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Large literature on SUSY non-linear realizations and

low-energy goldstino interactions

- Volkov-Akulov, Ivanov-Kapustinov, Siegel, Samuel-

Wess, Clark and Love...

- Casalbuoni, Dominicis, de Curtis, Feruglio, Gatto;

Luty, Ponton; Brignole, Feruglio, Zwirner; Brignole,Casas,

Espinosa, Navarro; Komargodski and Seiberg



1. Coupling the SUSY breaking sector to the

MSSM

Two frameworks one can use in order to parametrize

the couplings of the goldstino to MSSM.

Consistency condition : the effective action reproduces

the standard MSSM with soft breaking terms in the

decoupling limit f → ∞, with fixed values of the soft

terms.

i) Couplings of the SUSY breaking sector X to MSSM

has manifest SUSY spontaneously at a scale f .



- There is a SUSY messenger sector that mediates in-

teractions between X and the MSSM by integrating out

heavy states with a mass scale M . The theory can be

weakly coupled if
√

f, M ≥ 50 TeV and strongly cou-

pled for lower values of M . All induced operators are

manifestly supersymmetric.

- SUSY is linearly realized; goldstino superfield contains

an elementary sgoldstino scalar degree of freedom.

The effective Lagrangian is

L = LX + LMSSM + Lsoft + Lhdo + Lcorr , (1)

where LX and LMSSM are the SUSY breaking sector



Lagrangian and the supersymmetric part of the MSSM

action, respectively, whereas,

Ksoft = −cXQ

M2
(X†X)(Q†Q) ,

Khdo = −cXX

M2
(X†X)2 − cQQ

M2
(Q†Q)2 , (2)

Kcorr = − cu

M2
X†QUH

†
1 −

dn

M2+2n
(X†X)(D̄2X̄)n(Q†Q)

Soft mass terms are

m2
Q = cXQ

f2

M2
. (3)

- All the soft terms have the structure msoft ∼ f/M .

H.d.o Lhdo in (2) are suppressed by appropriate powers



of m2
soft/f2; corrections to MSSM couplings are

δyu ∼
m2

soft

f
, δm2

Q ∼

m2

soft

f




n

m2
soft . (4)

Low values of
√

f → strong dynamics ⇒ dimensionless

coefficients are of order one (or 4π).

ii) No assumptions about how the SUSY breaking sector

couples to the MSSM. The Lagrangian contains the

SUSY breaking scale f and the cutoff scale Λ. SUSY

is non-linearly realized in the goldstino multiplet X by

imposing a superfield constraint X2 = 0. Sgoldstino is

absent as an elementary degree of freedom.



It was argued by Komargodski and Seiberg that in this

case any goldstino coupling should appear in the com-

bination (msoft/f)X.

- Other higher-dimensional operators are further sup-

pressed by appropriate powers of Λ.

- Couplings of the goldstino multiplet by (msoft/f) en-

sures the validity of the effective operator expansion.



Relevant operators are now

Ksoft = −
m2

Q

f2
(X†X)(Q†Q),

Khdo = −cQQ

Λ2
(Q†Q)2, (5)

Kcorr = −cu

Λ

msoft

f
X†QUH

†
1 −

(
msoft

f

)n+2
dn

Λn
(X†X)(D̄2X̄)n(Q†Q)

We expect Λ . √
f . Corrections to the MSSM couplings

are

δyu ∼
msoft√

f
, δm2

Q ∼
(

msoft√
f

)n

m2
soft . (6)

⇒ corrections to MSSM couplings are larger in case ii),

compared to i).



- In both cases, sizable corrections to couplings are

possible only for low scale SUSY breaking,
√

f ∼TeV.

In case i), consistency of effective field theory asks

msoft .
√

f . M . (7)

- For
√

f < 10 TeV, suppression in the hdo’s is compen-

sated by particular values of MSSM parameters: angles

α and β in the Higgs sector, mixing angle determining

the LSP composition.

- Some parameters are small: Higgs self-coupling, Yukawas,

Higgs coupling to photons. These couplings are sensi-

tive to corrections from hdo’s.



2. Non-linear SUSY and its standard realization.

Goldstino is part of a multiplet X = (x, G, FX). Thhe

sgoldstino mass mx depends on the microscopic theory.

In a SUSY theory well below the scale of SUSY breaking

E <<
√

f , SUSY is non-linearly realized.

There is always one light fermion in the effective theory,

the goldstino G, of mass

mG ∼ f

MP

In the decoupling limit MP , mx → ∞, the transverse

polarizations of the gravitino decouple.



Standard Realization: starts from a SUSY transf.

x′m = xm + i(θσmξ̄ − ξσmθ̄) , θ′ = θ + ξ , θ̄′ = θ̄ + ξ̄

In analogy with goldstone bosons, Goldstino transforms

as

G′(x′) = G(x) +
1

k
ξ .

Taylor expansion ⇒ SUSY transformation

δG =
1

k
ξ + kΛm

ξ ∂mG , where Λm
ξ = i(Gσmξ̄ − ξσmḠ)

k is the Goldstino decay constant, related to the SUSY

breaking scale as

k =
1√
2f

=
1√

2M2
SUSY



In the standard VA prescription, couplings to matter

proceed as in gravity. There is a vierbein

En
m = δn

m + ik2(∂mGσnḠ−Gσn∂mḠ)

Then

δ(detE) = k∂m(Λm
ξ detE)

The Volkov-Akulov lagrangian is then

LAV = − 1

2k2
detE = − 1

2k2
+

i

2
(∂mGσmḠ−Gσm∂mḠ)+· · ·

SUSY standard realization is defined for any field φi as

δφi = kΛm
ξ ∂mφi (8)



Derivatives have to be covariantized according to

Dmφi ≡ (E−1)µ
mDµφi , Fa

mn ≡ (E−1)µ
m(E−1)ν

nFµν

We can then supersymmetrize any lagrangian by

Seff =
∫

d4x detE L(φi,Dmφi,Fa
mn)

Low-energy limit ⇒ expansion in powers of k

Leff = L(φi, Dmφi, F
a
mn) + ik2 Gσm∂nḠ Tmn + · · ·

where Tmn is the energy-momentum tensor. The above

procedures is model-independent. However, it does not

give the most general couplings of goldstino to matter.



There are two cases of goldstino couplings to matter :

i) Non-SUSY matter spectrum (ex: SM...)

E << msparticles , mx ,
√

f

→ non-linear SUSY in the matter sector.

ii) SUSY matter multiplets : (q̃, q), etc.

msparticles ≤ E <<
√

f , mx

→ linear SUSY matter sector coupled to the goldstino :

new MSSM couplings, correction to the higgs potential.



3. The formalism of constrained superfields.

There are various formalisms developed over the years.

Here we are using the superfield approach of

Siegel, Casalbuoni et al., Komargodski and Seiberg.

The Goldstino G can be described by a chiral superfield

X, with the constraint

X2 = 0 .

The constraint is solved by

X =
GG

2FX
+
√

2 θG + θθ FX .

FX is an auxiliary field to be eliminated via its field eqs.



After eliminating FX, the Volkov-Akulov lagrangian is

then given by

LX =
∫

d4θ X†X +

{ ∫
d2θ f X + h.c.

}

= det (Ea
µ) , where Ea

µ = ea
µ + (

i

2f2
Gσa∂µḠ + h.c.)

is the VA ”vierbein”. Volkov-Akulov and the SUSY

constrained formalism are not obviously equivalent if

coupling to other (super) fields, due to FX.



4. MSSM+goldstino: Non-linear MSSM.

We now consider the case :

msparticles ≤ E <<
√

f , mx

→ full MSSM spectrum coupled to the constrained gold-

stino superfield X, which satisfies X2 = 0.

For our purposes: gauge, Higgs and lepton sector su-

perpartner masses are <<
√

f .

However: nothing will depend on the squarks mass →
they can be decoupled.



Usually we parameterize SUSY breaking in MSSM by a

coupling to a spurion

S = θ2msoft

The main difference in non-linear MSSM is the replace-

ment S → msoft
f X.

This reproduces the MSSM soft terms, but it adds new

dynamics :

- FX is a dynamical auxiliary field → new couplings from

−F̄X = f +
B

f
h1h2 +

Au

f
quh2 + · · ·

- it contains in a compact form the goldstino couplings

to matter.



All couplings to the Goldstino are proportional to soft-

terms. The lagrangian is

L = LMSSM + LX + Lm + LAB + Lg where

LH =
∑

i=1,2

m2
i

f2

∫
d4θ X†X H

†
i eViHi ,

Lm =
∑

Φ

m2
Φ

f2

∫
d4θ X†XΦ†eV Φ , Φ = Q, Uc, Dc, L, Ec

LAB =
B

f

∫
d2θ XH1H2 + (

Au

f

∫
d2θ XQUcH2 + · · · )

Lg =
3∑

i=1

1

16 g2
i κ

2mλi

f

∫
d2θ X Tr [Wα Wα]i + h.c.



Matter terms coming from solving for FX do not come

from the Volkov-Akulov lagrangian. Ex : the scalar

potential is modified compared to MSSM :

V =
(
|µ|2 + m2

1

)
|h1|2 +

(
|µ|2 + m2

2

)
|h2|2 + (B h1.h2 + h.c.)

+
g2
1 + g2

2

8

[
|h1|2 − |h2|2

]2
+

g2
2

2
|h†1 h2|2

+
1

f2

∣∣∣∣m2
1 |h1|2 + m2

2 |h2|2 + B h1.h2

∣∣∣∣
2

The last term is new , generated by integrating out the

sgoldstino.

Physical interpretation : new couplings of the Higgs to

the (low-scale) SUSY breaking sector.



Equivalence theorem: leading Goldstino couplings are

1

f
∂µG Jµ = −1

f
G ∂µJµ,

where Jµ is the supercurrent. We use the on-shell action

→ all goldstino couplings are proportional to soft terms.

The superfield formalism gives all couplings directly in

this form. Indeed, the supercurrent for chiral (zi, ψi, Fi)

and vector (Aa
m, λa, Da) multiplets is

Jm = σnσ̄mΨiDnz̄i + σmσnpλ̄aF a
np + F iΨ̄iσ̄m + Daλ̄aσ̄m .

Then we find (using field eqs)

∂mJm = m2
0Ψ

iz̄i + mλσmnλaF a
mn .



5. Implications

- 5.1 Higgs masses

Due to the new quartic couplings, the Higgs masses

change

∆m2
h =

v2

16f2

1√
w

[
16m2

Aµ4 + 4m2
A µ2 m2

Z + (m2
A − 8µ2)m4

Z

−2m6
Z + 2(−2m2

A µ2 + 8µ4 + 4µ2 m2
Z + m4

Z)
√

w + · · ·
]

with w = (m2
A+m2

Z)2−4m2
Am2

Z cos2 2β. The increase in

the Higgs mass is significant for 1.5 TeV ≤ f ≤ 10 TeV .

Fine-tuning of the electroweak scale is also reduced.
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(a) mh as function of
√

f and µ as a parameter, for tan β = 50.

(b) mh as function of
√

f and µ as a parameter, for tan β = 5.

Tree-level Higgs masses (GeV) as functions of
√

f .

In both figures, MA = 150 GeV and µ increases upwards from 400

to 3000 GeV in steps of 100 GeV.



We can also add model-dependent hdo’s, with the struc-

ture,

δL = − cλ

M4

∫
d4θ (X†X)(H†

i Hi)
2 + · · · (9)

in case i), and

δL = − cλ

Λ2

m2
soft

f2

∫
d4θ (X†X)(H†

i Hi)
2 + · · · (10)

in case ii). In case i), corrections to Higgs self-coupling

are of the order δλ ∼ m4
soft/f2, i.e. the same order as

the ones discussed previously. However, in case ii), for

Λ ∼ √
f , the corrections are δλ ∼ m2

soft/f ⇒ corrections

to the quartic Higgs self-coupling are dominated by the

model-dependent terms in case ii).



5.2 h → γγ, h → γZ and gg → h

The renormalizable tree level Higgs couplings can be

parametrized as

Lren = −ct
mt

v
h t t̄− cc

mc

v
h c c̄− cb

mb

v
h b b̄− cτ

mτ

v
h τ τ̄

+cZ
m2

Z

v
h Zµ Zµ + cW

2m2
W

v
h W+µ W−

µ . (11)

MSSM decoupling limit: c = 1 ; the cloop-coefficients

equals the SM ones.



New ingredient : goldstino-Higgs mixing, coming from

L ⊃ x

(
−m2

i

f2
F
†
X h

†
iFi +

B

f
(F1h2 + h1F2)−

Ma

4f
(F k µνF k

µν)a

)
+ h.c.

−|x|2
(

m2
i

f2
|Fi|2 + m2

X

)
. (12)

If sgoldstino x is heavy we can use its e.o.m. (zero-

momentum limit), to integrate it out. We obtain

− Ma

4m2
Xf2

(F k µνF k
µν)a

(
m2

i h
†
i Fi + B(F1h2 + h1F2)

)
+h.c. .

(13)

⇒ effective interactions between h and the gauge field

strengths



cx

[
(M1 cos2 θw + M2 sin2 θw)hFµνFµν

+(M1 sin2 θw + M2 cos2 θw)hZµνZµν

+2cos θw sin θw(M1 −M2)hZµνFµν + M3 h Tr GµνGµν

]
,

where,

cx = − µ v

2f2m2
X

(
µ2 cos(α + β) + B

(
cos(α + β)

sin 2β
+ sin(α− β)

))

(14)

Then

cγ = cloop
γ +csgold

γ , cg = cloop
g +csgold

g , cZγ = cloop
Zγ +csgold

Zγ ,

(15)



where,

csgold
γ = − 4π v2µ

f2m2
XαEM

(M1 cos2 θw + M2 sin2 θw)∆

csgold
Zγ = −4π v2µ cos θw sin2 θw

f2m2
XαEM

(M1 −M2)∆

csgold
g = − 6π v2µ

f2m2
XαS

M3 ∆ . (16)

The factor ∆ is given by,

∆ = µ2 cos(α+β)+B

(
cos(α + β)

sin 2β
+ sin(α− β)

)
→ µ2 sin 2β

(17)

where we took the MSSM decoupling limit.

- We can use the experimental bound on the gluino



mass, which enters the csgold
g to estimate how much

the Higgs couplings to γγ and Zγ can be enhanced.

- Do not want gluon fusion to deviate from SM value

by more than around 30%, i.e. |csgold
g | 6 0.14 · |cSM

g |.
Then

∣∣∣∣∣−
µ3 sin 2β

f2m2
X

∣∣∣∣∣ 6 0.14 · 0.98
αS

6π v2 |M3|
(18)

which combined with csgold
γ gives the bound

∣∣∣csgold
γ

∣∣∣ 6 0.14 · 0.98
αS

6π v2 |M3|
4π v2

αEM

∣∣∣M1 cos2 θw + M2 sin2 θw

∣∣∣ ≈ 1.37

∣∣∣∣∣
M12

M3

∣∣∣∣∣(19)

where M12 = M1 cos2 θw + M2 sin2 θw. Assuming the

signs of µ and M12 are such that the sgoldstino mixing



contribution is constructive, this implies

Γhγγ

ΓSM
hγγ

=

∣∣∣∣∣
cγ

cSM
γ

∣∣∣∣∣
2

6

∣∣∣∣∣∣∣

−6.51− 1.37M12
M3

−6.51

∣∣∣∣∣∣∣

2

≈
∣∣∣∣∣1 + 0.21

M12

M3

∣∣∣∣∣
2

.

(20)

We can also constrain the Zγ channel. The result is

ΓhZγ

ΓSM
hZγ

=

∣∣∣∣∣∣
cZγ

cSM
Zγ

∣∣∣∣∣∣

2

6

∣∣∣∣∣∣∣

5.47 + 0.28M2−M1
M3

5.47

∣∣∣∣∣∣∣

2

≈
∣∣∣∣∣1 + 0.05

M2 −M1

M3

∣∣∣∣∣
2

.

(21)

⇒ we expect a smaller deviation from the SM value in

the h → Zγ channel.
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- 5.3 Invisible decays of Higgs and Z boson.

Other relevant (order 1/f terms) in the non-linear MSSM

action are

−1

f

[
m2

1 Gψh0
1
h0 ∗
1 + m2

2 Gψh0
2
h0 ∗
2

]
− B

f

[
Gψh0

2
h0
1 + Gψh0

1
h0
2

]

−1

f

∑

i=1,2,3

mλi√
2

D̃a
i Gλa

i +
3∑

i=1

mλi√
2 f

G σµν λa
i F a

µν, i + h.c.

We consider for illustration the case of the lightest neu-

tralino χ to be lighter than the Higgs or the Z boson.

Comments :

Similar decay rates as the inverse ones



χ → h G , χ → Zµ G

computed some time ago in models of gauge mediation

(Djouadi-Dress).

Z → χ G

Imposing ∆ΓZ < 2.3 MeV (LEP) puts a lower bound

on
√

f ≥ 400−600 GeV, stronger than previous bounds.
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The partial decay rate of h0 → Gχ0
1 as function of

√
f for

(a): tanβ = 50, mλ1
= 70 GeV, mλ2

= 150 GeV, µ from 100 GeV

(top) to 1000 GeV (bottom) by a step 100 GeV, mA = 150 GeV.

(b) : As for (a) but with tan β = 5.

The branching ratio in the above cases is comparable to that of

SM Higgs going into γγ.



Conclusions and perspectives

• Two different frameworks to couple goldstino to mat-

ter: with messengers (scale M and ”directly” (no mes-

sengers). It would be interesting to construct explicit

models of the second kind.

• The couplings of goldstino to matter are not unique.

More general couplings captured by hdo’s and the con-

strained superfield formalisms.

• Goldstino couplings coming from hdo’s can be impor-

tant and even dominant for
√

f . 10 TeV.

• Change of MSSM couplings ⇒ various low-energy im-



plications:

- contributions to higgs mass

- possible enhancement of h → γγ if sgoldstino in the

TeV range (mixing higgs-sgoldstino)

- changes of Higgs couplings to fermions

- specific processes with one photon + goldstinos (miss-

ing energy).

• Interesting to apply this formalism to non-standard

SUSY spectra: inverted hierarchy models or various

variants of split susy models, or to gravitino dark matter

scenarios.



Thank you !



BACKUP SLIDES



3. Heavy superpartners: matter constraints

Non-linear matter → additional constraints (KS) :

- Heavy scalars : XQi = 0 : eliminates the complex

scalars. We get

Qi =
1

FX
(Ψi −

Fi

2FX
G)G +

√
2θΨi + θ2Fi

Obs: X2 = XQi = 0 uniquely determines the solutions.

However, other constraints are verified

Qi Qj Qk = 0 ,

where are ”redundant”.



The constraints should be understood as IR conse-

quences of UV dynamics generating SUSY breaking and

large superpartner masses. It was argued (Komargodski-

Seiberg) that the superfield constraints are unique and

independent of high-energy physics. Ex :

W = f X ,

K = X†X + Q†Q− cx

Λ2
(X†X)2 − cq

Λ2
(X†X)(Q†Q)

For ci = 0 we get an O’R model, FX = −f and X is a

flat direction. ci > 0 stabilize 〈X〉 = 〈Q〉 = 0.



The fermions stays massless → non-linear SUSY at

low-energy. The low-energy lagrangian is obtained by

”integrating-out” the scalars:

L = −f2 + |FX + f |2 − cx

Λ2
|2xFX −GG|2 −

cq

Λ2
|qFX + xFq −GΨq|2 + derivative terms

Field eqs. for X, q give

x =
GG

2FX
, q =

1

FX
(Ψq − FqG

2FX
)G

i.e. the previous superfield constraints, independently

of ci. Are these constraints unique, independent of the

high-energy theory ?



- General Kahler potential and generalized chiral

constraints

Let’s add another UV correction to the Kahler potential

∆K = − c3
Λ2

(Q†Q)2 − c4
Λ2

(X†)2Q2

• c3 is not protected by any symmetry.

In this case, we find (Ψi = G,Ψq)

X = aijΨiΨj +
√

2θG + θ2FX

Q = bijΨiΨj +
√

2θΨq + θ2Fq

where aij, bij are easily calculated as functions of εa, Fi.

Here X2 6= 0, XQ 6= 0.



Nonetheless we find the cubic constraints

X3 = X2Q = XQ2 = Q3 = 0 (22)

Interestingly, the solution of (22) is not unique, it de-

pends on two free parameters. It can be parameterized

as

X =
GG

2FX
− c1

2FX
(FqG− FXΨq)

2 ,

Q =
ΨqΨq

2Fq
− c2

2Fq
(FqG− FXΨq)

2 .

• Non-uniqueness of the solutions of the constraints

reflect the UV sensitivity of the low-energy lagrangian.



• Previous constraints recovered if cx, cq >> c3, c4. No-

tice that cx, cq determine the scalar masses

m2
x =

4cx f2

Λ2
, m2

q =
cq f2

Λ2
.

• The higher-order constraints ↔ UV sensitivity come

because we don’t take the limit msparticles >> f that

KS used. This limit would ask for cx, cq >> 1, not easy

to justify.

Our new results change low-energy actions for

msparticles . f .



- Yukawas and generalized chiral constraints

Yukawas ( R-parity violating couplings in MSSM) in-

crease the order of the monomial chiral constraints.

Simplest example

K = X†X + Q†Q− cx

Λ2
(X†X)2 − cq

Λ2
(Q†Q)(X†X) ,

W = f X +
λ

3
Q3 .

In this case the integration of the heavy scalars leads

to low-energy fields of the form

X = aij ψiψj + a2 (F̄q ψ̄X − F̄X ψ̄q)
2 +

√
2 θ ψX + θ2 FX ,

Q = bij ψiψj + b2 (F̄q ψ̄X − F̄X ψ̄q)
2 +

√
2 θ ψq + θ2 Fq



By Grassmann variable arguments one can check that

in this case we obtain quartic constraints

X4 = X3Q = X2Q2 = XQ3 = Q4 = 0 .



6 Heavy higgsinos and gauginos (KS proposal) :

- heavy fermions : XH̄ = chiral : eliminates the fermions.

In this case

H = h+i
√

2θσm∂mh
Ḡ

F̄X
+θ2[−∂n(

Ḡ

F̄X
)σ̄mσn∂mh

Ḡ

F̄X
+

1

2F̄2
X

Ḡ2∂2h]

In this case there is not anymore an auxiliary field Fh.

The leading higgs-goldstino interactions come from:

−iΨh,iσ
m∂mΨ̄h,i → − i

f2
G∂mh̄i σm¤(Ḡhi)

−µΨh,1Ψh,2 → − µ

f2
ḠḠ ∂mh1∂mh2



- heavy gauginos : XWα = 0 eliminates the gauginos.

The solution is

Wα =
1√
2FX

(D − iσmnFmn)G− G2

2F2
X

σm∂mλ̄

+(D − iσmnFmn)θ + θ2σm∂mλ̄ .

Leading gauge field-gaugino coupling comes from the

kinetic term

−iλ∂λ̄ → i

2f2
(GσmnFmn) ∂(Ḡσ̄pnFpn)



- Heavy gauginos from UV: constrained vector su-

perfields

Simplest UV lagrangian providing large masses to the

sgoldstino scalar and the gaugino :

L =
∫

d4θ
[
X†X − ε (X†X)2

]

+

{ ∫
d2θ

(
fX +

1

4
WαWα +

M

f
X WαWα

)
+ h.c.

}
,

where M is the gaugino mass. The zero-momentum

gaugino equation has the solution

λ =
i√

2FX
(D − iσmnFmn) G .



The corresponding field strength is

Wα =
1√
2FX

(D−iσmnFmn)G+(D−iσmnFmn)θ+θ2σm∂mλ̄

(23)

and satisfies

X Wα =
GG

2FX
(σm∂mλ̄)α θ2, X Wα Wα = 0 ,

where the second equation is the generalized constraint

whose unique solution is (23). The KS gauginos are the

solution of the implicit eq.

λ =
i√

2FX
(D − iσmnFmn)G − i

GG

2F2
X

σm∂mλ̄



• The difference between KS solution and (23) is of

higher-order in an 1/f expansion in the low-energy ac-

tion.

• In both cases the leading goldstino-gauge field inter-

action comes from the gaugino kinetic term by using

the common terms prop. to σmnFmn G in (23).



4. Leading-order low-energy lagrangians

Consider N superfields (quarks and/or leptons for MSSM)

plus the goldstino superfield X. We add the mini-

mal high-energy Kahler potential needed to decouple

all scalars and add also an R-parity violating coupling,

denoted generically λijk below.

K = X†X + Q
†
iQ

i − m2
x

4f2
(X†X)2 − m2

i

f2
(Q†iQ

i)(X†X) ,

W = f X +
1

3
λijkQiQjQk .

By integrating-out the N + 1 heavy scalars of mass

4m2
X , m2

i we get higher-order chiral constraints.



We use here a more pragmatic approach, by expanding

the solution in Fi/FX. First order in the expansion :

x =
GG

2FX
, qi =

Gψi

FX
− 1

m2
i

λijkψ̄jψ̄k .

The low-energy lagrangian, up to four-fermion fields :

Leff = Lkin −
1

4f2
Ḡ2¤G2 − 1

f2
(Ḡψ̄i)¤(Gψi) +

1

m2
i

(λijkψ̄jψ̄k)(λ̄imnψmψn)− 2

m2
i f

(λ̄ijkψjψk)¤(Gψi)

− 3

m4
i

(λijkψ̄jψ̄k)¤(λ̄imnψmψn)− f2 .

The terms (λ̄ijkψjψk)¤(Gψi) are R-parity violating, lead

to qq → qG processes, LHC relevance ? (detailed study

of qq → GGg, GGγ by Brignole,Feruglio,Zwirner)



As expected, non-derivative terms involving the gold-

stino canceled. The first line contains universal gold-

stino couplings, whereas the second and third lines de-

scribe model-dependent couplings.

• For m2
i . f , the model-dependent couplings are as

important at low-energy as the universal couplings of

the goldstino to matter.

• Pragmatic question : is it possible to write the same

low-energy action by using the KS constraints ?

• If yes, what is the most convenient formalism to write

general low-energy SM actions with non-linear SUSY ?



Using the KS constraints.

Previous action can also be written using KS constraints

L =
∫

d4θ

(
X†X + Q

†
iQi +

λijkλimn

m2
i

Q
†
iQ

†
jQmQn

+
λijk

m2
i

QiQjD
2Qk +

λijkλimn

m4
i

Q
†
iQ

†
j¤(QmQn)

)

+(
∫

d2θfX + h.c.) . (24)

• Arbitrary coefficients in (24) (ex. εijmnQ
†
iQ

†
jQmQn) do

not correspond to a simple UV theory → ”swampland”?

• The operators in red seem irrelevant. However, they

give contributions similar to the universal couplings in

blue for m2
i ∼ f .



Actually, we can probably write any low-energy action

by using the KS formalism with the constraints :

X2 = XQi = QiQjQk = 0

and the field equations for the constrained superfields

1

4
XD̄2X† = fX ,

1

4
QiQjD̄

2X† = fQiQj ,

XD̄2Q
†
i = 0 , QjD̄

2Q
†
i = 0.

However, operator dimensions can give wrong intuition

about their low-energy relevance.



7. Non-linear SUSY in string theory

(Brane Supersymmetry Breaking: Sugimoto; Antoniadis,

E.D.,Sagnotti; Aldazabal,Uranga)

In these constructions, the closed (bulk) sector is SUSY

to lowest order, whereas SUSY is broken at the string

scale on some stack of (anti)branes.

- String consistency asks for the existence of exotic

O9+ planes of positive RR charge. Then charge con-

servation /RR tadpoles ask for antibranes in the open

sector.



SUSY case (SO gauge group) : Bose-Fermi degeneracy



Brane SUSY breaking case (USp gauge group):

spectrum is ”misaligned”



- Dp−Op+ system is non-BPS but tachyon-free. Breaks

SUSY at string scale.

- There is a NS-NS dilaton tadpole (V ∼ e−Φ)

∑

Dp

T
(n)
Dp +

∑

Op

T
(n)
Op 6= 0 ,

which leads to a Volkov-Akulov lagrangian.

Simplest 10d example, gauge group : USp(32)

- fermions in 32(32− 1)/2 = 495 + 1.

- Singlet in the open string spectrum, can be identified

with the goldstino realizing a nonlinear SUSY on an-

tibranes (E.D.,Mourad; Schwarz-Witten).



The lagrangian is of the form

L = Lbulk(gµν,Φ · · · ) + Lbrane(Aµ, λ, G, Gµν, Φ̂ · · · )

where

Ea
µ = ea

µ +
1

4
ḠΓaDµG− 1

2
ḠΓaΨµ + · · ·

Φ̂ = Φ− 1√
2

ḠλΦ + · · ·

where λΦ is the dilatino.

Stability and ground state of such models a very subtle

and still open issue.

An interesting pheno string-inspired setup: KKLT. Non-

linear SUSY aspects discussed by H.P. Nilles et coll.


