Recent CMB data and Dark Matter properties

XIX IFT Xmas Workshop, 12.12.2013 J. Lesgourgues (EPFL, CERN, LAPTh)

12.12.2013

CMB & DM – J. Lesgourgues

What could Dark Matter be made of ?

- Dominant component (observed) behaving like a cold component
 - CDM particles
 - Or WDM particles with high mass
 - Or several cold/warm particles

Totally unknown nature: WIMPS, non-weakly interacting; annihilating, decaying, stable; fluid, self-interacting... (non-particle, like modified gravity or scalar field DM are very constrained...)

What could Dark Matter be made of ?

- Dominant component (observed) behaving like a cold component
 - CDM particles
 - Or WDM particles with high mass
 - Or several cold/warm particles

Totally unknown nature: WIMPS, non-weakly interacting; annihilating, decaying, stable; fluid, self-interacting... (non-particle, like modified gravity or scalar field DM are very constrained...)

- Subdominant component (not observed) not behaving like a cold component
 - Flavor neutrinos (theoretically motivated as small HDM component)
 - But mass not yet observed. Could in principle be unobservable, although...
 - Other light relics (sterile neutrinos, axions, etc...)

CMB as a probe of Dark Matter

- Evidence for missing mass of non-relativistic species (like rotation curves!)
 - CMB measures accurately: baryon density (first peaks asymmetry), time of radiation-matter equality (first peaks height)
 - $\omega_b \sim 0.022$, $\omega_m \sim 0.142$, need $\omega_{dm} \sim 0.1199 \pm 0.0027$ (68%CL) : 44 σ detection! Planck XVI 2013
 - In minimal cosmology (collisionless DM), this is the only effect (no probe of DM gravitational interactions)
 Weinberg 2002, Voruz, JL & Tram in prep.
 - Supported by Large Scale Structure (matter spectrum shape) and astrophysics

CMB as a probe of Dark Matter

- Evidence for missing mass of non-relativistic species (like rotation curves!)
 - CMB measures accurately: baryon density (first peaks asymmetry), time of radiation-matter equality (first peaks height)
 - ω_{b} ~0.022, ω_{m} ~0.142, need ω_{dm} ~0.1199 ± 0.0027 (68%CL) : 44 σ detection! Planck XVI 2013
 - In minimal cosmology (collisionless DM), this is the only effect (no probe of DM gravitational interactions)
 Weinberg 2002, Voruz, JL & Tram in prep.
 - Supported by Large Scale Structure (matter spectrum shape) and astrophysics
- Does it say anything more on DM properties?
 - Cold or warm ? No, LSS can say something, not CMB
 - Self-interactions ? idem -
 - Completely stable, small annihilation rate or decay rate ? Yes
 - Very small interactions with other species ? Yes

12.12.2013

CMB as probe of DM annihilation or decay

- DM annihilation
 - \rightarrow hadrons, leptons, gauge bosons \rightarrow ... \rightarrow electrons, neutrinos, photons
 - Ionization of thermal plasma
 - Heating of thermal plasma
- (unless 100% in neutrinos)

- Hydrogen excitation
- Modification of recombination and reionisation history

CMB as probe of DM annihilation or decay

• DM annihilation

- \rightarrow hadrons, leptons, gauge bosons \rightarrow ... \rightarrow electrons, neutrinos, photons
 - Ionization of thermal plasma
 - Heating of thermal plasma
 - Hydrogen excitation
- (unless 100% in neutrinos)
- Modification of recombination and reionisation history
- Impact on CMB; results compete with DM indirect detection bounds

N. Padmanabhan and D. P. Finkbeiner 2005; L. Zhang, X.-L. Chen, Y.-A. Lei, and Z.-G. Si 2006; A. Natarajan and D. J. Schwarz 2008; A. V. Belikov and D. Hooper 2009; M. Cirelli, F. Iocco, and P. Panci 2009; S. Galli, F. Iocco, G. Bertone, and A. Melchiorri 2009; T. R. Slatyer, N. Padmanabhan, and D. P. Finkbeiner 2009; A. Natarajan and D. J. Schwarz 2010; S. Galli, F. Iocco, G. Bertone, and A. Melchiorri 2011; D. P. Finkbeiner, S. Galli, T. Lin, and T. R. Slatyer 2011; G. Hutsi, J. Chluba, A. Hektor, and M. Raidal 2011; A. Natarajan 2012; G. Giesen, J. Lesgourgues, B. Audren, Y. Ali-Haimoud 2012; T. Slatyer 2013; J. Cline and P. Scott 2013; C. Dvorkin, K. Blum and M. Zaldarriaga 2013; Planck XVI 2013; L. Lopez-Honorez, O. Mena, S. Palomares-Ruiz and A. Vincent 2013; Chluba 2013; S. Galli, T. Slatyer, M. Valdes and F. Iocco 2013; R. Diamanti, L. Lopez-Honorez, O. Mena, S. Palomares-Ruiz and A. Vincent 2013; M. Madhavacheril, N. Sehgal and T. Slatyer 2013;

CMB & DM – J. Lesgourgues

CMB as probe of DM annihilation or decay

- DM decay
 - Should have similar effects
 - Probe DM lifetime instead of annihilation cross-section

L. X.-L. Chen and M. Kamionkowski 2004; K. Ichiki, M. Oguri, and K. Takahashi 2004; L. Zhang, X. Chen, M. Kamionkowski, Z.-g. Si, and Z. Zheng 2007; S. Kasuya and M. Kawasaki 2007; S. Yeung, M. Chan, and M.-C. Chu 2012

• But CMB constraints not as strong as those from cosmic ray

N. F. Bell, A. J. Galea, and K. Petraki 2010; M. Cirelli, E. Moulin, P. Panci, P. D. Serpico, and A. Viana 2012

- DM annihilation
 - f(z) = fraction of released energy going into ionization and heating at redshift z
 - Computed for wide range of WIMP candidates with different decay channels:

f(z=2500)=0.2 to 0.9, f(z=0) 2 to 5 times smaller

T. R. Slatyer, N. Padmanabhan, and D. P. Finkbeiner 2009

$$\begin{aligned} \frac{dE}{dVdt} \Big|_{\rm DM} &(z) = n_{pairs} \cdot P_{\rm ann} \cdot E_{\rm ann} \cdot f(z) = \frac{n_{\rm DM}}{2} \cdot \langle \sigma v \rangle \cdot n_{\rm DM} \cdot 2m_{\rm DM} c^2 \cdot f(z) \\ &= \rho_{\rm c}^2 c^2 \Omega_{\rm DM}^2 (1+z)^6 f(z) \frac{\langle \sigma v \rangle}{m_{\rm DM}}. \end{aligned}$$

12.12.2013

CMB & DM – J. Lesgourgues

- DM annihilation
 - f(z) = fraction of released energy going into ionization and heating at redshift z
 - Computed for wide range of WIMP candidates with different decay channels:

f(z=2500)=0.2 to 0.9, f(z=0) 2 to 5 times smaller

T. R. Slatyer, N. Padmanabhan, and D. P. Finkbeiner 2009

$$\begin{aligned} \frac{dE}{dVdt} \Big|_{\rm DM} &(z) = n_{pairs} \cdot P_{\rm ann} \cdot E_{\rm ann} \cdot f(z) = \frac{n_{\rm DM}}{2} \cdot \langle \sigma v \rangle \cdot n_{\rm DM} \cdot 2m_{\rm DM} c^2 \cdot f(z) \\ &= \rho_{\rm c}^2 c^2 \Omega_{\rm DM}^2 (1+z)^6 f(z) \frac{\langle \sigma v \rangle}{m_{\rm DM}} \cdot p_{\rm ann}(z) \end{aligned}$$

12.12.2013

• Ionization and excitation modify the recombination history

- DM annihilation effects:
 - 1. High z: small delay in recombination: shift in peak scale
 - l slightly enhanced Thomson scattering rate: increased Silk damping
 - 2. Intermediate z: increased probability of rescattering:
 - suppression of CMB fluctuations on sub-Hubble scale,
 - regeneration of polarisation anisotropies near that scale (peaks near z=600)

- DM annihilation effects: •
 - High z: 1.
 - small shift in recombination redhsift: shift in peak scale slightly enhanced Thomson scattering rate: increased Silk damping
 - 2. Intermediate z: increased probability of rescattering:
 - suppression of CMB fluctuations on sub-Hubble scale,
 - regeneration of polarisation anisotropies near that scale (peaks near z=600)

- DM annihilation effects:
 - 3. Small z: DM concentrates in halos,
 - energy injection enhanced, contribution to reionisation
 - ... but lots of uncertainty on halo formation parameters

• DM annihilation effects:

FÉDÉRALE DE LAUSANNE

- 3. Small z: DM concentrates in halos,
 - l energy injection enhanced, contribution to reionisation
 - ... but lots of uncertainty on halo formation parameters

• WMAP bounds:

CMB & DM – J. Lesgourgues

• WMAP results can exclude indirect-search-motivated models:

Candidate invoked to fit Pamela+Fermi positron anomaly, with Summerfeld enhancement leading to 10⁻²⁴ today Cirelli et al. 2009 Galli et al. 2009 Slatyer et al. 2009

• Current limits and forecasts:

Madhavasheril et al. 2013

- DM scattering rate(s) probed by:
 - Relic density calculations
 - Indirect detection & CMB
 - Direct detection experiments

only annihilation
or decay rate
mainly with quarks

- DM scattering rate(s) probed by:
 - Relic density calculations
 - Indirect detection & CMB
 - Direct detection experiments

only annihilation
or decay rate
mainly with quarks
limited mass range

- Cosmological perturbations (CMB and Large Scale Structure power spectra)
 - Probes elastic cross-section with γ , b, ν ,
 - "universal": for any mass, annihilating or decaying
 - negligible for standard WIMPs, but several models with larger interactions (millicharge, magnetic/dipole moment, ...)
 - also model-dependent: need to assume redshift-dependence of $\boldsymbol{\sigma}$

12.12.2013

- DM scattering rate(s) probed by:
 - Relic density calculations
 - Indirect detection & CMB
 - Direct detection experiments

only annihilation
or decay rate
mainly with quarks
limited mass range

- Cosmological perturbations (CMB and Large Scale Structure power spectra)
 - Probes elastic cross-section with γ , b, ν ,
 - "universal": for any mass, annihilating or decaying
 - negligible for standard WIMPs, but several models with larger interactions (millicharge, magnetic/dipole moment, ...)
 - also model-dependent: need to assume redshift-dependence of $\boldsymbol{\sigma}$
 - Collisional damping erasing CMB and/or matter fluctuations below given scale

C. Boehm, A. Riazuelo, S. H. Hansen and R. Schaeffer, 2001; X. I. Chen, S. Hannestad and R. J. Scherrer, 2002; K. Sigurdson, M. Doran, A. Kurylov, R. R. Caldwell and M. Kamionkowski, 2004, 2006; C. Boehm and R. Schaeffer, 2004; P. Serra, F. Zalamea, A. Cooray, G. Mangano and A. Melchiorri 2009; R. J. Wilkinson, J. Lesgourgues and C. Bœhm, 2013; C. Dvorkin, K. Blum, M. Kamionkowski 20013;

12.12.2013

CMB & DM – J. Lesgourgues

- Extra diffusion damping, modified plasma sound speed
- SPT saw anomalous low damping tail! N_{eff}, tilt running... or interactions?

- DM- γ elastic scattering cross section $u \equiv \left[\frac{\sigma_{\rm DM-\gamma}}{\sigma_{\rm Th}}\right] \left[\frac{m_{\rm DM}}{100 \text{ GeV}}\right]^{-1}$
- From first Planck release:

• Constant u:
$$\begin{cases} u \le 1.2 \times 10^{-4} \text{ (at 68\% CL)} \\ \sigma_{\text{DM}-\gamma} \le 8 \times 10^{-31} (m_{\text{DM}}/\text{GeV}) \text{ cm}^2 \end{cases}$$

- Light (< GeV): at most weak. Interesting for DM not annihilating into SM (e.g. asymmetric)
- Heavy (>GeV): DM can interact more than weakly

- DM- γ elastic scattering cross section $u \equiv \left[\frac{\sigma_{\rm DM}-\gamma}{\sigma_{\rm Th}}\right] \left[\frac{m_{\rm DM}}{100 \text{ GeV}}\right]^{-1}$
- From first Planck release:

• Constant u:
$$\begin{cases} u \le 1.2 \times 10^{-4} \text{ (at 68\% CL)} \\ \sigma_{\text{DM}-\gamma} \le 8 \times 10^{-31} (m_{\text{DM}}/\text{GeV}) \text{ cm}^2 \end{cases}$$

- Light (< GeV): at most weak. Interesting for DM not annihilationg into SM (e.g. asymetric)
- Heavy (>GeV): DM can interact more than weakly
- Increasing u ~ T² (dependence on photon energy): today

$$\sigma_{\mathrm{DM}-\gamma} \leq 6 \times 10^{-40} \left(m_{\mathrm{DM}}/\mathrm{GeV} \right) \,\mathrm{cm}^2$$

(gives looser bounds at high redhsift)

- DM- γ elastic scattering cross section $u \equiv \left[\frac{\sigma_{\rm DM-\gamma}}{\sigma_{\rm Th}}\right] \left[\frac{m_{\rm DM}}{100 \text{ GeV}}\right]^{-1}$
- Potential progress with better foreground removal, polarisation, or large scale structure:

12.12.2013

- DM- γ elastic scattering cross section $u \equiv \left[\frac{\sigma_{\rm DM-\gamma}}{\sigma_{\rm Th}}\right] \left[\frac{m_{\rm DM}}{100 \text{ GeV}}\right]^{-1}$
- Potential progress with better foreground removal, polarisation, or large scale structure:

12.12.2013

• DM-b elastic scattering cross section after Planck

Dvorkin et al. 1311.2937

σ ~ V ⁿ	n	CMB $(95\%$ CL, cm ² /g)	$CMB + Lyman-\alpha (95\% CL, cm^2/g)$	λ (MW)]
	-4	1.8×10^{-17}	1.7×10^{-17}	27 Gpc	Millicharge
	-2	3.0×10^{-9}	6.2×10^{-10}	$738 {\rm Mpc}$	Dipole moment
	-1	1.6×10^{-5}	1.4×10^{-6}	$313~{\rm Mpc}$	
	0	0.12	3.3×10^{-3}	$138 {\rm \ Mpc}$	Massive boson (Yukawa)
	+2	$1.3 imes 10^5$	$9.5 imes 10^3$	46 Mpc]

• SM-v elastic cross-section: weaker bounds

Serra et al. 2009

12.12.2013

CMB & DM – J. Lesgourgues

Subdominant DM: Flavor neutrinos

Neutrino mass effect on CMB:

- $M_v = \Sigma m_v > 0.06 \text{ eV}$ (NH) or 0.1 eV (IH). At least two non-relativistic neutrinos today. But mass still below Planck sensitivity although there are anomalies...
- Neutrinos contribute to radiation at early time and non-relativistic matter at late time: $\omega_v = M_v / 94eV$.

Subdominant DM: Flavor neutrinos

Neutrino mass effect on CMB:

- $M_v = \Sigma m_v > 0.06 \text{ eV}$ (NH) or 0.1 eV (IH). At least two non-relativistic neutrinos today. But mass still below Planck sensitivity although there are anomalies...
- Neutrinos contribute to radiation at early time and non-relativistic matter at late time: $\omega_v = M_v / 94 eV$.
- If m_v < 0.6 eV, neutrinos are relativistic at decoupling. Claim that CMB can only probe higher masses is wrong for several reasons.
- "effect of m_v " depends on what is kept fixed.

Subdominant DM: Flavor neutrinos

Neutrino mass effect on CMB:

- $M_v = \Sigma m_v > 0.06 \text{ eV}$ (NH) or 0.1 eV (IH). At least two non-relativistic neutrinos today. But mass still below Planck sensitivity although there are anomalies...
- Neutrinos contribute to radiation at early time and non-relativistic matter at late time: $\omega_v = M_v / 94 eV$.
- If m_v < 0.6 eV, neutrinos are relativistic at decoupling. Claim that CMB can only probe higher masses is wrong for several reasons.
- "effect of m_v " depends on what is kept fixed.
- Leave both "early cosmology" and angular diameter dist. to decoupling invariant (fixing photon, cdm and baryon densities, while tuning H_0 , Ω_{Λ})

Flavor neutrinos

Neutrino mass effect on CMB:

• Leave both "early cosmology" and angular diameter dist. to decoupling invariant (fixing photon, cdm and baryon densities, while tuning H_0 , Ω_{Λ})

Flavor neutrinos

Neutrino mass effect on CMB:

 not observed by Planck! Especially because spectrum has low peak contrast and would like even more lensing than in ΛCDM...

```
CMB alone (Planck+WP+HighL):

\Sigma m_v < 0.66 \text{eV} (95%CL)

With BAO:

\Sigma m_v < 0.23 \text{eV} (95%CL)
```

- Compatible with bounds from galaxy surveys and Lyman- $\!\alpha$
- Anomalies: lensing extraction, galaxy shear, cluster mass function

SZ cluster count

Planck implications for cosmology – J. Lesgourgues

planck

SZ cluster count

 Using SZ cluster count from Planck, issue with bias parameter (bias between SZ flux Y and true mass)

Planck XX, 2013; Battye & Moss 2013;

... systematics or evidence for neutrino mass ?

Same issue with cluster count from other catalogues

Fig. 12. Cosmological constraints when including neutrino masses $\sum m_v$ from: *Planck* CMB data alone (black dotted line); *Planck* CMB + SZ with 1 – *b* in [0.7, 1] (red); *Planck* CMB + SZ + BAO with 1 – *b* in [0.7, 1] (blue); and *Planck* CMB + SZ with 1 – *b* = 0.8 (green).

G

- exaggerated effect of a huge cluster:
- In fact, only 2'-3' deflections, coherent over large scales: invisible by eye
- Lensing potential = projected gravitational field (with some kernel: sensitive to structures at z~1-3)
- Induces non-gaussianity with very specific correlations. Can be extracted with specific "quadratic estimator" (= 4point correlations)
- Proposed by Hu & Okamoto (2001) First success in 2012 (SPT-ACT)

Lensing potential map:

Low signal-to-noise, but correlates at high level with different tracers of LSS (20 sigma with NVSS quasars, 10 sigma with SDSS LRG, 42 sigma with Planck's CIB)

- Lensing power spectrum consistent with ΛCDM
- Helps removing degeneracies and measuring extended model parameters with Planck alone

Planck implications for cosmology – J. Lesgourgues

- Lensing power spectrum consistent with ΛCDM
- Helps removing degeneracies and measuring extended model parameters with Planck alone

```
CMB alone (Planck+WP+HighL):
```

```
\Sigma m_v < 0.66 eV (95%CL)
```

With lensing:

```
\Sigma m_v < 0.85 eV (95%CL)
```


Planck implications for cosmology – J. Lesgourgues

38

planck

Other light relics

Anomalies could be related flavor neutrinos,

or to mass of other relics!!

12.12.2013

CMB & DM – J. Lesgourgues

Is $N_{eff} > 3$?

- N_{eff} constraints driven by CMB damping tail
 - WMAP+SPT see anomalously low tail: N_{eff} > 3 at 2 sigma
 - Planck and Planck+BAO well compatible with 3.046 at 1 sigma
 - Planck (+BAO) + HST : enforce higher H₀, hence also higher N_{eff}

25.03.2013

Planck implications for cosmology – J. Lesgourgues

40

planck

Light sterile neutrinos

CMB only (Planck + WP + highL) analysis for 3+1 case:

Light sterile neutrinos

CMB only (Planck + WP + highL) analysis for 3+1 case:

25.03.2013

planck

Light sterile neutrinos

CMB only (Planck + WP + highL) analysis for 3+1 case:

Conclusion

interplay between

cosmological perturbations and particle physics even more rich than thought 15 years ago...

lot more to come from Planck

from next generation satellite (?) ...

and from large scale structure!

25.03.2013

Planck implications for cosmology – J. Lesgourgues

45

planck