A_{FB}(\mu^+\mu^-)$	$0.569 {\pm} 0.021$	0.569	0.019	207	$A_{FB}(\mu^+\mu^-)$	$0.542{\pm}0.027$	0.552	0.020
189	$A_{FB}(\tau^+\tau^-)$	$0.596 {\pm} 0.026$	0.569	0.018	207	$A_{FB}(\tau^+\tau^-)$	$0.564{\pm}0.037$	0.551	0.019

	% of	δm_W (MeV)				
Background	$W \to \mu \nu$ data	m_T fit	p_T fit	$p_{_T} {\rm fit}$		
$Z/\gamma^* \to \mu\mu$	6.6 ± 0.3	6	11	5		
$W \rightarrow \tau \nu$	0.89 ± 0.02	1	7	8		
Decays in flight	0.3 ± 0.2	5	13	3		
Hadronic jets	0.1 ± 0.1	2	3	4		
Cosmic rays	0.05 ± 0.05	2	2	1		
Total	7.9 ± 0.4	9	19	11		

without le	epton universality
χ^2/l	$N_{\rm df} = 32.6/27$
$m_{\rm Z} [\text{GeV}]$	91.1876 ± 0.0021
$\Gamma_{\rm Z} \ [{\rm GeV}]$	2.4952 ± 0.0023
$\sigma_{\rm h}^0$ [nb]	41.541 ± 0.037
$R_{ m e}^0$	20.804 ± 0.050
R^0_μ	20.785 ± 0.033
$R_{ au}^{0}$	20.764 ± 0.045
$A_{ m FB}^{0, m e}$	0.0145 ± 0.0025
$A_{ m FB}^{0,\mu}$	0.0169 ± 0.0013
$A_{\mathrm{FB}}^{0, au}$	0.0188 ± 0.0017
ТD	

	% of	$\delta m_W \ ({ m MeV})$						
Background	$W \to e \nu$ data	m_T fit	p_T fit	p_T fit				
$W \to \tau \nu$	0.93 ± 0.03	2	2	2				
Hadronic jets	0.25 ± 0.15	8	9	7				
$Z/\gamma^* \to ee$	0.24 ± 0.01	1	1	0				
Total	1.42 ± 0.15	8	9	7				

		Lepton		
	1	non-universality	7	universality
periment	$\mathcal{B}(W \rightarrow e\overline{\nu}_e)$	$\mathcal{B}(W \rightarrow \mu \overline{\nu}_{\mu})$	$\mathcal{B}(W \rightarrow \tau \overline{\nu}_{\tau})$	$\mathcal{B}(\mathrm{W} \to \mathrm{hadrons})$
	[%]	[%]	[%]	[%]
ALEPH	$10.81\pm0.29^*$	$10.91\pm0.26^*$	$11.15 \pm 0.38^{*}$	$67.15 \pm 0.40^{*}$
DELPHI	$10.55\pm0.34^*$	$10.65\pm0.27^*$	$11.46\pm0.43^*$	$67.45 \pm 0.48^{*}$
L3	$10.78\pm0.32^*$	$10.03\pm0.31^*$	$11.89\pm0.45^*$	$67.50 \pm 0.52^*$
OPAL	10.40 ± 0.35	10.61 ± 0.35	11.18 ± 0.48	67.91 ± 0.61
LEP	10.66 ± 0.17	10.60 ± 0.15	11.41 ± 0.22	67.49 ± 0.28
χ^{2} /d.o.f.			15.0/11	
² /d.o.f.		15.0/11		

without lep	pton universality
$\Gamma_{\rm had} [{\rm MeV}]$	1745.8 ± 2.7
$\Gamma_{\rm ee}$ [MeV]	$83.92 {\pm} 0.12$
$\Gamma_{\mu\mu}$ [MeV]	$83.99 {\pm} 0.18$
$\Gamma_{\tau\tau}$ [MeV]	$84.08 {\pm} 0.22$

Γ	\sqrt{s}			$\chi^2/d.o.f.$			
	(GeV)	ALEPH DELPHI		L3	OPAL	LEP	
	161.3	$4.23\pm0.75^*$	$3.67 \stackrel{+}{_{-}} \stackrel{0.99}{_{-}} \stackrel{*}{_{-}} \stackrel{.}{_{-}} \stackrel{.}} \stackrel{.}{_{-}} \stackrel{.}} \stackrel{.}} \stackrel{.}{_{-}} \stackrel{.}}$	2.89 + 0.82 - 0.71	$3.62 \stackrel{+}{_{-}} \stackrel{0.94}{_{-}} \stackrel{*}{_{-}} \stackrel{*}{_{-}} \stackrel{-}{_{-}} \stackrel{-}}{_{-}} \stackrel{-}} \stackrel{-}{_{-}} \stackrel{-}{_{-}} \stackrel{-}{$	3.69 ± 0.45 *	} 1.3 / 3
	172.1	11.7 ± 1.3 *	11.6 ± 1.4 *	$12.3\ \pm 1.4\ ^{*}$	$12.3 \ \pm 1.3 \ ^{*}$	$12.0 \pm 0.7 *$	$\{ 0.22/3 $
	182.7	$15.90 \pm 0.63^{*}$	$16.07 \pm 0.70^{*}$	$16.53 \pm 0.72^{*}$	$15.43\pm0.66^*$	$15.89 \pm 0.35 \ ^{*}$)
	188.6	$15.76 \pm 0.36^{*}$	$16.09\pm0.42^*$	$16.17 \pm 0.41^{*}$	$16.30 \pm 0.39^{*}$	$16.03 \pm 0.21 \ ^{*}$	
	191.6	17.10 ± 0.90 *	$16.64\pm1.00^*$	$16.11 \pm 0.92 \ ^{*}$	16.60 ± 0.99	16.56 ± 0.48	
	195.5	$16.61 \pm 0.54 \ ^{*}$	$17.04\pm0.60^*$	$16.22 \pm 0.57 \ ^*$	18.59 ± 0.75	16.90 ± 0.31	00 4/04
	199.5	$16.90 \pm 0.52 \ ^{*}$	$17.39 \pm 0.57^{*}$	$16.49 \pm 0.58 \ ^{*}$	16.32 ± 0.67	16.75 ± 0.30	20.4/24
	201.6	$16.65 \pm 0.71 \ ^{*}$	$17.37\pm0.82^*$	$16.01 \pm 0.84 \ ^{*}$	18.48 ± 0.92	17.00 ± 0.41	
	204.9	$16.79 \pm 0.54 \ ^{*}$	$17.56 \pm 0.59^{*}$	$17.00 \pm 0.60 \ ^{*}$	15.97 ± 0.64	16.78 ± 0.31	
	206.6	$17.36\pm0.43 \ ^*$	$16.35\pm0.47^*$	$17.33 \pm 0.47 \ ^{*}$	17.77 ± 0.57	17.13 ± 0.25	J

How well the SM particles are tested?

First reaction, one answers "extremely well" Extensive LEP, SLAC LC, Tevatron,... legacy:

\sqrt{s}		Average			\sqrt{s}		Average												
(GeV)	Quantity	value	SM	Δ	(GeV)	Quantity	value	SM	Δ	ļ	without lep	oton univer	sality			~ .		(2.2.2	- `
130	$\sigma(q\overline{q})$	82.1 ± 2.2	82.8	-0.3	192	$\sigma(q\overline{q})$	22.05 ± 0.53	21.24	-0.10		χ^2/N_c	$_{\rm Hf} = 32.6/2$	27			% of	δn	ι_W (MeV	/)
130	$\sigma(\mu^+\mu^-)$	8.62 ± 0.68	8.44	-0.33	192	$\sigma(\mu^+\mu^-)$	2.92 ± 0.18	3.10	-0.13		ma [CeV]	$\frac{1}{91.1876+}$	0.0021	Backg	round V	$V \to e\nu$ data	m_T fit	p_T fit	p_{π} fit
130	$\sigma(\tau \ \tau)$	9.02 ± 0.93	8.44	-0.11	192	$\sigma(\tau \cdot \tau)$	2.81 ± 0.23	3.10	-0.05		$m_{\rm Z} [\rm GeV]$	91.1070⊥ 0.4050 ⊥	0.0021	<u>U</u>		0.02 ± 0.02	- 0	<u>1</u> -	11
130	$A_{FB}(\mu^+\mu^-)$ $A_{FB}(\tau^+\tau^-)$	0.094 ± 0.000 0.663 ± 0.076	0.705	0.012 0.012	192	$A_{FB}(\mu^{+}\mu^{-})$	0.555 ± 0.051 0.615 ± 0.069	0.500	0.019		T _Z [GeV]	$2.4952 \pm$	0.0023	<i>vv</i> –	$\rightarrow \tau \nu$	0.95 ± 0.05	2	2	2
136	$\sigma(a\overline{a})$	667 ± 20	66.6	-0.2	192	$\frac{\pi_{FB}(7,7)}{\sigma(a\overline{a})}$	20.53 ± 0.34	20.13	-0.09		$\sigma_{\rm h}^0 [{\rm nb}]$	$41.541 \pm$	0.037	Hadror	nic jets	0.25 ± 0.15	8	9	7
136	$\sigma(\mu^+\mu^-)$	8.27 ± 0.67	7.28	-0.28	196	$\sigma(\mu^+\mu^-)$	2.94 ± 0.11	2.96	-0.12		R_{o}^{0}	$20.804~\pm$	0.050	Z/γ^*	$\rightarrow ee$	0.24 ± 0.01	1	1	0
136	$\sigma(\tau^+\tau^-)$	$7.078 {\pm} 0.820$	7.279	-0.091	196	$\sigma(\tau^+\tau^-)$	$2.94{\pm}0.14$	2.96	-0.05		$B^{\check{0}}$	$20.785 \pm$	0.033		- al	1.42 ± 0.15	0	0	7
136	$A_{FB}(\mu^+\mu^-)$	$0.708 {\pm} 0.060$	0.684	0.013	196	$A_{FB}(\mu^+\mu^-)$	$0.581 {\pm} 0.031$	0.562	0.019		D^{μ}	$20.764 \pm$	0.005	10	lai	1.42 ± 0.13	0	9	1
136	$A_{FB}(\tau^+\tau^-)$	$0.753 {\pm} 0.088$	0.683	0.014	196	$A_{FB}(\tau^+\tau^-)$	$0.505 {\pm} 0.044$	0.562	0.019		R°_{τ}	$20.704 \pm$	0.045						
161	$\sigma(q\overline{q})$																		
161	$\sigma(\mu^+\mu^-)$						_	<u> </u>		4			un de						<u> </u>
161	$\sigma(\tau^+\tau^-)$			eve				LN	e		ita is i	reat	inda		ne	asure	u	niversali	ty
161	$A_{FB}(\mu^+\mu)$,				<u> </u>										
101	$\sigma(a\overline{a})$	2 I				A	4	1								C . I	745	5.8 ± 2.7	
172	$\sigma(\mu^+\mu^-)$	the	sal	me		1 Se	CTO	~	S C		we na	IVE S	com		rts	OT Th		209 ± 0.1	2
172	$\sigma(\tau^+\tau^-)$		Jui					"						c pu				0.92 ± 0.1	2
172	$A_{FB}(\mu^+\mu^-$		_														83	3.99 ± 0.1	8
172	$A_{FB}(\tau^+\tau^-$					r\/ \A			cto	d	and	otho	rc n	ot a	1 2		84	1.08 ± 0.2	2
183	$\sigma(q\overline{q})$		\sim		VC	. <u> </u>			SIC	U			I S II	Ot a	L ai				L
183	$\sigma(\mu^+\mu^-)$					- ()					L3 $10.78 \pm 0.$	32^* 10.03 ± 0.31*	$11.89 \pm 0.45^{*}$	$67.50 \pm 0.52^{*}$	_		_		
183	$\sigma(\tau^{+}\tau^{-})$	3.37 ± 0.17	3.45	-0.05	205	$\sigma(\tau^{+}\tau^{-})$	2.78 ± 0.14	2.67	-0.042		OPAL 10.40 ± 0	.35 10.61 ± 0.35	11.18 ± 0.48	67.91 ± 0.61					
183	$A_{FB}(\mu^+\mu^-)$ $A_{}(\pi^+\pi^-)$	0.559 ± 0.035 0.608 ± 0.045	0.576	0.018	205	$A_{FB}(\mu^+\mu^-)$	0.565 ± 0.035 0.571 ± 0.042	0.553	0.020		LEP 10.66 ± 0	.17 10.60 ± 0.15	11.41 ± 0.22	67.49 ± 0.28					
180	$\pi_{FB}(\tau,\tau)$	0.008 ± 0.043 22.47 ± 0.24	22 156	-0.101	203	$\pi_{FB}(7,7)$	17.49 ± 0.26	17.42	-0.08		χ^2 /d.o.f.	6.8/9		15.0/11					
189	$\sigma(\mu^+\mu^-)$	3123 ± 0.076	3 207	-0.131	207	$\sigma(\mu^+\mu^-)$	2595 ± 0.088	2 623	-0.111										
189	$\sigma(\tau^+\tau^-)$	3.20 ± 0.10	3.20	-0.048	207	$\sigma(\tau^+\tau^-)$	2.53 ± 0.11	2.62	-0.04			\sqrt{s}		WV	V cross-section	on (pb)		$\chi^2/d.c$	o.f.
189	$A_{FB}(\mu^+\mu^-)$	$0.569 {\pm} 0.021$	0.569	0.019	207	$A_{FB}(\mu^+\mu^-)$	$0.542 {\pm} 0.027$	0.552	0.020			(GeV)	ALEPH	DELPHI	L3	OPAL	LEP		
189	$A_{FB}(\tau^+\tau^-)$	$0.596 {\pm} 0.026$	0.569	0.018	207	$A_{FB}(\tau^+\tau^-)$	$0.564{\pm}0.037$	0.551	0.019			161.3	$4.23 \pm 0.75^{*}$	$3.67 \stackrel{+}{_{-}} \stackrel{0.99}{_{-}} \stackrel{*}{_{-}} \stackrel{.}{_{-}} \stackrel{.}} \stackrel{.}{_{-}} \stackrel{.}} \stackrel{.}} \stackrel{.}{_{-}} \stackrel{.}}$	2.89 + 0.82 - 0.72	3.62 + 0.94 * - 0.84	3.69 ± 0.45	* } 1.3	/ 3
	•	-					-	•		-		172.1	11.7 ± 1.3 *	11.6 \pm 1.4 *	12.3 ± 1.4	* 12.3 ± 1.3 *	12.0 ± 0.7	* } 0.22	2/ 3
				% of	δm_W	(MeV)						182.7	$15.90 \pm 0.63^{*}$	$16.07 \pm 0.70^{*}$	16.53 ± 0.7	2^* 15.43 ± 0.66*	15.89 ± 0.35	*	
		Backgro	ound W	$\rightarrow \mu \nu \text{ data}$	m_T fit p	T fit p_T fit						188.6	$15.76 \pm 0.36^{*}$	$16.09 \pm 0.42^{*}$	16.17 ± 0.4	1* $16.30 \pm 0.39^*$	16.03 ± 0.21	*	
		$Z/\gamma^* -$	$\rightarrow \mu\mu$	6.6 ± 0.3	6	11 5						191.6	17.10 ± 0.90 *	$16.64 \pm 1.00^{*}$	16.11 ± 0.92	2 * 16.60 ± 0.99	16.56 ± 0.48	3	
		117		00 1 0 00	1	7 0						195.5	16.61 ± 0.54 *	$17.04 \pm 0.60^{*}$	16.22 ± 0.5	7 * 18.59 ± 0.75	16.90 ± 0.32	LII.	

26.4/24

 16.75 ± 0.30

 17.00 ± 0.41

 16.78 ± 0.31

 17.13 ± 0.25

 $17.39 \pm 0.57^{*}$

 $17.37 \pm 0.82^*$

 $17.56 \pm 0.59^{*}$

 $16.35 \pm 0.47^*$

 16.90 ± 0.52 *

 16.65 ± 0.71 *

 16.79 ± 0.54 *

 17.36 ± 0.43

199.5

201.6

204.9

206.6

 16.49 ± 0.58 * 16.32 ± 0.67

 16.01 ± 0.84 * 18.48 ± 0.92

 $17.00 \pm 0.60 \ ^* \quad 15.97 \pm 0.64$

 17.77 ± 0.57

 17.33 ± 0.47 *

Dackground	$w \rightarrow \mu \nu$ data	$m_T \mathrm{m}$	$p_T \text{m}$	$p_T m$
$Z/\gamma^* \to \mu\mu$	6.6 ± 0.3	6	11	5
$W \rightarrow \tau \nu$	0.89 ± 0.02	1	7	8
Decays in flight	0.3 ± 0.2	5	13	3
Hadronic jets	0.1 ± 0.1	2	3	4
Cosmic rays	0.05 ± 0.05	2	2	1
Total	7.9 ± 0.4	9	19	11

Main lessons from experiments

I) Flavor universality:

$$\frac{(\bar{q}_L^i \gamma_\mu q_L^j)^2}{f^2}$$

Dimension-6 operators must be flavor diagonal (i=j)

> only exception, could be the top, whose properties not yet well-measured

2) No sign of compositeness for **leptons**: Properties very-well measured (per mille level)

3) Similarly for q_{L} = left-handed quarks:

LEP gave already good bounds, but recent KLOE results put a very stringent bound on quark-lepton universality of the W interactions

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.9999(6)$$

 4) d_R = right-handed down-quarks:
 Not well-measurement of couplings, due to their small values

Best measurement for **b**_R that gives a ~3 sigma discrepancy with the SM value:

Needed:
$$\frac{\delta g_R}{g_R} \sim 0.2$$

similarly for $\mathbf{u}_{\mathbf{R}}$ = right-handed up-quarks

But important indirect bound on their coupling to W:

Affects $b \rightarrow s\gamma$:

Chirality flip by the top: mt/mb-enhancement with respect the SM loop $g_{Wu_Bd_B} < 4 \cdot 10^{-3}$

Avoidable if the strong sector has a custodial global SU(2) symmetry under which

 $W_{\mu} \in \mathbf{3}$, $u_{R} d_{R} \in \mathbf{I}$ that implies $g_{Wu_{R}d_{R}} = 0$

5) Gauge bosons:

Effects on the propagators nicely parametrized in terms of 4 quantities:

$$\begin{split} \widehat{\mathbf{T}} &= \frac{g^2}{M_W^2} \left[\Pi_{W_3}(0) - \Pi_{W^+}(0) \right] \\ \widehat{\mathbf{S}} &= g^2 \, \Pi'_{W_3B}(0) \\ \mathbf{W} &= \frac{g^2 M_W^2}{2} \, \Pi''_{W_3}(0) \\ \mathbf{Y} &= -\frac{g'^2 M_W^2}{2} \, \Pi''_B(0) \end{split}$$

Peskin, Takeushi Barbieri, AP, Rattazzi, Strumia

Important to separate longitudinal part from transverse: Stueckelberg formalism (EW symmetry non-linearly realized):

5a) Transverse part of gauge bosons:

 $Y \leftrightarrow (\partial_{\rho} B_{\mu\nu})^2$

 $W \leftrightarrow (D_{\rho}W_{\mu\nu})^2$

bounds at the per mille level: gauge bosons look like elementary! 5a) Longitudinal part of gauge bosons: SM Goldstones

 $\widehat{T} \leftrightarrow \mathrm{Tr}^2[\sigma_3 \Sigma D_\mu \Sigma^\dagger]$

 $\Sigma = e^{i\sigma_a G_a}$ Goldstone bosons

Measures deviation between the propagator of the charged and neutral G

 $\widehat{S} \leftrightarrow \operatorname{Tr}[W_{\mu\nu}\Sigma\sigma_3\Sigma^{\dagger}]B_{\mu\nu}$

 $\rightarrow W_{\mu} \sim B_{\mu}$

Goldstone contributes to this operator at the loop level, making the contributions log-sensitive to whatever unitarize G-cross sections

grows with E^2

grows with E² extra state M needed to unitarize

grows with E² extra state M needed to unitarize

M = moderator of the G-cross section

(M = Higgs in the SM)

From experiments:

Data tell us that the 3 Goldstone must form a triplet under some global symmetry (custodial) and the moderator of the SM cross-section must be light!

From experiments:

Data tell us that the 3 Goldstone must form a triplet under some global symmetry (custodial) and the moderator of the SM cross-section must be light!

If M=spin-one state (as in Higgsless), can be tree-level contribution to S:

Summing up:

Only right-handed quarks and WL, ZL

can be considered composite states of a strong sector at ~TeV, if:

- Strong sector has a global SU(2)-symmetry with the W,Z transforming as a triplet
- Contain a light scalar playing the role of the Higgs
 Composite Higgs

Implications

If **right-handed quark** are composite states...

If right-handed quark are composite states:

Best test at the LHC:

 $pp \rightarrow qq \rightarrow jet+jet$ affected at high-energy by

 $\frac{(\bar{u}_R\gamma_\mu u_R)^2}{{}_{\mathbf{f}2}}$

Already testing it! New data (17-Nov):

Composite Higgs

The idea of composite Higgs has an extra motivation Elementary scalars not naturally light: Supersymmetry must be invoked

> But in the susy SM (MSSM) Higgs is predicted to be "too light" (below exp. bound ~114 GeV) unless certain tuning in the spectrum is required (usually tuning < 1-10%)

Naturally Light Scalars from a Strong sector

Either from spontaneous breaking of...

I) a global symmetry: G→H Pseudo-Goldstone Boson (PGB) = G/H coset

2) dilatations \rightarrow Dilaton

of a (scale-invariant) strong sector (or a Warped Extra Dimensional AdS₅)

First option:

inspired by QCD where one observes that the (pseudo) scalar are the lightest states

First option:

Higgs arising as Pseudo-Goldstone Bosons (PGB) from the breaking of global symmetry of a strong sector (or WED):

$$G \rightarrow H$$

Higgs (h) and company = PGB = coset G/H

From the strong sector (or AdS₅): V(h)=0 (h \rightarrow h+ α)

Explicit breaking from SM fields:

 $V(h/f) \neq 0$ at the loop level

 \Rightarrow $\langle h \rangle$ ~ f (PGB-decay constant)

As we will see, $f \sim 500 \text{ GeV} \rightarrow \text{Higgs masses } 100-300 \text{ GeV}$

This is similar but not the little-Higgs approach!

Requirements for the group G and H:

- a) H must contain the SM gauge group
- b) G must contain an SU(2)×SU(2) ~ SO(4) symmetry under which a PGB is a Higgs doublet is a (2,2) ~ 4

```
P.Sikivie, L.Susskind, M.B.Voloshin, V.I.Zakharov
```

$$H = \begin{pmatrix} 0 \\ 0 \\ 0 \\ v \end{pmatrix}$$
 SO(3) unbroken subgroup: "Custodial" symmetry
Requirements for the group G and H:

a) H must contain the SM gauge group

 $\langle \alpha \rangle$ -

b) G must contain an SU(2)xSU(2) ~ SO(4) symmetry under which a PGB is a Higgs doublet is a (2,2) ~ 4

```
P.Sikivie, L.Susskind, M.B.Voloshin, V.I.Zakharov
```

$$H = \begin{pmatrix} 0 \\ 0 \\ 0 \\ v \end{pmatrix}$$
 SO(3) unbroken subgroup: "Custodial" symmetry

We could know more on G and H if we know the elementary states of the strong sector

e.g. For a strong SU(N) sector:

Minimal fund. fermion content: 4 (Ψ_L, Ψ_R) then G=SU(4)×SU(4) \rightarrow H=SU(4)

But we are not yet able to know a strong sector that successfully explains all EWSB masses

→ We must a take a more modest approach and explore the different possibilities fulfilling (a) and (b)

G	Н	PGB
SO(5)	O(4)	4=(2,2)
SO(6)	SO(5)	5=(2,2)+(1,1)
	O(4)xO(2)	8=(2,2)+(2,2)
SO(7)	SO(6)	6=(2,2)+(1,1)+(1,1)
	G ₂	7=(1,3)+(2,2)
•••	•••	

times SU(3)_c x U(1) of SM Good: Scalar (PGB) spectrum fixed by symmetries Bad: Not clear which G/H should be considered

➡ Minimality is not a guide

Bosonic Part:

Although the dynamics of the strong sector can be unknown, the low-energy effective lagrangian for PGB Higgses can be determined by symmetries (as chiral lagrangian for pions physics).

Lowest dim operator:

$$\frac{f^2}{8} \operatorname{Tr} |D_{\mu}\Sigma|^2$$

$$e^{iT_a h_a} \quad \text{G/H coset}$$

By expanding around the EWSB minimum, gives Higgs self-couplings and couplings to gauge bosons

Fermionic Part: Couplings to SM fermions

More model dependent!

Inspired by AdS/CFT:

Assume that elementary SM fermions couple to fermionic resonances of the strong sector

 $\mathcal{L}_{\rm int} = \lambda \psi_{\rm SM} \Psi_{compo}$

Explicitly break G, generating a potential at one-loop level for h

EWSB thanks to the heavy top!

Precise predictions from AdS/CFT:

Correlation between the masses of the Higgs and the resonances of the top

Back to the Bosonic Part:

SO(5)/SO(4) model: One Higgs = h

$$\frac{f^2}{8} \operatorname{Tr} |D_{\mu}\Sigma|^2 = \frac{f^2}{2} (\partial_{\mu}h)^2 + \frac{f^2}{2} \frac{(h\partial_{\mu}h)^2}{1-h^2} + \frac{g^2 f^2}{4} h^2 \left[W^{\mu+} W^{-}_{\mu} + \frac{1}{2\cos^2 \theta_W} Z^{\mu} Z_{\mu} \right] + \cdots$$

Deviations from SM Higgs couplings

Contino et al 10

$$\mathcal{L} = \frac{M_V^2}{2} V_\mu^2 \left(1 + 2a \frac{h}{v} + b \frac{h^2}{v^2} \right) - m_f \bar{\psi}_L \psi_R \left(1 + c \frac{h}{v} \right) + \cdots$$

SM Higgs: a = b = c = 1

Composite Higgs:

Giudice, Grojean, AP, Rattazzi 07

Since its couplings are different, it's **NOT** a true Higgs

1

Extra states needed to fully unitarize (for consistency)!

Extra states needed to fully unitarize (for consistency)!

Extra resonances (or Kaluza-Klein states of the W)

 $M_{\rm KK} \lesssim rac{2 {
m TeV}}{\sqrt{1-a^2}}$

Extra states needed to fully unitarize (for consistency)!

Extra resonances (or Kaluza-Klein states of the W)

In the limit a=0 (~ **Higgsless**) KK do all the job! $M_{\rm KK} \lesssim rac{2 {
m TeV}}{\sqrt{1-a^2}}$

Maximal degree of compositeness not allowed by EWPT

→ a > 0.8 Put a bound on the scale of compositeness: f>500 GeV

More precise:

Contino at Planck10

If the Higgs is **composite**, how it will change LHC predictions?

Bad news: Reduction of rates!

200

M_µ[GeV]

If the Higgs is **composite**, how it will change LHC predictions?

Bad news: Reduction of rates!

 $\Delta(\sigma BR)/(\sigma BR)$

Higgs coupling measurements ~ 20-40%

recent studies Lafaye, Plehn, Rauch, Zerwas, Duhrssen 09

ILC would be a perfect machine to test these scenarios: effects could be measured up to a few % SO(6)/SO(5) model: Doublet h + Singlet η

$$\frac{f^2}{8} \operatorname{Tr} |D_{\mu}\Sigma|^2 = \frac{f^2}{2} (\partial_{\mu}h)^2 + \frac{f^2}{2} (\partial_{\mu}\eta)^2 + \frac{f^2}{2} \frac{(h\partial_{\mu}h + \eta\partial_{\mu}\eta)^2}{1 - h^2 - \eta^2} + \frac{g^2 f^2}{4} h^2 \left[W^{\mu+} W^-_{\mu} + \frac{1}{2\cos^2\theta_W} Z^{\mu} Z_{\mu} \right]$$

Possibility for a new Higgs decay:

(depending on the η -mass)

$$h o \eta \eta o b \overline{b} b \overline{b}$$
 or $au \overline{ au} au \overline{ au}$

In all these cases, Higgs h can be lighter than LEP bound 114 GeV

Chang, Dermisek, Gunion, Weiner

SO(6)/[SO(4)xSO(2)] model: 2 Doublets: H_{1,2} (spectrum: h, H, A, H⁺)

$$\frac{f^2}{8} \operatorname{Tr} |D_{\mu}\Sigma|^2 = \cdots - \frac{g^2}{24} \left[|W_{\mu}|^2 + \frac{Z_{\mu}^2}{2\cos^2\theta_W} \right] \left[(h^2 + H^2)^2 + A^4 \right] - \frac{g^2 Z_{\mu}^2}{8\cos^2\theta_W} h^2 A^2 - \frac{g Z^{\mu}}{6\cos\theta_W} h^2 H \partial_{\mu} A + \cdots \right]$$

SO(6)/[SO(4)xSO(2)] model: 2 Doublets: H_{1,2} (spectrum: h, H, A, H⁺)

$$\frac{f^2}{8} \operatorname{Tr} |D_{\mu}\Sigma|^2 = \cdots - \frac{g^2}{24} \left[|W_{\mu}|^2 + \frac{Z_{\mu}^2}{2\cos^2 \theta_W} \right] \left[(h^2 + H^2)^2 + A^4 \right] - \frac{g^2 Z_{\mu}^2}{8\cos^2 \theta_W} h^2 A^2 - \frac{g Z^{\mu}}{6\cos \theta_W} h^2 H \partial_{\mu} A + \cdots \right]$$
New couplings or deviations on renormalizable couplings of THDM of order (v/f)^2 ~ 0.2

Changes in the Higgs-coupling sum rules In renormalizable THDM:

Changes in the Higgs-coupling sum rules In PGB Higgs:

$$h_{i} \longrightarrow \mathcal{W} \qquad \sum_{i} g_{h_{i}WW}^{2} = g^{2}m_{W}^{2} \left(1 - \frac{2}{3}\frac{v^{2}}{f^{2}}\right)$$

Possible 20% corrections!

Second option:

Light "Higgs" arising from the spontaneous breaking of dilations in a strong sector (or WED): Dilaton

Not, a priori, naturally light!

Under dilations: $x \rightarrow \lambda x$ $\Phi(x) \rightarrow \lambda^{d} \Phi(\lambda x)$

Spontaneous breaking of dilations: $\langle \Phi \rangle \equiv M^d \neq 0$

Dilaton: $\pi \rightarrow \pi(\lambda x) + \ln \lambda$ or $\varphi = e^{\pi} \rightarrow \lambda e^{\pi}$

Allows a non-linear realization of scale-transformations

Replace scales, Λ , by $\phi \Lambda$: Transforms as a field of dim=1 A cosmological constant $\kappa \rightarrow \kappa \phi^4$

potential for the dilaton allowed: $V = \kappa \phi^4$ K=const Minimum with $\phi = \text{const} \neq 0$ only if $\kappa = 0$ (tuning!) Fubini 76 Explicit breaking must be introduced to the CFT:

Add αO_d that "runs" $\beta(\alpha) \neq 0$

Now we have: $V(\phi) = \kappa(\alpha(\phi)) \phi^4$ (Coleman-Weinberg potential) Non-trivial minimum if $\kappa(\alpha(\phi))$ crosses zero:

Rattazzi, Contino, A.P.

Small dilaton mass \rightarrow Flattish potential \rightarrow slow running of $\kappa \rightarrow$ slow running of α α must be an almost marginal deformation of the CFT $Dim[\alpha]=\epsilon \rightarrow m_{\phi}^2 \sim \beta(\alpha) \sim \epsilon$ (Not like in QCD) The AdS/CFT dictionary, tells us how to be realized in AdS spaces (RS-setup):

 $CFT_4 \rightarrow AdS_5$

Dilaton \rightarrow Radion

 $V(\phi) \rightarrow T(\phi)$ tension of the IR-brane

 $Dim[\alpha] = \varepsilon \rightarrow Scalar \text{ with mass} \sim \varepsilon$ PGB in 5D!!

If the EW scale arises Mw/g arises from a scale-inv. sector, the dilaton couplings to the SM fields are fixed:

$$\mathcal{L} = M_W^2 W^\mu W_\mu + \frac{1}{2} M_Z^2 Z^\mu Z_\mu + m_f \bar{\psi}_i \psi_i$$
$$\checkmark$$
$$\mathcal{L} = \frac{\varphi^2}{f_D^2} M_W^2 W^\mu W_\mu + \frac{1}{2} \frac{\varphi^2}{f_D^2} M_Z^2 Z^\mu Z_\mu + \frac{\varphi}{f_D} m_f \bar{\psi}_i \psi_i$$

Expanding around the vacuum: $\frac{\varphi}{f_D} \rightarrow 1 + \frac{\varphi}{f_D}$

we obtain the coupling of the dilaton to the SM fields

Parametrization of deviations from SM Higgs couplings

$$\mathcal{L} = \frac{M_V^2}{2} V_{\mu}^2 \left(1 + 2\partial \frac{h}{v} + \partial \frac{h^2}{v^2} \right) - m_f \bar{\psi}_L \psi_R \left(1 + \partial \frac{h}{v} \right) + \cdots$$

SM Higgs: a = b = c = 1

Dilaton:

Goldberger, Grinstein, Skiba 07

$$a = \sqrt{b} = c = \frac{v}{f_D} \sim \mathcal{O}(1)$$

Scale related to the composite-scale

For $f_D \rightarrow v = 246$ GeV, the dilaton behaves as a Higgs! (Although has nothing to do with EWSB)

The **dilaton** "helps" to partly unitarize the WW-amplitude

1

and helps to satisfy EWPT

Distinguishing a SM Higgs from PGB Higgs or a dilaton by Double-Higgs production

Contino et al 10

In the best cases " 3σ signal significance with 300/fb collected at a 14 TeV LHC"

Distinguishing a SM Higgs from PGB Higgs or a dilaton by Double-Higgs production

Contino et al 10

In the best cases " 3σ signal significance with 300/fb collected at a 14 TeV LHC"

Conclusions

- If the origin of the EW scale is due to a new strong sector, it is possible that the Higgs (and WL , ZL) arise from this sector
- Higgs will show properties of compositeness
 → deviations from ordinary SM Higgs couplings
- Rich Higgs spectrum and pheno if more PGB are present: Fixed by G/H
- Possibility of a light dilaton mimicking the Higgs

Then if at the LHC a **Higgs-like** state is found, it will crucial to determine its role in EWSB...

e.g. where it **sits** in this plane!

e.g. where it **sits** in this plane!

A rough perspective of different theoretical scenarios:

- ... it will take some time!
 - Right-handed quarks could also be composite but this we will know it soon...