

Gamma Ray Signals from Dark Matter

Concepts, Status and Prospects

see also **review**:

T. Bringmann & C. Weniger, Physics of the Dark Universe 1, 194 (2012) [1208.5481]

Torsten Bringmann, University of Hamburg

Dark matter all around

Torsten Bringmann, University of Hamburg

Dark matter

- Existence by now essentially impossible to challenge!
 - $\Omega_{
 m CDM}=0.233\pm0.013$ (WMAP)
 - electrically neutral (dark!)
 - non-baryonic (BBN)
 - cold dissipationless and negligible free-streaming effects (structure formation)
 - collisionless (bullet cluster)

UН

Dark matter

Existence by now essentially impossible to challenge!

- \odot $\Omega_{\mathrm{CDM}} = 0.233 \pm 0.013$ (WMAP)
- electrically neutral (dark!)
- non-baryonic (BBN)
- cold dissipationless and negligible
 free-streaming effects (structure formation)
- collisionless (bullet cluster)

WIMPS are particularly good candidates:

- well-motivated from particle physics [SUSY, EDs, little Higgs, ...]
- thermal production "automatically" leads to the right relic abundance

The WIMP "miracle"

 The number density of Weakly Interacting Massive Particles in the early universe:

Torsten Bringmann, University of Hamburg

Gamma-ray signals from DM - 4

 WIMP interactions with heat bath of SM particles:

SM

(scattering)

 WIMP interactions with heat bath of SM particles:

SM

WIMP interactions with heat bath of SM particles:

 \odot no "typical" $M_{\rm cut} \sim 10^{-6} M_{\odot}$, but highly model-dependent

a window into the particle-physics nature of dark matter!

ШΗ

Strategies for DM searches

at colliders

indirectly

Strategies for DM searches

at colliders

- OM has to be (quasi-)stable against decay...
- ♀ … but can usually pair-annihilate into SM particles
- Try to spot those in cosmic rays of various kinds
- The challenge: i) absolute rates

 regions of high DM density
 discrimination against other sources
 low background; clear signatures

Torsten Bringmann, University of Hamburg

<u>Gamma rays:</u>

- Rather high rates
- No attenuation when propagating through halo
- No assumptions about diffuse halo necessary
- Point directly to the sources: clear spatial signatures
- Clear spectral signatures to look for

<u>Gamma rays:</u>

- Rather high rates
- No attenuation when propagating through halo
- No assumptions about diffuse halo necessary
- Point directly to the sources: clear spatial signatures
- Clear spectral signatures to look for <->p>maybe most important!

The expected gamma-ray flux [GeV⁻¹cm⁻²s⁻¹sr⁻¹] from a source with DM density ρ is given by

$$\frac{d\Phi_{\gamma}}{dE_{\gamma}}(E_{\gamma},\Delta\psi) = \frac{\langle\sigma v\rangle_{\rm ann}}{8\pi m_{\chi}^2} \sum_{f} B_{f} \frac{dN_{\gamma}^{f}}{dE_{\gamma}} \cdot \int_{\Delta\psi} \frac{d\Omega}{\Delta\psi} \int_{\rm l.o.s} d\ell(\psi)\rho^{2}(\mathbf{r})$$

The expected gamma-ray flux [GeV⁻¹cm⁻²s⁻¹sr⁻¹] from a source with DM density ρ is given by

$$\frac{d\Phi_{\gamma}}{dE_{\gamma}}(E_{\gamma},\Delta\psi) = \underbrace{\langle\sigma v\rangle_{\rm ann}}_{8\pi m_{\chi}^2} \sum_{f} B_{f} \frac{dN_{\gamma}^{f}}{dE_{\gamma}} \cdot \int_{\Delta\psi} \frac{d\Omega}{\Delta\psi} \int_{\rm l.o.s} d\ell(\psi)\rho^{2}(\mathbf{r})$$

particle physics

 $\langle \sigma v
angle_{
m ann}$: total annihilation cross section

- m_{χ} :WIMP mass (50 GeV $\lesssim m_{\chi} \lesssim 5$ TeV)
- B_f : branching ratio into channel f
- N_{γ}^{f} : number of photons per ann.

The expected gamma-ray flux [GeV⁻¹cm⁻²s⁻¹sr⁻¹] from a source with DM density ρ is given by

The expected gamma-ray flux [GeV⁻¹cm⁻²s⁻¹sr⁻¹] from a source with DM density ρ is given by

Torsten Bringmann, University of Hamburg

The expected gamma-ray flux [GeV⁻¹cm⁻²s⁻¹sr⁻¹] from a source with DM density ρ is given by

Torsten Bringmann, University of Hamburg

Halo profiles

$$\frac{\Lambda \text{CDM N-body simulations}}{\rho_{\text{NFW}}} = \frac{c}{r(a+r)^2}$$

$$\rho_{\text{Einasto}}(r) = \rho_s e^{-\frac{2}{\alpha} \left[\left(\frac{r}{a}\right)^{\alpha} - \frac{2}{\alpha} \left[$$

 \rightsquigarrow rather stable result

Fits to rotation curves?

$$\rho_{\text{Burkert}} = \frac{c}{(r+a)(a^2+r^2)}$$

$$\rho_{\text{iso}} = \frac{c}{(a^2+r^2)}$$

 \rightsquigarrow conflicting observational claims

Halo profiles

 $\frac{\Lambda \text{CDM N-body simulations}}{\rho_{\text{NFW}} = \frac{c}{r(a+r)^2}}$ $\rho_{\text{Einasto}}(r) = \rho_s e^{-\frac{2}{\alpha} \left[\left(\frac{r}{a}\right)^{\alpha} - 1 \right]}$ $(\alpha \approx 0.17)$

Fits to rotation curves?

$$\rho_{\text{Burkert}} = \frac{c}{(r+a)(a^2+r^2)}$$

$$\rho_{\text{iso}} = \frac{c}{(a^2+r^2)}$$

 \rightsquigarrow rather stable result

 \rightsquigarrow conflicting observational claims

- Situation a bit unclear; effect of baryons?
 (But could also lead to a steepening of the profile!)
- Difference in annihilation flux several orders of magnitude for the galactic center
- Situation much better for e.g. dwarf galaxies

Substructure

- N-body simulations: The DM halo contains not only a smooth component, but a lot of substructure!
- Indirect detection
 effectively involves an
 averaging:

$$\Phi_{\rm SM} \propto \langle \rho_{\chi}^2 \rangle = (1 + {\rm BF}) \langle \rho_{\chi} \rangle^2$$

Substructure

- N-body simulations: The DM halo contains not only a smooth component, but a lot of substructure!
- Indirect detection
 effectively involves an
 averaging:

$$\Phi_{\rm SM} \propto \langle \rho_{\chi}^2 \rangle = (1 + {\rm BF}) \langle \rho_{\chi} \rangle^2$$

"Boost factor"

each decade in M_{subhalo} contributes about the same

e.g. Diemand, Kuhlen & Madau, ApJ '07

- \implies important to include realistic value for $M_{\rm cut}$!
- depends on uncertain form of microhalo profile (c_v ...) and dN/dM (large extrapolations necessary!)

Secondary photons

- many photons but
- featureless & model-independent
- difficult to distinguish from astro BG

Secondary photons

- many photons but
- featureless & model-independent
- difficult to distinguish from astro BG

Primary photons

- direct annihilation to photons
- Solution model-dependent 'smoking gun' spectral features near $E_{\gamma} = m_{\chi}$

Secondary photons

- many photons but
- featureless & model-independent
- difficult to distinguish from astro BG

🔶 good <u>constraining</u> potential

Primary photons

- direct annihilation to photons
- Solution model-dependent 'smoking gun' spectral features near $E_{\gamma} = m_{\chi}$

Secondary photons

- many photons but
- featureless & model-independent
- difficult to distinguish from astro BG

🔶 good <u>constraining</u> potential

Primary photons

- direct annihilation to photons
- Solution model-dependent 'smoking gun' spectral features near $E_{\gamma} = m_{\chi}$

discovery potential

Internal bremsstrahlung

Internal bremsstrahlung

Final state radiation

- ${f extsf{ extsf} extsf} extsf{ extsf} extsf{ extsf} extsf} extsf} extsf} extsf{ extsf} extsf} extsf{ extsf} extsf} extsf} extsf{ extsf} extsf} extsf{ extsf} extsf} extsf{ extsf}$
- mainly collinear photons

 model-independent spectrum
 Birkedal, Matchev, Perelstein
 & Spray, hep-ph/0507194
- important for high rates into leptons, e.g. Kaluza-Klein or "leptophilic" DM

UHI it

Internal bremsstrahlung

Final state radiation

- ${f extsf{ extsf} extsf} extsf{ extsf} extsf{ extsf} extsf} extsf} extsf{$
- mainly collinear photons

 model-independent spectrum
 Birkedal, Matchev, Perelstein
 & Spray, hep-ph/0507194
- important for high rates into leptons, e.g. Kaluza-Klein or "leptophilic" DM

"Virtual" IB [TB, Edsjö & Bergström, JHEP '08]

- dominant in two cases:
 - i) f bosonic and t-channel
 - mass degenerate with $m_{\chi}_{\rm Bergström, TB, Eriksson}$

& Gustafsson, PRL'05

ii) symmetry restored for

3-body state Bergström, PLB '89

- model-dependent spectrum
- important e.g. in mSUGRA

Gamma-ray signals from DM - 13

Torsten Bringmann, University of Hamburg

IB and **SUSY**

Solution Neutralino annihilation helicity suppressed: $\langle \sigma v \rangle \propto \frac{m_{\ell}^2}{m_{\chi}^2}$

IB and **SUSY**

Seutralino annihilation helicity suppressed: $\langle \sigma v \rangle \propto \frac{m^2}{m_{\chi}^2} \frac{\alpha_{\rm em}}{\pi}$ → $\langle \sigma v \rangle_{\rm 3-body} \gg \langle \sigma v \rangle_{\rm 2-body}$ possible!

IB and **SUSY**

- Seutralino annihilation helicity suppressed: $\langle \sigma v \rangle \propto \frac{m^2}{\sqrt{2}}$ ⇒ $\langle \sigma v \rangle_{3-\text{body}} \gg \langle \sigma v \rangle_{2-\text{body}}$ possible!
- Full implementation in DarkSUSY, scan cMSSM and MSSM: TB, Edsjö &

mSUGRA spectra

bulk region ($m_{\chi} = 141$ GeV)

(benchmarks taken from TB, Edsjö & Bergström, JHEP '08 and Battaglia et al., EPJC '03)
Comparing DM spectra

- \odot (Very) pronounced cut-off at $E_{\gamma} = m_{\chi}$
- Further features at slightly lower energies
- Could be used to distinguish DM candidates!
 - Example: mSUGRA benchmarks (assume energy resolution of 10%)

UH

Comparing DM spectra

- \odot (Very) pronounced cut-off at $E_{\gamma} = m_{\chi}$
- Further features at slightly lower energies
- Could be used to distinguish DM candidates!
 - Example: Higgsino vs KK-DM (about same mass; assume $\Delta E = 15\%$)

Bergström et al., '06 Gamma-ray signals from DM - 16

Torsten Bringmann, University of Hamburg

UH

Diemand, Kuhlen & Madau, ApJ '07

Diemand, Kuhlen & Madau, ApJ '07

Galactic center

- brightest DM source in sky
- large background contributions

Torsten Bringmann, University of Hamburg

UH

Ĥ

Diemand, Kuhlen & Madau, ApJ '07

Galactic center

- brightest DM source in sky
- large background contributions

UH

Diemand, Kuhlen & Madau, ApJ '07

Galactic center

- brightest DM source in sky
- large background contributions

UН

Diemand, Kuhlen & Madau, ApJ '07

large background contributions

bright enough?

Torsten Bringmann, University of Hamburg

UН

Gamma-ray signals from DM - 17

Diemand, Kuhlen & Madau, ApJ '07

Extragalactic background

- DM contribution from all z
- background difficult to model
- substructure evolution?

Galactic center

- brightest DM source in sky
- large background contributions

DM clumps

- easy discrimination (once found)
- bright enough?
- Gamma-ray signals from DM 17

Torsten Bringmann, University of Hamburg

Diemand, Kuhlen & Madau, ApJ '07

Galactic halo log Ø/K good statistics, angular information $[M_{\odot}^2 \, \mathrm{kpc}^{-\delta} \mathrm{sr}^{-1}]$ galactic backgrounds? ' 16.0 Galaxy clusters 15.0 cosmic ray contamination better in multi-wavelength? substructure boost? 14.0 **Dwarf Galaxies** 13.0 DM dominated, M/L~1000 fluxes soon in reach!

Extragalactic background

- DM contribution from all z
- background difficult to model
- substructure evolution?

Galactic center

- brightest DM source in sky
- large background contributions

DM clumps

- easy discrimination (once found)
- bright enough?
- Gamma-ray signals from DM 17

Torsten Bringmann, University of Hamburg

Sensitivities

Ground-based

- Iarge eff.Area (~km²)
- small field of view

 \odot lower threshold \gtrsim 20-50 GeV

Sensitivities

Space-borne

- small eff.Area (~m²)
- large field of view
- upper bound on resolvable E_{γ}

10

integral flux (photons cm

10-9

10-10

UH

10²

Ground-based

- Iarge eff.Area (~km²)
- small field of view
- \odot lower threshold \gtrsim 20-50 GeV

Constraints: current state

Look for secondary photons from DM

[typical assumption: 100% annihilation into $\bar{b}b$]

 \rightarrow Indirect searches start to be very competitive!

Torsten Bringmann, University of Hamburg

Galaxy clusters & diff. BG

Almost as constraining:

galaxy clusters

(NB: much better discovery potential!)

UH

Ackermann et al, JCAP '10 [Fermi-LAT collaboration] Torsten Bringmann, University of Hamburg

Galaxy clusters & diff. BG

Almost as constraining: galaxy clusters

(NB: much better discovery potential!)

UH

Ackermann et al, JCAP '10 [Fermi-LAT collaboration] Torsten Bringmann, University of Hamburg Constraints from the diffuse gamma-ray background depend strongly on subhalo model

Abdo et al, JCAP '10 [Fermi-LAT collaboration]

UCMHs

- Ultracompact Minihalos are DM halos that form shortly after matter-radiation equality Ricotti & Gould, ApJ '09
 - isolated collapse
 - formation by radial infall (Bertschinger, ApJS '95)

$$\rightarrow \rho \propto r^{-9/4}$$

UCMHs

- Ultracompact Minihalos are DM halos that form shortly after matter-radiation equality Ricotti & Gould, ApJ '09
 - isolated collapse
 - formation by radial infall (Bertschinger, ApJS '95)

 $\rightarrow \rho \propto r^{-9/4}$

Excellent targets for indirect detection with gamma rays

Scott & Sivertsson, PRL '09 Lacki & Beacom, ApJ '10

UCMHs

- Ultracompact Minihalos are DM halos that form shortly after matter-radiation equality Ricotti & Gould, ApJ '09
 - isolated collapse
 - formation by radial infall (Bertschinger, ApJS '95)

 $\rightarrow \rho \propto r^{-9/4}$

Excellent targets for indirect detection with gamma rays

Scott & Sivertsson, PRL '09 Lacki & Beacom, ApJ '10

 Required density contrast at horizon entry:

$$\delta \equiv \frac{\Delta \rho}{\rho} \sim 10^{-3} \quad @ \quad z \gg z_{\rm eq}$$

 \odot PBH: $\delta\gtrsim0.3$

UH

 $^{\odot}$ typical observed value: $\delta \sim 10^{-5}$ at 'large' scales

New constraints on $\mathcal{P}(k)$:

Primordial (linear) power spectrum
 well measured at 'large' scales

New constraints on $\mathcal{P}(k)$:

Gamma-ray signals from DM - 22

Line signals (before 03/2012)

Fermi all-sky search for line signals:

- not (yet) probing too much of WIMP parameter space (NB: natural expectation $\langle \sigma v \rangle_{\gamma\gamma} \sim \alpha_{\rm em}^2 \langle \sigma v \rangle_{\rm therm} \simeq 10^{-30} {\rm cm}^3 {\rm s}^{-1}$)
- NB: Iy data, simple choice of target region... 9
- No significant changes after 24 months of data... Ackermann et al, PRD '12 Gamma-ray signals from DM - 23

UH

b

Introduce simplified toy model with minimal field
 content to get strong IB signals
 [~same as sfermion co-annihilation region in SUSY]

$$\mathcal{L}_{\chi} = \frac{1}{2} \bar{\chi}^{c} i \partial \!\!\!/ \chi - \frac{1}{2} m_{\chi} \bar{\chi}^{c} \chi$$
$$\mathcal{L}_{\eta} = (D_{\mu} \eta)^{\dagger} (D^{\mu} \eta) - m_{\eta}^{2} \eta^{\dagger} \eta$$
$$\mathcal{L}_{\text{int}} = -y \bar{\chi} \Psi_{\mu} \eta + \text{h.c.} \tau, \mu$$

[Majorana DM particle]

[SU(2) singlet scalar]

 $\eta \to \tilde{f}_L, \tilde{f}_B$

[Yukawa interaction term]

 $y_{R,L}$ couplings fixed!

TB, Huang, Ibarra, Vogl & Weniger, JCAP '12 Introduce simplified toy model with minimal field content to get strong IB signals [~same as sfermion co-annihilation region in SUSY]

$$\begin{aligned} \mathcal{L}_{\chi} &= \frac{1}{2} \bar{\chi}^{c} i \partial \!\!\!/ \chi - \frac{1}{2} m_{\chi} \bar{\chi}^{c} \chi \\ \mathcal{L}_{\eta} &= (D_{\mu} \eta)^{\dagger} (D^{\mu} \eta) - m_{\eta}^{2} \eta^{\dagger} \eta \\ \mathcal{L}_{\text{int}} &= -y \bar{\chi} \Psi_{R} \eta + \text{h.c.} \tau, \mu, b \end{aligned}$$

 \mathcal{L}_{int}

ШΗ

[Majorana DM particle]

[SU(2) singlet scalar]

 $\eta \to \tilde{f}_L, \tilde{f}_B$

[Yukawa interaction term]

 $y_{R,L}$ couplings fixed!

solid: full 3-body

TB, Huang, Ibarra, Vogl & Weniger, JCAP '12 Introduce simplified toy model with minimal field content to get strong IB signals [~same as sfermion co-annihilation region in SUSY]

$$\mathcal{L}_{\chi} = \frac{1}{2} \bar{\chi}^{c} i \partial \chi - \frac{1}{2} m_{\chi} \bar{\chi}^{c} \chi$$
$$\mathcal{L}_{\eta} = (D_{\mu} \eta)^{\dagger} (D^{\mu} \eta) - m_{\eta}^{2} \eta^{\dagger} \eta$$
$$\mathcal{L}_{\text{int}} = -y \bar{\chi} \Psi_{R} \eta + \text{h.c.} \tau, \mu, b$$

 \mathcal{L}_{int}

ШΗ

[Majorana DM particle]

[SU(2) singlet scalar]

 $\eta \to \tilde{f}_L, \tilde{f}_R$

[Yukawa interaction term]

 $y_{R,L}$ couplings fixed!

solid: full 3-body dotted: 2-body + FSR (dashed: photons from bbg)

Introduce simplified toy model with minimal field
 content to get strong IB signals
 [~same as sfermion co-annihilation region in SUSY]

$$\begin{aligned} \mathcal{L}_{\chi} &= \frac{1}{2} \bar{\chi}^{c} i \partial \!\!\!/ \chi - \frac{1}{2} m_{\chi} \bar{\chi}^{c} \chi \end{aligned} \qquad \textbf{[Majorana DM particle]} \\ \mathcal{L}_{\eta} &= (D_{\mu} \eta)^{\dagger} (D^{\mu} \eta) - m_{\eta}^{2} \eta^{\dagger} \eta \end{aligned} \qquad \textbf{[SU(2) singlet scalar]} \\ \mathcal{L}_{\text{int}} &= -y \bar{\chi} \Psi_{R} \eta + \text{h.c.} \tau, \mu, b \end{aligned} \qquad \textbf{[Yukawa interaction term]}$$

 $y_{R,L}$ couplings fixed!

 $\eta \to \tilde{f}_L, \tilde{f}_R$

Target selection

- Galactic center by far brightest source of DM annihilation radiation
- Need strategy for large astrophysical backgrounds:
 - early focus on innermost region (but now: strong HESS source)
 - $^{\circ}\,$ define optimal (S/N) cone around GC $\,\,
 ightarrow \,\,\, heta \sim 0.1^{\circ} 5^{\circ}\,$
 - ~same, but for annulus (excluding the GC)
 - exclude galactic plane

••••

Target selection

- Galactic center by far brightest source of DM annihilation radiation
- Need strategy for large astrophysical backgrounds:
 - early focus on innermost region (but now: strong HESS source)
 - $^{\circ}\,$ define optimal (S/N) cone around GC $\,\,
 ightarrow \,\,\, heta \sim 0.1^{\circ} 5^{\circ}\,$
 - ~same, but for annulus (excluding the GC)
 - exclude galactic plane
 - 0

New idea: data-driven approach to optimize ROI

- estimate background distribution from observed
 - LAT *low-energy* photons $1 \text{ GeV} \le E_{\gamma} \le 40 \text{ GeV}$
- \bigcirc Define grid with $1^{\circ} \times 1^{\circ}$
- Optimize total S/N pixel by pixel:

 $\mathcal{R}_T \equiv$

 $\sum_{i\in T}\mu_i$

 $E_{\gamma} \leq 40 \, \mathrm{GeV}$

signal

 $ho_\chi \propto r^{-lpha}$

Optimal target regions

TB, Huang, Ibarra, Vogl & Weniger, JCAP '12

Color scale: signal to background

Torsten Bringmann, University of Hamburg

Method

Sliding energy window technique

- standard in line searches
- window size: few times energy resolution
- main advantage: background can well be estimated by power law!

Method

Sliding energy window technique

- standard in line searches
- window size: few times energy resolution
- main advantage: background can well be estimated by power law!
- Fit of 3-parameter model sufficient:

$$\frac{dJ}{dE} = S \frac{dN^{\text{signal}}}{dE} + \beta E^{-\gamma}$$

Gamma-ray signals from DM - 27

Method

Sliding energy window technique

- standard in line searches
- window size: few times energy resolution
- main advantage: background can well be estimated by power law!

Fit of 3-parameter model sufficient:

$$\frac{dJ}{dE} = S \frac{dN^{\text{signal}}}{dE} + \beta E^{-\gamma}$$

expected events:

UH

Torsten Bringmann, University of Hamburg

Gamma-ray signals from DM - 27

Likelihood analysis

- 'binned' likelihood
 - \odot NB: bin size \ll energy resolution \rightsquigarrow same as un-binned analysis!

$$\mathcal{L} = \prod_{i} P(c_i | \mu_i) \qquad P(c_i | \mu_i) = \frac{\mu_i^{c_i} e^{-\mu_i}}{c_i!}$$
observed expected

Likelihood analysis

- 'binned' likelihood
 - Solution $\sim \rightarrow$ same as un-binned analysis!

Significance follows from value of test statistic:

$$TS \equiv -2\ln\frac{\mathcal{L}_{\text{null}}}{\mathcal{L}_{\text{DM}}} \longleftarrow \text{ best fit with } S \stackrel{!}{=} 0$$

$$\longleftarrow \text{ best fit with } S \geq 0$$

 \Rightarrow significance (without trial correction): $\neg \sqrt{TS\sigma}$

(95% Limits derived by profile likelihood method: increase S until $\Delta(-2 \ln \mathcal{L}) = 2.71$, while refitting/ 'profiling over' the other parameters)

Torsten Bringmann, University of Hamburg

UH

IB limits from Fermi-LAT

Solution $\ell^+\ell^-(\gamma)$ much stronger than for Fermi dwarfs! [NB: prospects also excellent for IACTs: (TB, Calore, Vertongen & Weniger, PRD '10)]

IB limits from Fermi-LAT

Solution Stronger than for Fermi dwarfs!
[NB: prospects also excellent for IACTs: (TB, Calore, Vertongen & Weniger, PRD '10)]

In now let's compare this to the limits one should expect... (to do so, generate large number of mock data sets from null model)

UΗ

Expected vs observed limits

TB, Huang, Ibarra, Vogl & Weniger, JCAP '12

expected limits (95% CL)

expected limits (68% CL)

observed limits (dashed: excluding data from 115 to 145 GeV)

Expected vs observed limits

A tentative signal!

A tentative signal!

 $m_{\chi} \sim 130 \,\mathrm{GeV}, \langle \sigma v \rangle \sim 10^{-27} \mathrm{cm}^3 \mathrm{s}^{-1}$

Torsten Bringmann, University of Hamburg

UH

Gamma-ray signals from DM - 31

Look-elsewhere effect

Need to take into account that many independent statistical trials are performed!

statistical trials are performed! [i) scan over DM mass and ii) different test regions]

Look-elsewhere effect

Need to take into account that many independent **statistical trials are performed!** [i) scan over DM mass and ii) different test regions]

Look-elsewhere effect

Need to take into account that many independent **statistical trials are performed!** [i) scan over DM mass and ii) different test regions]

UH

Line analysis

"A tentative gamma-ray line from DM @ Fermi LAT"

- same data: 43 months Fermi LAT
- very nice and extended description of (~same) method
- extended discussion

<u>bottom line:</u>

UH

• $4.6\sigma(3.3\sigma)$ effect • $m_{\chi} = 129.8 \pm 2.4^{+7}_{-13} \text{ GeV}$ • $\langle \sigma v \rangle_{\chi\chi \to \gamma\gamma} = (1.27 \pm 0.32^{+0.18}_{-0.28}) \times 10^{-27} \text{ cm}^3 \text{ s}^{-1}$

Excess indep. confirmed by:

Tempel, Hektor & Raidal, JCAP '12 Rajaraman, Tait & Whiteson, JCAP '12 Su & Finkbeiner, 1206.1616

Weniger, JCAP '12

'Strong evidence'

Su & Finkbeiner, 1206.1616 120-140 GeV residual map

- created by subtracting background estimate = $E^2 dN/dE$ average of (80-100,100-120, 160-180) maps
- all maps smoothed with FWHM=10°
- no similar structure seen elsewhere
- ~no difference with(out) point sources

'Strong evidence'

Template regression analysis (fit linear combinations of spatial templates)

Su & Finkbeiner, 1206.1616 120-140 GeV residual map

- created by subtracting background estimate = E²dN/dE average of (80-100,100-120, 160-180) maps
- all maps smoothed with FWHM=10°
- no similar structure seen elsewhere
- ~no difference with(out) point sources

UΗ

'Strong evidence'

Template regression analysis (fit linear combinations of spatial templates)

\odot Global significance in σ

	one line	two lines
Gauss	3.7	4.3
NFW	4.5	4.9
Einasto	5.1	5.5

UHI #

Torsten Bringmann, University of Hamburg

Su & Finkbeiner, 1206.1616 120-140 GeV residual map

- created by subtracting background estimate = $E^2 dN/dE$ average of (80-100,100-120, 160-180) maps
- all maps smoothed with FWHM=10°
- no similar structure seen elsewhere
- ~no difference with(out) point sources

Analysis relies on public Fermi tools...

→ need independent confirmation by collaboration!

4th Fermi Symposium ²⁸ Oct. ²⁸ Oct. ²¹On The fourth symposium will focus on investigations and results enable program Space Telescope

The fourth symposium will focus on new scientific investigations and results enabled by the Fermi Gamma-ray Space Telescope, as well as mission and instrument characteristics, coordinated multiwavelength/multimessenger studies, and future opportunities.

> Topics include: • Pulsars • Supernova remnants & pulsar wind nebulie • y-ray-bright binaries & novae • Diffuse y-ray emission • Cosmic rays • Active, starburst, & normal galaxies • CRBs & other transient sources • Dark matter & new physics • Unidentified y-ray sources

•

http://fermi.gsfc.nasa.gov/science/mtgs/symposia/2012/

🕂 Torsten Bringmann, University of Hamburg

UН

 "The LAT collaboration does not have a consistent interpretation of the GC 135 GeV feature originating from a systematic error at this time"

4th Fermi Symposium

 "The LAT collaboration does not have a consistent interpretation of the GC 135 GeV feature originating from a systematic error at this time"

some more details:

- updated calorimeter calibration: peak moves to 135 GeV
- \circ up to 3σ in limb data, but nothing in 'inverse ROI' (disk)
- local significance of 3.4σ in $4^{\circ}x4^{\circ}$ box around GC
- no globally significant excess in own optimized ROI

For more details, see talks by E. Charles, E. Bloom and A. Alberts... [official analysis expected for spring next year]

 "The LAT collaboration does not have a consistent interpretation of the GC 135 GeV feature originating from a systematic error at this time"
 Elliot Bloom (30/10/12)

some more details:

- updated calorimeter calibration: peak moves to 135 GeV
- \circ up to 3σ in limb data, but nothing in 'inverse ROI' (disk)
- Iocal significance of 3.4σ in 4°x4° box around GC
- no globally significant excess in own optimized ROI

Bottom line:
 the excess is there and
 could at this point be either

For more details, see talks by E. Charles, E. Bloom and A. Alberts... [official analysis expected for spring next year]

Fermi Symposium

- instrumental statistical
- *♀* real

UH

- would be a serious challenge to the DM interpretation
- atm completely unknown what could cause such a line...
- several indications for statistical fluctuation

 [e.g. only for very specific incident angles; no lines in astrophysical photons at these angles]
 Torsten Bringmann, University of Hamburg

UH

Finkbeiner, Su & Weniger, 1209.4562 Hektor, Raidal & Tempel, 1209.4548

Really a line?

Intrinsic signal width: < 18% @ 95% C.L. TB & Weniger, 1208.5481
 not (yet) possible to distinguish between IB and line signal

Really a line?

- Intrinsic signal width: < 18% @ 95% C.L. TB & Weniger, 1208.5481
 not (yet) possible to distinguish between IB and line signal
- Broken power-law
 gives no reasonable
 fit to data!

Really a line?

- Intrinsic signal width: < 18% @ 95% C.L. TB & Weniger, 1208.5481
 not (yet) possible to distinguish between IB and line signal
- Broken power-law
 gives no reasonable
 fit to data!
- Signal proportional to

 $E^{-\gamma} \exp[-(E/E_{\rm cut})^2]$

also disfavored wrt

line by at least 3σ

[same for astro-physical toy example: ICS from mono-energetic e[±]]

UH

Signal profile

Torsten Bringmann, University of Hamburg

UН

Ĥ

Which line(s)?

TB & Weniger, 1208.5481

DM mass and
 annihilation rate
 depend on channel

γX	$m_{\chi} \; [\text{GeV}]$	$\langle \sigma v \rangle_{\gamma X} \ [10^{-27} \mathrm{cm}^3 \mathrm{s}^{-1}]$
$\gamma\gamma$	$129.8 \pm 2.4^{+7}_{-14}$	$1.27 \pm 0.32^{+0.18}_{-0.28}$
γZ	$144.2 \pm 2.2^{+6}_{-12}$	$3.14 \pm 0.79^{+0.40}_{-0.60}$
γH	$155.1 \pm 2.1^{+6}_{-11}$	$3.63 \pm 0.91^{+0.45}_{-0.63}$
IB	$149 \pm 4^{+8}_{-15}$	$5.2 \pm 1.3^{+0.8}_{-1.2}$

Which line(s)?

DM mass and
 annihilation rate
 depend on channel

	-					
	γX	$m_{\chi} \; [\text{GeV}]$	$\langle \sigma v \rangle_{\gamma X} \ [10^{-27} \mathrm{cm}^3 \mathrm{s}^{-1}]$	$\frac{\langle \sigma v \rangle_{\gamma\gamma}}{\langle \sigma v \rangle_{\gamma X}}$	$\frac{\langle \sigma v \rangle_{\gamma Z}}{\langle \sigma v \rangle_{\gamma X}}$	$\frac{\langle \sigma v \rangle_{\gamma H}}{\langle \sigma v \rangle_{\gamma X}}$
:	$\gamma\gamma$	$129.8 \pm 2.4^{+7}_{-14}$	$1.27 \pm 0.32^{+0.18}_{-0.28}$	1	$0.66\substack{+0.71 \\ -0.48}$	< 0.83
	γZ	$144.2 \pm 2.2^{+6}_{-12}$	$3.14 \pm 0.79^{+0.40}_{-0.60}$	< 0.28	1	< 1.08
	γH	$155.1 \pm 2.1^{+6}_{-11}$	$3.63 \pm 0.91^{+0.45}_{-0.63}$	< 0.17	< 0.79	1
	IB	$149 \pm 4^{+8}_{-15}$	$5.2 \pm 1.3^{+0.8}_{-1.2}$			

DM spectroscopy !?

TB & Weniger 1208 548

- usually at least two lines (eff. operators...)
- relative rates provide
 important constraints on
 viable models
- currently weak (1.4σ)
 indication for 2nd line

see also: Rajaraman, Tait & Whiteson, JCAP '12 Su & Finkbeiner, 1206.1616

Gamma-ray signals from DM - 39

Torsten Bringmann, University of Hamburg

More DM model implications

Need rather large annihilation rate

- implies resonances and/or large couplings (see e.g. Buckley & Hooper, PRD '12)
- difficult to achieve for thermally produced DM!
- expect large secondary rates (optical theorem!)

Asano, TB, Sigl & Vollmann, 1211.6739

More DM model implications

Need rather large annihilation rate

- implies resonances and/or large couplings (see e.g. Buckley & Hooper, PRD '12)
- difficult to achieve for thermally produced DM!
- expect large secondary rates (optical theorem!)

Asano, TB, Sigl & Vollmann, 1211.6739

Constraints from cont. γ-rays, antiprotons and radio! Buchmüller & Garny, JCAP '12

E.g. neutralino DM already ruled out!?

Buchmüller & Garny, JCAP '12 Cohen et al., JHEP '12 Cholis, Tavakoli & Ullio, PRD '12 Huang et al., 1208.0267 Laha et al., 1208.5488

More DM model implications

Need rather large annihilation rate

- implies resonances and/or large couplings (see e.g. Buckley & Hooper, PRD '12)
- difficult to achieve for thermally produced DM!
- expect large secondary rates (optical theorem!)

Asano, TB, Sigl & Vollmann, 1211.6739

- Constraints from cont. γ-rays, antiprotons and radio! Buchmüller & Garny, JCAP '12
 - E.g. neutralino DM already ruled out!?
 - Possible exceptions:

Buchmüller & Garny, JCAP '12 Cohen et al., JHEP '12 Cholis, Tavakoli & Ullio, PRD '12 Huang et al., 1208.0267 Laha et al., 1208.5488

- only new particles in loop (independent model-building motivation?)
- cascade decays (fine-tuning to get narrow box!?)
- Internal Bremsstrahlung

Torsten Bringmann, University of Hamburg

UН

A SUSY scan

[cMSSM + MSSM-7; keep only models with correct mass and line-like spectra]

(see also Bergström, 1208.6082, Shakya 1209.2427, ...)

Torsten Bringmann, University of Hamburg

UH

Gamma-ray signals from DM - 41

A note on absolute rates

- For standard (SUSY) couplings, still a missing factor of $\lesssim 10$ to obtain necessary rate
- Not possible to enhance signal by point-like
 cuspy profiles, nor large substructure boosts
 [both result in wrong signal profile; latter is also highly unlikely in light of simulations]

A note on absolute rates

- For standard (SUSY) couplings, still a missing factor of ≤ 10 to obtain necessary rate
- Not possible to enhance signal by point-like
 cuspy profiles, nor large substructure boosts
 [both result in wrong signal profile; latter is also highly unlikely in light of simulations]
- Still maybe possible through
 - ♀ larger local DM density than

 $\rho_{\odot}^{\chi} = 0.4 \, \mathrm{GeV/cm^3}$

(e.g. factor 2-3 claimed when including oblate halo and 'dark disk': Garbari et al, 1206.0015)

Enhanced DM profile due to effect of baryons as in new ERIS simulation Kuhlen et al., 1208.4844

UΗ

Future confirmation?

- Generative evidence' based on ~50 photons
 → need a few years more data to confirm signal...
- but maybe much faster if Fermi collaboration
 publishes PASS8 event selection before!

Future confirmation?

- Generative evidence' based on ~50 photons
 → need a few years more data to confirm signal...
- but maybe much faster if Fermi collaboration
 publishes PASS8 event selection before!
- HESS II will look at GC as one of the first targets

Future confirmation?

- Generative evidence' based on ~50 photons
 → need a few years more data to confirm signal...
- Just maybe much faster if Fermi collaboration publishes PASS8 event selection before!
- HESS II will look at GC as one of the first targets
- Galper et al., 1210.1457
 - Iaunch around 2018
 - greatly improved angular and energy resolution (at the expense of sensitivity)
 - $\sim 5\sigma$ signal significance after 10 Enclosed signations of the second strained significance after 10 Enclosed signations of the second strained significance after 10 Enclosed signations of the second signation of the seco
 - may also provide further Angular Angulae Angul

[NB: Similar performance expected by chinese DAMPE & HERD!]

Torsten Bringmann, University of Hamburg

UΗ

EAGR	ÆE	Acomie	Fermi	САМЭЛА -400	G FA 1548 46A
000	Bnerg	gy ûlîĝe , GeV	0.1- 300	0.14 30.00 -).1>30000
002 1 (21 Aı resolu E _γ >	ngullat1 ution, deg 100 GeV)	0.1	~00.1001 1	~0001
15	0 E resol $E_{\gamma} >$	nerg \$ 0 ution, % 100 GeV)	10	21 50	-1 15 0
		(anna	-rav sigr	als from I	<u>)</u> ⊻ – 4

(Far) future of DM searches

(Far) future of DM searches

Roughly one order of magnitude improvement during last decade, expect ~same for next decade

UH

(Far) future of DM searches

- further significant improvement possible with current technology
 - in particular space-based instruments (but need very large exposures)
 - earth-based soon systematics-limited ~> need to e.g. reject e⁻-background!

UН

Direct searches

Impressive improvements of direct detection limits in recent years:

Direct searches

Impressive improvements of direct detection limits in recent years:

Direct vs. indirect searches

- Direct and indirect searches probe SUSY parameter space from an 'orthogonal' direction Bergström, TB & Edsjö, PRD '11
 - eremains true after most recent LHC bounds Bechtle et al., JHEP '12

Exciting times for dark matter searches

 Gamma-ray experiments seriously start to probe the parameter space of realistic WIMP models

Exciting times for dark matter searches

- Gamma-ray experiments seriously start to probe the parameter space of realistic WIMP models
- They do so in a way that is complementary to both direct and accelerator searches
 - especially when combined with multiwavelength/-messenger techniques

Exciting times for dark matter searches

- Gamma-ray experiments seriously start to probe the parameter space of realistic WIMP models
- They do so in a way that is complementary to both direct and accelerator searches
 - especially when combined with multiwavelength/-messenger techniques
- Distinct spectral features in gamma rays
 - help to identify a DM annihilation signal
 - could reveal a lot about the nature of the DM particles
 - → discovery (rather than exclusion) channel!

Exciting times for dark matter searches

- Gamma-ray experiments seriously start to probe the parameter space of realistic WIMP models
- They do so in a way that is complementary to both direct and accelerator searches
 - especially when combined with multiwavelength/-messenger techniques
- Distinct spectral features in gamma rays
 - help to identify a DM annihilation signal
 - could reveal a lot about the nature of the DM particles

→ discovery (rather than exclusion) channel!

- Have we already seen a signal?
 - Solution Section Sect
 - If confirmed, first BSM particle maybe detected in space not at the LHC! Torsten Bringmann, University of Hamburg
 Gamma-ray signals from DM – 48

Backup slides

Diffuse γ -ray constraints

- Already EGRET data in some tension with annihilating WIMP explanation of PAMELA
- Prediction for Fermi:
 even decaying DM could be excluded!

Borriello, Cuoco & Miele, PRL '09

Diffuse γ -ray constraints

CMB constraints

- DM annihilation at high z injects energy that effects the CMB photons by
 - ionizing the thermal gas
 - inducing Ly-a excitations of H
 - heating the plasma

CMB constraints

- DM annihilation at high z
 injects energy that effects
 the CMB photons by
 - ionizing the thermal gas
 - inducing Ly-a excitations of H
 - heating the plasma
- Significant constraints on light DM!
 - (other channels bracketed by the two cases shown)

Other spectral features

Searching for other signatures like sharp steps or IB "bumps" may well be more promising:

Other spectral features

 Searching for other signatures like sharp steps or IB "bumps" may well be more promising:

 \Rightarrow Natural cross sections well within reach for ACTs!

UH

An independent confirmation

Tempel, Hektor & Raidal, 1205.1045

- Slightly different statistical technique
- kernel smoothing instead of sliding
 energy window
 130 GeV peak significance: 3.20
 i-wide skernel for background estimate:
 highly consistent, with -20.6 power law
 small adaptive kernel size to look for
 - spectral features: line-like feature found at 130GeV!

high significance of signal

An independent confirmation

Slightly different statistical technique

Tempel, Hektor & Raidal, 1205.1045

- kernel smoothing instead of sliding
 energy window
 Bighly consistent, with -2.6 power law
 small adaptive kernel size to look for
 - spectral features: line-like feature found at 130GeV!
- high significance of signal
- Identify signal regions
- several 'hot spots'
- no correlation with Fermi bubbles!

Look-elsewhere effect (2)

Boyarsky, Malyshev & Ruchayskiy, 1205.4700

Disk BG not a powerlaw/ more spectral features in other regions?

Look-elsewhere effect (2)

Boyarsky, Malyshev & Ruchayskiy, 1205.4700

Disk BG not a powerlaw/ more spectral
features in other regions?

→ Need to carefully quantify LEE for lines!

Line analysis: more details

Weniger, 1204.2797

Torsten Bringmann, University of Hamburg

Gamma-ray signals from DM - 55

Bands: Analytical projection for $\pm 1\sigma$ and $\pm 2\sigma$ bands, assuming Gaussian noise with S/B~0.4 and nelgecting uncertainties in fiducial TS value; projections do not take into account expected improvements with PASS8

Fit details: 65-260 GeV energy range; 129.8 GeV line energy; 1D PDF