TOWARDS 1% DISTANCE MEASUREMENTS WITH COSMIC SOUND

Nikhil Padmanabhan, Yale

In collaboration with BOSS galaxy clustering WG

NP et al, 2012, Anderson et al 2012 plus many others

NASA Astrophysical Theory Program DOE Office of Science

The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: Baryon Acoustic Oscillations in the Data Release 9 Spectroscopic Galaxy Sample

Lauren Anderson¹, Eric Aubourg², Stephen Bailey³, Dmitry Bizyaev⁴, Michael Blanton⁵, Adam S. Bolton⁶, J. Brinkmann⁴, Joel R. Brownstein⁶, Angela Burden⁷, Antonio J. Cuesta⁸, Luiz N. A. da Costa^{9,10}, Kyle S. Dawson⁶, Roland de Putter^{11,12}, Daniel J. Eisenstein¹³, James E. Gunn¹⁴, Hong Guo¹⁵, Jean-Christophe Hamilton², Paul Harding¹⁵, Shirley Ho^{3,14}, Klaus Honscheid¹⁶, Eyal Kazin¹⁷, D. Kirkby¹⁸, Jean-Paul Kneib¹⁹, Antione Labatie²⁰, Craig Loomis²¹, Robert H. Lupton¹⁴, Elena Malanushenko⁴, Viktor Malanushenko⁴, Rachel Mandelbaum^{14,21}, Marc Manera⁷, Claudia Maraston⁷, Cameron K. McBride¹³, Kushal T. Mehta²², Olga Mena¹¹, Francesco Montesano²³, Demetri Muna⁵, Robert C. Nichol⁷, Sebastián E. Nuza²⁴, Matthew D. Olmstead⁶, Daniel Oravetz⁴, Nikhil Padmanabhan⁸, Nathalie Palanque-Delabrouille²⁵, Kaike Pan⁴, John Parejko⁸, Isabelle Pâris²⁶, Will J. Percival⁷, Patrick Petitjean²⁶, Francisco Prada^{27,28,29}, Beth Reid^{3,30}, Natalie A. Roe³, Ashley J. Ross⁷, Nicholas P. Ross³, Lado Samushia^{7,31}, Ariel G. Sánchez²³, David J. Schlegel^{*3}, Donald P. Schneider^{32,33}, Claudia G. Scóccola^{34,35}, Hee-Jong Seo³⁶, Erin S. Sheldon³⁷, Audrey Simmons⁴, Ramin A. Skibba²², Michael A. Strauss²¹, Molly E. C. Swanson¹³, Daniel Thomas⁷, Jeremy L. Tinker⁵, Rita Tojeiro⁷, Mariana Vargas Magaña², Licia Verde³⁸, Christian Wagner¹², David A. Wake³⁹, Benjamin A. Weaver⁵, David H. Weinberg⁴⁰, Martin White^{3,41,42}, Xiaoying Xu²², Christophe Yèche²⁵, Idit Zehavi¹⁵, Gong-Bo Zhao^{7,43}

Results

- It's been a busy year
 - First results from B(aryon) O(scillation) S(spectroscopic) S(urvey)
 - Galaxy BAO results at z=0.55
 - Lyman-alpha forest measurements at z=2.5
 - This talk will focus on the first.
 - Improvements in analysis techniques
 - Towards precision measurements
 - Lots of results expected over the next years

Outline

- Baryon Acoustic Oscillations, very quickly
- Recent Developments
 - How to build a better standard ruler?
 - First galaxy BAO results from BOSS
 - BigBOSS : BAO in the future

Outline

- Baryon Acoustic Oscillations, very quickly
 - Standard rulers
 - Building standard rulers
- Recent Developments
 - How to build a better standard ruler?
 - First galaxy BAO results from BOSS
 - BigBOSS : BAO in the future

What is the expansion history of the Universe?

Cosmology 101

Expansion rate of the Universe

$$egin{aligned} &H^2(a) = H_0^2 \left[\Omega_R a^{-4} + \Omega_M a^{-3} + \Omega_k a^{-2} + \Omega_{DE} \exp \left\{ 3 \int_a^1 rac{da'}{a'} \left[1 + w(a')
ight]
ight\}
ight] \ &w(a) = w_0 + w_a (1-a), \end{aligned}$$

Distances (Comoving, and angular diameter)

$$D_C(z) = rac{c}{H_0} \int_0^z dz' rac{H_0}{H(z')} \; .$$

 $D_A(z) = K^{-1/2} \sin\left(K^{1/2} D_C\right)$

Measuring two distances with standard rulers

Sound Waves imprint a Standard Ruler

Daniel Eisenstein

Constructing a Standard Ruler

- The plasma of the early Universe supports sound waves
 - Compton scattering between electrons and photons
 - Coulomb interactions between electrons and protons
- Sound waves from the initial density perturbations expand outward
 - Speed of sound ~ $c/\sqrt{3}$
- When the Universe cools below 0.3 eV, electrons and protons "recombine"
 - Sound wave stalls, leaving imprint on density fluctuations.
 - Characteristic scale of 153.2 Mpc ~ 4.7e24 m

$$r_s = \int_0^{t_*} \frac{c_s(t)}{1+z} dt = \int_{z_*}^{\infty} \frac{c_s(z)}{H(z)} dz.$$

The Standard Ruler in the Galaxy Correlation Function

Measuring $d_A(z)$ and H(z)

- Transverse scale measures angular diameter distance
- Radial scale measures the Hubble constant
- Internal consistency tests
- H(z) unique amongst dark energy probes
- H(z) important to constrain dark energy at high redshifts
- Observationally, think about isotropic dilation and warping

Why BAO?

- Simple measurement
 - Only requires positions
- Underlying theory is simple
 - Mostly linear physics (fluctuations are 1 part in 10⁴)
 - Exquisitely calibrated by the CMB (~1% with WMAP, much better with Planck)
 - 3D feature (hard to mimic)
 - Very large scales >> scales of astrophysical complications
 - Can be treated perturbatively

Observables

- Positions on the sky and redshifts
 - 3D map of the Universe
 - Precision redshifts require a spectroscopic survey
- Need to convert angular separations to physical distances
 - Ruler oriented transverse to line of sight measures distance to the ruler.
 - Distance as a function of redshift
 - Integrated expansion rate
- Need to convert redshift separations to physical distances
 - Ruler oriented parallel to the line of sight measures rate of change of distance with redshift.
 Expansion rate
 - Expansion rate.
- Not possible with standard candles.

Constructing a BAO survey

BAO Experiments : Past

Survey	Redshift	Years	Precision
2dFGRS	0.2	Completed (2005)	detection
SDSS-I/II	0.35	Completed (2005)	detection
SDSS-I/II	0.35	Completed	3.4%

BAO Experiments : Past, Present

Survey	Redshift	Years	Precision
2dFGRS	0.2	Completed	detection
SDSS-I/II	0.35	Completed	2%
WiggleZ	0.7	Completed	4%
BOSS	0.35, 0.55, 2.5	2009-2014	1.7% at z=0.55 today
BOSS	0.35, 0.55, 2.5	2009-2014	1% (0.35, 0.55), 1.5% (2.5)
HETDEX	3.0	2013-2015	1%

The BAO feature clearly detected

Scaled Correlation Function

The BAO Feature clearly detected

Outline

- Baryon Acoustic Oscillations, very quickly
- Recent Developments
 - How to build a better standard ruler?
 - The nonlinear evolution of the standard ruler
 - An application to DR7
 - First galaxy BAO results from BOSS
- BigBOSS : BAO in the future

BAO and structure formation

Nonlinear evolution

Nonlinear evolution

Reconstruction

Reconstruction

Reconstruction

Towards a linear density field

Simulations : Real Space

Simulations : Before

Simulations : After

NP et al, 2012

The two point correlations

Errors

SDSS I/II : Before

NP et al, 2012

SDSS I/II : After

NP et al, 2012

Significance : Before

3.3 sigma

Significance : After

4.2 sigma

DR7: Key Points

- First application of reconstruction to data
- Error reduced by factor of 1.7
- BAO smoothing reduced by 50%

Outline

- Baryon Acoustic Oscillations, very quickly
- Recent Developments
 - How to build a better standard ruler?
 - First galaxy BAO results from BOSS
 - What is BOSS?
 - Galaxies in BOSS
 - First BAO results from BOSS
 - BigBOSS : BAO in the future

What is BOSS?

- Baryon Oscillation Spectroscopic Survey
- BAO with galaxies, Lyman-alpha forest
- On going dark energy experiment
 - Funded by DoE, NSF, Sloan Foundation and Participating Institutions
- The definitive low redshift BAO measurement
- 1% distance measurements at z=0.35, 0.6
- First results with 1/3 of the data out!

A BOSS Factsheet

	BOSS
Telescope	SDSS 2.5m
Number of simultaneous spectra	1000
Survey duration	2009-2014
Total number of galaxies	1.5 million
Distance precision from galaxy BAO	1% at z=0.35, z=0.6
Figure of Merit	11

BOSS pushes out to higher redshift

... and surveys a larger volume

3200 deg² surveyed (of 10000)

BOSS measures the BAO standard ruler

Scaled Correlation Function

The BAO Feature clearly detected

The BAO detection is highly significant!

Highlights

- First BAO results from the Baryon Oscillation Spectroscopic Survey
- BAO feature seen more clearly than ever before (6.7 sigma detection)
- Most precise distance constraints from the BAO measurements to date (1.7%)
- A good year for SDSS!
 - Most precise BAO distance measurements!
 - 1.7% at z=0.57
 - 1.9% at z=0.35 (Feb 2012)

BAO measure the expansion history

The BAO Hubble Diagram

The BAO Hubble Diagram

Deconstructing the Friedmann Eqn.

$$H^{2}(a) = H_{0}^{2} \left[\Omega_{R} a^{-4} + \Omega_{M} a^{-3} + \right]$$

$$\Omega_k a^{-2} + \Omega_{DE} \exp\left\{3 \int_a^1 \frac{da'}{a'} \left[1 + w(a')\right]\right\}\right]$$

The matter density

$$H^{2}(a) = H_{0}^{2} \left[\Omega_{R} a^{-4} + \Omega_{M} a^{-3} + \right]$$

$$\Omega_k a^{-2} + \Omega_{DE} \exp\left\{3 \int_a^1 \frac{da'}{a'} \left[1 + w(a')\right]\right\}\right]$$

Measuring H₀; consistency

Measuring the curvature

$$H^{2}(a) = H_{0}^{2} \left[\Omega_{R} a^{-4} + \Omega_{M} a^{-3} + \right]$$

$$\Omega_k a^{-2} + \Omega_{DE} \exp\left\{3 \int_a^1 \frac{da'}{a'} \left[1 + w(a')\right]\right\}\right]$$

Breaking the geometrical degeneracy

Comparing BAO to SN

Measuring the eqn of state

$$H^{2}(a) = H_{0}^{2} \left[\Omega_{R} a^{-4} + \Omega_{M} a^{-3} + \right]$$

$$\Omega_k a^{-2} + \Omega_{DE} \exp\left\{3 \int_a^1 \frac{da'}{a'} \left[1 + w(a')\right]\right\}\right]$$

Measuring the eqn of state

Comparing BAO to SN

The complementarity of BAO and SN

Measuring the Hubble constant

Resolving this "discrepancy"

Outline

- Baryon Acoustic Oscillations, very quickly
- Recent Developments
 - How to build a better standard ruler?
 - First galaxy BAO results from BOSS
 - BigBOSS : BAO in the future

BAO Experiments : Past, Present and Future

Survey	Redshift	Years	Precision
2dFGRS	0.2	Completed	detection
SDSS-I/II	0.35	Completed	2%
WiggleZ	0.7	Completed	4%
BOSS	0.35, 0.55, 2.5	2009-2014	1.7% at z=0.55 today
BOSS	0.35, 0.55, 2.5	2009-2014	1% (0.35, 0.55), 1.5% (2.5)
HETDEX	3.0	2013-2015	1%
eBOSS	1.0	2014-2018?	1%
BigBOSS	0.2-1.7	2017??	<1% in multiple bins
WFIRST	1.5 – 2.5?	??	<1% in multiple bins
Euclid	0.7 – 2.0	2020	<1% in multiple bins

BOSS v BigBOSS

	BOSS	BigBOSS
Telescope	SDSS 2.5m	KPNO 4m
Number of simultaneous spectra	1000 (by hand)	5000 (by robot)
Survey duration	2009-2014	2017-2022
Total number of galaxies	1.5 million	20 million
Redshifts	0.2 < z < 0.7	0.5 < z < 3.5
Distance precision from galaxy BAO	~1% in 2 redshift bins	~1% in 35 bins
Figure of Merit	11	132

BigBOSS is **BIG**

Distance constraints

- **BigBOSS** has <1% distance errors over the widest redshift Probe the
- expansion history over the widest redshift range

BigBOSS is competitive with space missions

	Figure of Merit
Today (* all probes *)	10
BOSS	11
BigBOSS	132
Space-based missions	126 (WFIRST), 145 (Euclid)

Beyond dark energy with BigBOSS

Results

- It's been a busy year
 - First results from B(aryon) O(scillation) S(spectroscopic) S(urvey)
 - Galaxy BAO results at z=0.55
 - Lyman-alpha forest measurements at z=2.5
 - This talk will focus on the first.
 - Improvements in analysis techniques
 - Towards precision measurements
 - Lots of results expected over the next years