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Outline

• Galaxy clustering in large scale surveys  

• Galaxy biasing: local bias and peak-background split

• Searching for primordial non-Gaussianity in galaxy clustering

• Beyond the standard local bias model
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Galaxies: what we measure
A
n
gle

on
th
e
sky

(θ,φ
)

Re
ds
hif
t z

shape

and also: colors (photo-z’s), spectrum (spectro-z’s), etc.
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• The variety of structures observed today formed out of tiny, nearly Gaussian 
fluctuations during an inflationary phase in the primordial Universe

• These fluctuations were amplified by Einstein gravity

• Most of the matter in the Universe is in the form of some unknown, non-
relativistic particle or Cold Dark Matter 

• The Universe is currently experiencing an accelerated phase of expansion 
driven by a cosmological constant

The assumptions behind ΛCDM
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• Galaxy positions + shapes

• Direct probe of the matter density field projected along the line-of-sight 
(photon path)

• Many systematics (galaxy shapes, intrinsic alignments etc.)

Weak lensing and galaxy clustering, owing to their statistical power, appear
as the most promising methods to constrain viable cosmological models
from observations of the large scale structure of the Universe

Weak lensing:

Galaxy clustering:

• Galaxy positions

• Issue with the biasing of galaxies 

• Mild dependence on the details of galaxy formation

Galaxy probes of cosmology
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galaxies
random

Measure of the probability to find pairs, triplets etc. of galaxies in excess of random

Galaxy clustering

© 2dFGRS
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• In a homogeneous and isotropic Universe, homogene, the 2-point 
correlation function ξ(r) depends solely on the separation r of the galaxy 
pair. Its Fourier transform is the power spectrum P(k):

ξ(r) =

�
d3k

(2π)3
P (k)

sin(kr)

kr
r

• Analogously, the 3-point correlation function ζ(r1,r2,r3) only depends on the 
side lengths of the triplet. Its Fourier transform is the bispectrum B(k1, k2, 
k3)

r1 r2

r3

N-point correlation functions

ζ(r1, r2, r3) =

�
d3k1
(2π)3

�
d3k2
(2π)3

B(k1, k2, |�k1 + �k2|)ei
�k1·(�r3−�r1)+i�k2·(�r3−�r2)
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The Cosmic Web

image: courtesy Ilian T. Iliev
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Galaxy biasing

• Luminous objects - galaxies, quasars etc. - form in dark matter (DM) halos

• DM halos preferentially trace overdense regions of the Universe

• This induces a bias between the luminous tracers and the underlying matter 
distribution:

Kaiser (1984); ...

δg(�x) = b1δ(�x)
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Complications

• Bias is certainly non-linear, stochastic and scale-dependent

• Luminous tracers are discrete, i.e. they form a point process

Tuesday, 18 December 2012



Modeling biasing

i) e.g., local bias model: (Fry & Gaztanaga 1993; Szalay 1988, ...)

ξh(r) = b1ξ(r) +
1

2
b22
�
ξ(r)

�2
+ . . .

ii) e.g., halo occupation distribution (HOD): 

P (Ng|Mh) �Ng|Mh� , �Ng (Ng − 1) |Mh� etc.

δh(�x) = F
�
δ(�x)

�
+ �(�x) = b1δ(�x) +

1

2
b2δ

2(�x) + · · ·+ �(�x)

bias factors bN depend on Mh but not on r

Two stages modeling:    i) biasing of DM halos relative to the mass
                          ii) distribution of galaxies inside halos
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2-halo

1-halo
Pg(k) = P 1H

g (k) + P 2H

g (k)

large scalessmall scales

The halo model
Refine ii) by taking into account halo density profile
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Luminosity dependence of bias

Zehavi et al (2010)
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Spherical collapse
Gunn & Gott (1972)

δc ≈ 1.68
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Peak-background split (PBS)

δ(�x) = δc

Imagine that we split the density field into: δ(�x) = δs(�x) + δl(�x)

≡ b2≡ b1

Kaiser (1984); Bardeen et al (1986); Cole & Kaiser (1989); ...

δh(�x) =
nh(�x)

n̄h
− 1 =

n̄h

�
δc − δl(�x)

�

n̄h(δc)
− 1 ≈

�
− 1

n̄h

dn̄h

dδc

�
δl(�x) +

1

2

�
1

n̄h

d2n̄h

dδ2c

�
+ . . .
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Mass function and bias

• The halo mass function (differential number density of halos) is conveniently 
written as

• The peak height or significance is

ν =
δc

σ(M)
≈ 1.68

σ(M)

• In the high peak limit, the multiplicity function and bias factors scale as

f(ν) ∼ e−ν2/2

bN ∼
�ν
σ

�N

n̄h(M) ≡ dn

dM
=

ρ̄m
M2

νf(ν, . . .)
d ln ν

d lnM
(M ≡ Mh)
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Testing PBS with simulations

f
(ν
)

1
+

b 1

2 2

Sheth & Tormen (1999)

Tuesday, 18 December 2012



Inflation

Observations are consistent with the simplest single-field slow-roll model:

• Explains homogeneity and flatness of the Universe, and provides the seed 
perturbations that grow to form galaxies

• A plethora of models. How can we distinguish between them ?

• Almost scale-invariant (ns~0.97 ☺), nearly Gaussian (?) 
spectrum of scalar (curvature ☺) perturbations

• Some tensor perturbations (?)
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Primordial non-Gaussianity

• All inflationary models predict some amount of non-Gaussianity (NG) in the 
statistics of primordial curvature perturbations

• Measure primordial NG to constrain viable inflationary scenarios

• Two probes: CMB or the large scale structure (LSS)
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Quantifying primordial NG

Φ(�x) = Bardeen’s curvature perturbation in matter-dominated era =
3

5
ζ(�x)

Connected (reduced) N-point correlation functions:

�Φ(�x)� = 0

�Φ(�x1)Φ(�x2)�c

�Φ(�x1)Φ(�x2)Φ(�x3)�c

�Φ(�x1)Φ(�x2)Φ(�x3)Φ(�x4)�c

...
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Example: local primordial NG

The bispectrum of Bardeen’s curvature perturbation is

Pφ(k) =
�
|φG(�k)|2

�
= Ask

ns−4

B peaks in the squeezed limit  k1 << k2, k3 

k1

k2

k3

Single-field slow-roll predicts: fNL =
5

12
(1− ns) ≈ 0.017

�
Φ(�k1)Φ(�k2)Φ(�k3)

�
= (2π)3δD(�k1 + �k2 + �k3)BΦ(k1, k2, k3)

BΦ(k1, k2, k3) ≡ 2fNL

�
Pφ(k1)Pφ(k2) + 2 cyc.

�

Φ(�x) = φG(�x) + fNLφ
2
G(�x) + gNLφ

3
g(�x) + ..., |φG| ∼ 10−5
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Cosmic Microwave Background

am� = 4π(−i)�
�

d3k

(2π)3
Φ(�k)gT �(k)Y

m�
� (k̂)
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Current CMB constraints

As ≈ 2× 10−9, ns ≈ 0.97, − 10 < fNL < 74

Gaussian at the 99.9% level

Komatsu et al. (2009)
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Primordial NG in large scale structure

• Cluster counts:

• Galaxy power spectrum:

• Galaxy bispectrum:

S3 ∼
�
d3k1

�
d3k2 BΦ(k1, k2, |�k1 + �k2|)

∆b1(k) ∼
�
d3k1 BΦ(k1, k1, k), S3

BΦ(k1, k2, k3), ...
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Cluster counts
Lucchin & Matarrese 1988;  Matarrese, Verde, Jimenez 2000; Sefusatti et al. 2007; Lo Verde et al. 2008 ...

Grossi et al. (2007)

• Non-Gaussian ICs can significantly 
affect the abundance of massive DM 
halos

• Complications: mass measurement, 
degeneracy with σ8 ...
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Non-Gaussian bias
Dalal et al. (2008); ...

Local primordial NG induces a scale-dependent bias ∆b1(k) ∝
b1fNL

k2

Dalal et al (2008)

1

k2
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A PBS interpretation
Slosar et al. (2008); Schmidt & Kamionkowski (2010); VD, Jeong & Schmidt (2011)

Scale-dependent modulation of the amplitude of small-scale density fluctuations

Φ(�x) = φ(�x) + fNLφ
2(�x)

φ(�x) = φl(�x) + φs(�x)
Φ =

�
φl + fNLφ

2
l

�
+ φs (1 + 2fNLφl) + fNLφ

2
s

σs → σs

�
1 + 2fNLφl(�x)

�
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A PBS interpretation
Slosar et al. (2008); Schmidt & Kamionkowski (2010); VD, Jeong & Schmidt (2011)

Scale-dependent modulation of the amplitude of small-scale density fluctuations

Φ(�x) = φ(�x) + fNLφ
2(�x)

φ(�x) = φl(�x) + φs(�x)
Φ =

�
φl + fNLφ

2
l

�
+ φs (1 + 2fNLφl) + fNLφ

2
s

σs → σs

�
1 + 2fNLφl(�x)

�

δh(�x) ≈
n̄h

�
δc − δl(�x), σ

�
1 + 2fNLφl(�x)

��

n̄h(δc, σ)
− 1

≈
�
− 1

n̄h

dn̄h

dδc

�
δl(�x) + 2fNL

�
σ

n̄h

dn̄h

dσ

�
φl(�x) + ...
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A PBS interpretation
Slosar et al. (2008); Schmidt & Kamionkowski (2010); VD, Jeong & Schmidt (2011)

Scale-dependent modulation of the amplitude of small-scale density fluctuations

Φ(�x) = φ(�x) + fNLφ
2(�x)

φ(�x) = φl(�x) + φs(�x)
Φ =

�
φl + fNLφ

2
l

�
+ φs (1 + 2fNLφl) + fNLφ

2
s

σs → σs

�
1 + 2fNLφl(�x)

�

δh(�x) ≈
n̄h

�
δc − δl(�x), σ

�
1 + 2fNLφl(�x)

��

n̄h(δc, σ)
− 1

≈
�
− 1

n̄h

dn̄h

dδc

�
δl(�x) + 2fNL

�
σ

n̄h

dn̄h

dσ

�
φl(�x) + ...

δh(�k) =

�
b1 + 2fNL

�
∂ ln n̄h

∂ lnσ

�
M−1(k)

�
δl(�k) + ...

M(k) =
2k2T (k)D(z)

3ΩmH
2
0

Fourier transform and use δl(�k = M(k)φl(�k) with :
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Bispectrum shape
split approach [40]

∆bI = bNG
1 − bG1 = −∂ lnRNG(M)

∂δc
, (6.5)

with RNG(M) being the ratio of the non-Gaussian to the Gaussian mass function. Here,
however, we treat ∆bI as a free parameter and compare it later on with the prediction
derived from the mass functions. We choose q as the second free parameter. All other
quantities in Eq. (6.4) are we derive from the theory and are kept fixed.

In Fig. 8, we show as an example the effect of local non-Gaussianity on the halo bias
for halos of mass 1.2− 2.4× 1014M⊙/h at z = 0. Note that we plot ∆b(k) + 0.1. As ∆bI is
negative, this addition of 0.1 is needed to still make use of the logarithmic scale.

The different line types visualize the effect of the different terms in Eq. (6.4). The
solids lines show the best fit to the data (using all modes up to kmax = 0.1Mpc/h) and
includes all terms given above. The short-dashed lines neglects ∆bI appearing inside the
square brackets in Eq. (6.4). The inclusion of this term makes the non-Gaussian bias non-
linear in fNL [55], since ∆bI depends on fNL. The dot-dashed line neglects ∆bI completely.
This scale-dependent bias shift becomes important on smaller scales (k > 0.02), for which
the scale-dependent part becomes small.

 0.01

 0.1

 1

 10

0.003  0.01  0.1

!
b 

+ 
0.

1

k [h/Mpc]

orthogonal

fNL = -1000
fNL = -250

Figure 9. Same as in Fig. 8, but for the orthogonal shape of non-Gaussianity. Note, however, that
here the halos are at redshift z = 1.

An example of the measured non-Gaussian bias from the simulations of the orthogonal
type is given in Fig. 9. Here, the halos have again a mass of 1.2 − 2.4 × 1014M⊙/h, but
were found in snapshots at z = 1. Subsequently, the number of halos is smaller than in the
previous figure and the residual shot noise is larger. The line types have the same meaning as
before. On large scales, the halo bias scales as ∼ k−1 as predicted by the theory. Hence, with
increasing wavenumber, the effect does not drop as rapidly as in the local case and extends
to smaller scales.

– 20 –
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1.2x1014 < Mhalo < 2.4x1014

   3x1013 < Mhalo <    6x1013

Figure 10. Same as in Fig. 8, but for the equilateral shape of non-Gaussianity. Note the linear scale

of the y-axis.

Next, we present an example of the non-Gaussian halo bias induced by the equilateral

shape. In Fig. 10, the halo bias corresponding to two different mass bins at z = 0 is shown.

As expected, the scale dependence is very weak and in agreement with the theoretical predic-

tions. In particular, the observed mass dependence of the effect is consistent with the model

predictions.

After having discussed for each type of non-Gaussianity typical examples, we show the

complete set of best fit values of the fitting parameters in Fig. 11. On the left-hand side, the

best fit values of the fudge factor q are presented. Different colours correspond to different
redshifts: z = 1.5 (red), z = 1 (green), z = 0.67 (blue), and z = 0 (magenta). Triangles,

boxes, and circles depict the three different realizations of the initial Gaussian random field

used for the generation of the initial conditions. In the case of the local and orthogonal type,

the open symbols correspond to fNL = 60 and fNL = −250, respectively. Filled symbols show

the results for fNL = 250 (local), fNL = −1000 (orth.), and fNL = 1000 (eql.). For clarity,

the points of each mass bin are spread over the range of each mass bin.

For each type of non-Gaussianity, we recover within the error bars the same q value,

which was needed to bring the mass functions in agreement with analytic predictions. This

finding is very interesting and —if solidified by larger simulations— may help to lead to a

better theoretical understanding of the halo biasing (see discussion in [66]).

On the right-hand side of Fig. 11, the best fit values of ∆bI normalized by fNL are

shown. The colour and symbol coding is the same as before. As open and filled symbols

(corresponding to different fNL values) are consistent with each other, we can infer that the

scale-independent shift is linear in fNL for the fNL values probed. The solid lines represent

the predictions from Eq. (6.5) using the LV mass function ratio, RNG
LV (M), and taking the

measured fudge factor q into account. Keeping in mind that the LV mass function is not

– 21 –

Wagner & Verde (2011)

1

k
const.

• Approximate the bispectrum of certain class of inflationary models by 
templates

• Can be implemented in initial conditions of LSS formation                   
(Wagner & Verde 2011; Scoccimarro et al 2012)
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Generic formula
VD, Jeong & Schmidt (2011)

missing in the high peaks approximation

∆b1(k) =
4

(N − 1)!

�
bN−2δc + bN−3

�
N − 3 +

∂ lnF (N)(k)

∂ lnσ

��
F (N)(k)M(k)−1

F (N)(k) =
1

4σ2Pφ(k)

�
N−2�

i=1

�
d3ki
(2π)3

M(ki)

�
M(q)ξ(N)

Φ (k1, ..., kN−2, q, k)

�q = −�k1 − ...− �kN−2 − �k
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fNL(k) orthogonal

gNL

(VD, Jeong & Schmidt 2011)
VD & Seljak (2010)

Shandera et al (2011) Wagner & Verde (2011)

bE1 = 1 + b1
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Current LSS limits on primordial NG

−29 < fNL < 69

−3.5× 105 < gNL < 8.2× 105

−419 < fEq
NL < 625

−179 < fOrtho

NL < 6

(VD & Seljak 2010)

(Slosar et al 2008)

(Xia et al. 2011)

×2
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Stochasticity

• Cosmic variance (at wavenumber k, the number N(k) of observables 
modes is finite)

• Shot noise (arises due to the discreteness of the tracers)

A measurement  of the galaxy power spectrum implies two sources of error:

Limits the precision to which we can measure fNL
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Mitigating stochasticity
Seljak, Hamaus & VD 2009; Hamaus et al. 2010; Hamaus, Seljak & VD 2011

Combine different tracers of the same surveyed volume and weight them in 
some optimal way 
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Test with N-body simulations

0.01 0.10
k [hMpc-1]

-0.5

0.0

0.5

b ^
(k

,f
N
L
)/

b
G
 -

1

fNL =  +11.0  ± 19.6

fNL =  -68.9  ± 15.1

fNL =  +90.2  ± 22.7

uniform FOF-halos

bG = 1.31,   = 1939.9 h-3Mpc3

0.01 0.10
k [hMpc-1]

-0.5

0.0

0.5

b ^
(k

,f
N
L
)/

b
G
 -

1

fNL =  +1.1   ±  8.6

fNL =  -87.5  ±  5.5

fNL =  +80.8  ± 11.9

weighted FOF-halos

bG = 1.73,   =  307.2 h-3Mpc3

Hamaus, Seljak & VD (2011)

optimal weight ≈ mass weighting
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Forecast errors

1010 1011 1012 1013 1014 1015 1016

Mmin[h-1MO •]

10-1

100

101

102

103

f N
L

z = 1

n  

one uniform bin
one weighted bin
multiple bins

blue (open): only halos
red (filled): halos & matter

Planck: σfNL = 5
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Galaxy bispectrum

Much more sensitive to the shape of the primordial NG, so should be very powerful

Frieman & Gaztanaga 1999; Scoccimarro et al .2001; Scoccimarro, Sefusatti & Zaldarriaga 2004; Kulkarni et al 2007; 
Sefusatti & Komatsu 2007;  Sefusatti 2009; Jeong & Komatsu 2009; ...
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Sefusatti, Crocce & VD (2012)
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What does local bias predict ?

• Local bias predict the wrong amplitude for the non-Gaussian bias:

�δh(�x1)δh(�x2)� ≈ b21 �δ(�x1)δ(�x2)�+ b1b2
�
δ2(�x1)δ(�x2)

�

∆b1(k) ∝
b2fNL

k2

• So, it seems that we cannot use local bias to predict non-Gaussian corrections 
to galaxy clustering statistics such as the galaxy bispectrum ...
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The peak formalism

• Take discreteness of the tracers into account and assume that DM halos 
collapse out of initial density maxima

• The peak number density formally is

npk(�x) =
33/2

R3
�

|detζ(�x)| δD
�
�η(�x)

�
θH(λ3)

ηi(�x) =
1

σ1
∂iδ(�x), ζij(�x) =

1

σ2
∂i∂jδ(�x)

• Peak correlations functions are obtained from the ensemble averages

�npk(�x1)× ...× npk(�xN )�

Bardeen et al. (1986); Regos & Szalay (1995); Matsubara (1999), VD (2008); VD & Sheth (2010); VD et al (2010)

σ2
n =

1

2π2

� ∞

0
dk k2(n+1)Pδ(k)W

2(kRs)
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An effective local bias expansion
VD,  arXiv:1211.4128

• Peak clustering statistics can be computed from the simple local bias expansion:

δpk(�x) = b10δ(�x)− b01∇2δ(�x) +
1

2
b20δ

2(�x)− b11δ(�x)∇2δ(�x) +
1

2
b02

�
∇2δ(�x)

�2

+χ10

�
∇2δ

�2
(�x) +

1

2
χ01

�
3∂i∂jδ − δij∇2δ

�2
(�x) + ...

• The bias parameters bij and χij can be computed from a generalized PBS 
argument applied to the average peak number density

�npk� =
1

(2π)2R3
�

e−ν2/2

� ∞

0
du f(u)

exp
�
− (u−γ1ν)

2

2(1−γ2
1)

�

�
2π(1− γ2

1)

u(�x) = − 1

σ2
∇2δ(�x)

γ1 =
σ2
1

σ0σ2
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Prediction for non-Gaussian bias
VD,  Jinn-Ouk Gong, Antonio Riotto, in preparation

• Take into account first-crossing (i.e. that peaks are not included into bigger 
peaks) Appel & Jones (1990);  Manrique & Salvador-Sole (1995); Paranjape & Sheth (2012)

• The halo mass function is

n̄h =
ρ̄

M2
νfESP(ν, {σi})

d ln ν

d lnM

• From the effective local bias expansion, we find

∆b1(k) = 2fNL

�
∂ ln n̄h

∂ lnσ8

�
M(k)−1
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Conclusions

• Galaxy clustering opens new avenues to constrain the mechanisms that generated 
the primordial fluctuations

• However, signatures of primordial NG in the large scale structure are expected to 
be small. Therefore, we must improve our modeling of galaxy biasing

• A local bias expansion in the density only is not enough, but it can be extended to 
describe the clustering of discrete objects. The resulting non-Gaussian bias is 
consistent with peak-background split expectations

• This extended local bias approach can be used to compute signatures of 
primordial NG in the galaxy bispectrum (in progress)

• In the long run, develop a model that can accurately predicts mass function and 
clustering of tracers for both Gaussian and non-Gaussian ICs
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