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How the universe can have such a 

small cosmological constant ?

• String theory has many meta-stable vacua, 
10500 or more.

• They span a wide range of CC.

• Some of them have very small CC.

• This is the cosmic landscape.

• It is easy to convince ourselves that one of 
the string vacuum site in the landscape 
describes our universe.



Puzzle : of all sites, why we end 
up in one with such a small CC ?

If we start at any meta-stable site with a 
long lifetime, we’ll still be there now.

Eternal inflation !



What are the conditions under which a 
low CC universe will emerge naturally ?

very short 
lifetimes

exponentially 
long lifetimes

High CC sites

Low CC sites



Suppose generic meta-stable dS sites have very short 
lifetimes while sites with small CC have long lifetimes.

 If we start at a generic site, it will quickly decay (and 
this decay process can repeat any number of times) 
until the universe reaches a site with a low CC and 

stays there.

EVEN BETTER :

Generic meta-stable dS sites have very short lifetimes (less than 
1 second) while sites with CC below a certain value have 

exponentially long lifetimes (larger than the age of the universe).



Such a scenario is entirely possible.

• Vastness of the Landscape

• Resonance tunneling

• Topography of the Landscape



TA→C ∼ 1

TA→B ∼ TB→C

Resonance Tunneling :

are exponentially small
Tunneling 

probabilities

When the condition is right :



Resonance tunneling
Merzbacher, Quantum Mechanics, Chapter 7

2 Narrow Resonance Tunneling

This review follows closely that in Ref.[3]. Consider the 1-dimensional quantum me-
chanical system of a particle with unit mass

S =
∫

dt

[
1
2
(
dx

dt
)2 − V (x)

]
(1)

where the potential V (x) is shown in Figure 1. The tunneling probability, or transmis-
sion coefficient, of a particle with energy E is straightforward to obtain in the WKB
approximation.

Beginning with the barrier between A and B, we are interested in the tunneling
probability of A to B, ΓA→B . Let the coefficients of the left- and the right-moving
components of the wavefunction in A be αL and αR respectively, and that in B be βL

and βR respectively. The relation between these coefficients are given by the WKB
connection formulas,

(
αR

αL

)
=

1
2

(
Θ + Θ−1 i (Θ−Θ−1)
−i (Θ−Θ−1) Θ + Θ−1

)(
βR

βL

)
(2)

where, in the WKB approximation,

Θ " 2 exp
( ∫ x2

x1

dx
√

2(V (x)− E)
)

, (3)

where x1 and x2 are the classical turning points. Assuming that there is no wave
incident from the right in B, i.e., βL = 0, the tunneling probability follows from the
transmission coefficient from A to B, given by

TA→B =
∣∣∣∣
βR

αR

∣∣∣∣
2

= 4
(

Θ +
1
Θ

)−2

" 4
Θ2

(4)

Generically, Θ is exponentially large, so TA→B is exponentially small. This is the
well-known WKB tunneling formula.

Next we consider the probability of tunneling from A to C via B. The matrix
relating the coefficients of the incoming wave from A to C is given by

1
4

(
Θ + Θ−1 i (Θ−Θ−1)
−i (Θ−Θ−1) Θ + Θ−1

)(
e−i W 0
0 ei W

)(
Φ + Φ−1 i (Φ− Φ−1)
−i (Φ− Φ−1) Φ + Φ−1

)

where, in the WKB approximation, W is the integral over B

W =
∫ x3

x2

√
2(E − V (x)) dx (5)

and

Φ = 2 exp
( ∫ x4

x3

dx
√

2(V (x)− E)
)

(6)
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WKB connection formula
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Figure 1: Tunneling from one site to another site in the cosmic landscape. Here, the
potential V (x) is plotted as a function of x. Although tunneling probabilities from A to
B and from B to C are both exponentially suppressed, tunneling probability from A to C
can be of order unity, a consequence of the resonance effect.

are extremely long lived. The puzzle now becomes why we end up at a site with such
a small cosmological constant, when numerous meta-stable vacua with much larger
cosmological constant are present. Here I like to give a possible dynamical argument
how this may happen. A key ingredient is the vastness of the landscape, precisely the
property usually thought to be the origin of the puzzle.

What properties the string landscape should have, so that a universe with a very
small cosmological constant is dynamically natural ? Suppose the smaller is the vacuum
energy of a meta-stable site, the longer is its lifetime. So a site with a large vacuum
energy decays quickly to a small vacuum energy site with a long lifetime. Let us go
one step further. Suppose typical meta-stable vacuum sites in the cosmic landscape
with generic cosmological constants have very short lifetimes (say, less than 1 second),
while typical lifetimes of sites with cosmological constants below a specific value Λc are
exponentially long (say, long compared to the age of our universe). In this scenario,
even if the universe starts at a large cosmological constant site, it would decay rapidly
and repeatedly if necessary until it reaches a site with a cosmological constant below
Λc. If the landscape has this property, with Λ0 ! Λc, then our universe with such
a small Λ0 is dynamically natural. Here I like to argue that this scenario is entirely
possible.

The basic observation is simple. Although tunneling from one vacuum to another
typically takes an exponentially long time, it is well-known that, when the condition is
right, the tunneling can be very efficient [3], that is, with tunneling probability equal to
unity. Consider Figure 1 in a quantum mechanical problem. In general, all tunneling
probabilities Ti→j are exponentially small. However, resonance effects can change
that. Suppose we start at site A. The tunneling probability TA→C ∼ 1 if (1) the B site
satisfies a resonance condition, that is, the initial energy is precisely that of a bound
state eigenvalue in B, and (2) the exponentially small tunneling probabilities are equal :
TA→B ∼ TB→C , which is the condition for a narrow and so sharply peaked resonance.
This is the narrow resonance condition. Together, they form the efficient tunneling

2

x2x1 x3
x4



where x3 and x4 are the respective classical turning points at the barrier between B
and C. In general, TB→C = 4/Φ2 is also exponentially small. Now, the tunneling
probability (transmission coefficient) from A to C via B is given by

ΓA→C = 4
(

(ΘΦ +
1

ΘΦ
)2 cos2 W + (Θ/Φ + Φ/Θ)2 sin2 W

)−1

. (7)

In the absence of B, W = 0 so TA→C is very small,

TA→C ! 4Θ−2Φ−2 = TA→BTB→C/4 (8)

However, if W satisfies the quantum condition for bound states in B,

W = (nB + 1/2)π (9)

then cos W = 0, and the tunneling probability approaches a small but not necessarily
exponentially small value

TA→C =
4

(Θ/Φ + Φ/Θ)2
(10)

This is the resonance effect. If TA→B and TB→C are very different, we see that TA→C

is given by the smaller of the ratios between TA→B and TB→C .
Following Eq.(10), we see that

TA→C → 1 (11)

as

TA→B → TB→C (12)

We call this the narrow resonance condition. Together with the resonance condition
(9), this forms the efficient resonance tunneling condition. This means that tunneling
from A to C passing through an appropriate B may not be suppressed at all if the
efficient tunneling condition ((9) and (12)) is satisfied.

For large Θ, so that the penetration through the barriers is strongly suppressed,
the transmission coefficient has sharp narrow resonance peaks at the values in Eq.(9).
Treating the resonance shape as a function of the incoming particle energy, the res-
onance has a width ∆E. Let the separation between neighboring resonances be E0,
then a good estimate of the probability of hitting a resonance is given by

P (A→ C) =
∆E

E0
! 2

πΘΦ

(
Θ
Φ

+
Φ
Θ

)
=

1
2π

(TA→B + TB→C) (13)

We see that the probability of hitting a resonance is given by the larger of the two
decay probabilities, TA→B or TB→C , and the average tunneling probability is given by

< TA→C >= P (A→ C)TA→C ∼
TA→BTB→C

TA→B + TB→C
(14)

which is essentially given by the smaller of the two tunneling probabilities.
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How likely to hit a resonance ?

Average tunneling 
probability is 

exponentially larger 
than the naive estimate.
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QM to QFT/Gravity

Resonance tunneling happens in QFT 
as well as in Gravity

φi(r, t) → φi(t) = xi(t)

U(φi) → V (xi)

A
B

C

Tunneling via different paths

?



Application to The Landscape

• Tunneling from a dS site to an AdS site is 
ignored.

• Tunneling from a dS site to another dS site 
with a larger CC is ignored.

• Evolution in a classically allowed region 
should be treated quantum mechanically.

• Sum over tunneling paths.



n-step tunneling channel :

Tunneling probability is decreasing rapidly but still 
exponentially larger than the naive estimate.

efficient resonance tunneling requires that TA→B and TB→C to be within comparable
orders of magnitude.

(6) In the quantum mechanical problem discussed in Sec. 2, the average tunneling
probability is for a particle tunneling from A to C with different energies (or a broad
wave packet). We may re-interpret the average tunneling probability (14) as that with
fixed energy but tuning the shape of B. In the application to the landscape here, we
are considering the tunneling of the one and only wavefunction of the universe from A
to different sites Cs via different Bs. Here, the average is over all tunneling channels
from A to different Cs. So the properties in the quantum mechanical problem is only
qualitatively meaningful here.

(7) Resonance tunneling can happen repeatedly as the universe moves towards
lower vacuum energy sites. It is more appropriate to treat the process as a single
tunneling via a series of sites. That is, we should consider tunneling channels like
A → B1 → B2 → ..... → Bn−1 → C, where the evolution in C may be treated
classically. The tunneling probability of such a channel is TA→C(n), where n ≥ 2 is the
number of steps involved. In this case, the tunneling probability depends on all the
sites Bi and the barriers between them and A and C. Without the resonance effect,
we expect the naive tunneling probability to be

T̂A→C(n) # TA→B1TB1→B2 ....TBn−1→C (17)

that is, the product of the individual tunneling probabilities. When all Ti→j are com-
parable, i.e., T # Ti→j , then T̂A→C(n) ∼ Tn. For comparison, it is useful to get an
order of magnitude estimate of the probability of efficient tunneling from A to C when
the resonance effect is taken into account.

The resonance condition (9) is simply an interference that leads to the cancellation
of the large suppressions in the tunneling probability. This same effect can take place
in a multi-step tunneling channel. Let the phase in region Bi be Wi. We note that the
resonance condition is co-dimenion one in the (n − 1)-dimensional Wi-space. For the
n = 2 case discussed in Sec. 2, the resonance conditions (9) are points along the W
line. For n = 3, the resonance conditions are curves in the W1 −W2 space, and so on.
That is, satisfying the resonance condition requires only one condition among the W s.
This means that the probability of hitting a resonance is not suppressed in the n-step
tunneling. However, the probability of reaching efficient tunneling decreases.

Crudely speaking,

< TA→C(n) >= P (A→ C)TA→C ∼Min

(
Tmin,

√
T̂A→C(n)

)
(18)

where Tmin is the smallest of the individual Ti→j and < TA→C(n) > is roughly equal
to Tmin or the square root of the products of the individual tunneling probabilities,
whichever is smaller. Although this is still exponentially small, it is exponentially
bigger than that in the case where resonance effects are ignored, T̂A→C ∼ Tn (17).
So the probability to have an efficient tunneling via n steps, in the case where all
individual Ti→j are of comparable orders of magnitude, is crudely given by

P (A→ C) ∼
(
TA→B1 ....TBn−1→C

)1/2
n ≥ 2 (19)
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Here, n = 2 reproduces Eq.(13).
Now we are ready to discuss the tunneling probability of any site A in the string

landscape. The tunneling probability of any given meta-stable site A is simply the sum
of its tunneling probability to any other site C, that is TA =

∑
C TA→C , where the sum

is over sites with 0 ≤ ΛC < ΛA. Since typical tunneling probabilities are exponentially
suppressed, so TA ∼ 1 only if there is at least one tunneling channel satisfying the
efficient tunneling condition. The number of efficient tunneling channels available to
A may be estimated to be

N(A) =
∑

C

P (A→ C) ΛC < ΛA (20)

where P (A → C) is the probability that the tunneling A → C is efficient (for any
n ≥ 2). If the string landscape has an infinite number of meta-stable sites, then there
is no guarantee that this sum converges. However, the estimate for P (A → C) (19)
above suggests that contributions from sites far from site A are heavily suppressed so
the sum is likely to converge. We shall assume this is the case for all sites we are
interested in in the landscape.

Although each P (A→ C) is typically exponentially small, the sum over C covers the
whole landscape, so the resulting N(A) needs not be small. The number of channels
with just n = 2 steps is probably exponentially large due to the large number of
moduli and other scalar modes, which can number from dozens to hundreds. For a
fixed tunneling channel, there are many paths x can take. This may provide a huge
enhancement of TA→C and so P (A → C). It would be important to estimate this.
Furthermore, the number of tunneling channels available should grow rapidly as n
increases.

If N(A) > 1, then TA ∼ 1 and this classically meta-stable site is actually very
unstable. In fact, its decay may be so fast that eternal inflation is absent. This would
be the case if its lifetime is shorter than the corresponding Hubble time. If N(A) < 1,
then no efficient tunneling is likely and TA would be exponentially small. Such a site
would have exponentially long lifetime.

Since the upper bound of the sum over all sites is cut off by ΛA, we expect N(A)
to be sensitive to ΛA. Because the number of tunneling channels contributing to the
sum in N(A) decreases as ΛA decreases, one may conjecture that, statistically at least,
sites with large Λs tend to decay much more rapidly compared to sites with small Λs.
This view of the landscape is quite different from the usual picture.

4 Conditions for a Solution to the Cosmological Con-
stant Problem

In principle, more detailed studies of the string landscape will yield the topography of
the landscape around any site : the distribution of sites and their vacuum energies as a
function of the path length x as well as the barriers between them. One can then check
the convergence of the sum in Eq.(20) and evaluate N(A). Using these informations,
we can estimate how likely our universe would end up in some specific sites. This is a
challenging but not insurmountable problem. Since this information is not yet available,
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The number of efficient tunneling channels available to A :

The number of sites C available to A is exponentially large.

Suppose the distribution of vacua is independent of CC. 
A site with GUT scale CC has about 10100 more channels 

to tunnel to than our universe has. 



Both the number of decay sites C and the number 
of tunneling channels to C open to a site A 

decreases as its CC decreases.
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with just n = 2 steps is probably exponentially large due to the large number of
moduli and other scalar modes, which can number from dozens to hundreds. For a
fixed tunneling channel, there are many paths x can take. This may provide a huge
enhancement of TA→C and so P (A → C). It would be important to estimate this.
Furthermore, the number of tunneling channels available should grow rapidly as n
increases.

If N(A) > 1, then TA ∼ 1 and this classically meta-stable site is actually very
unstable. In fact, its decay may be so fast that eternal inflation is absent. This would
be the case if its lifetime is shorter than the corresponding Hubble time. If N(A) < 1,
then no efficient tunneling is likely and TA would be exponentially small. Such a site
would have exponentially long lifetime.

Since the upper bound of the sum over all sites is cut off by ΛA, we expect N(A)
to be sensitive to ΛA. Because the number of tunneling channels contributing to the
sum in N(A) decreases as ΛA decreases, one may conjecture that, statistically at least,
sites with large Λs tend to decay much more rapidly compared to sites with small Λs.
This view of the landscape is quite different from the usual picture.

4 Conditions for a Solution to the Cosmological Con-
stant Problem

In principle, more detailed studies of the string landscape will yield the topography of
the landscape around any site : the distribution of sites and their vacuum energies as a
function of the path length x as well as the barriers between them. One can then check
the convergence of the sum in Eq.(20) and evaluate N(A). Using these informations,
we can estimate how likely our universe would end up in some specific sites. This is a
challenging but not insurmountable problem. Since this information is not yet available,
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The Quantum Landscape

let us state the properties of the landscape that would lead to our today’s universe,
that is, a meta-stable universe with an exponentially small cosmological constant and
exponentially long lifetime.

The number of channels contributing to the sum in N(A) depends on the value of
ΛA, where the number of channels approaches zero as ΛA → 0. (As an illustration,
N(A) ∼ N0Λk

A with k > 0 and a large enough N0 would do.) A site with an effi-
cient tunneling channel would decay rapidly while a site without an efficient tunneling
channel would be very long lived. Statistically, there is a critical value of Λc such that
N(A) = 1 for ΛA = Λc. That is, N(A) > 1 for ΛA > Λc, and N(A) < 1 for ΛA < Λc.
Sites with Λ > Λc would decay relatively efficiently while sites with Λ < Λc would be
long lived. That is, there is a sharp jump in the lifetimes as Λ decreases past Λc. If Λc

turns out to be close to the value of the dark energy in our universe, one may consider
this as a qualitative explanation of the cosmological constant problem.

If the landscape does satisfy this property, then we have the following scenario.
Suppose we start at a site with Λ close to but below the string scale. It will decay
rapidly via a specific tunneling channel to another site with a lower Λ. This process may
repeat any number of times. (Here, efficient tunneling may still allow a site to inflate
some number of e-folds before decay.) Finally we reach a site F (in Figure 1) where
N(F ) < 1 and ΛF < Λc. Because of the very narrow resonance peaks, once efficient
tunneling is shut out, the decay time of F to another site, say a supersymmetric site
S, would be exponentially long. When this happens, we expect F to have a very long
lifetime. Presumably, this is the site our universe is living in today. That is, it does
not matter at which site the universe starts; in a short time, our universe would have
ended in a site with a very small cosmological constant.

5 Remarks

In the nucleation bubble picture in the thin wall approximation [4], bubbles of all
sizes keep popping out, a consequence of quantum fluctuations. However, because the
domain wall surface tension overcomes the volume effect, small bubbles shrink to zero
and play no role in the tunneling. Only large enough bubbles would be able to grow
and complete the tunneling process. Since large bubbles are much less likely to be
created, the typical resulting tunneling rate is exponentially suppressed. Although it
is not clear how resonance tunneling happens within this picture, presumably small
bubbles survive and propagate quantum mechanically in the classically allowed region
and contribute to the resonance tunneling process.

Let us consider the vacuum site B. For large values of Λ below the Planck mass
MP , quantum effect in the classically allowed region can be important. A deSitter
vacuum has a finite number of degrees of freedom and a horizon. A typical energy
spectrum has level spacing of order the Hubble scale H2 = Λ/M2

P in 4-dimensional
spacetime. Hitting an energy level would allow resonance tunneling from A to C via
B. As Λ decreases, the energy level spacing decreases. When the energy spacing is
small and the spectrum is dense, quantum effects become unimportant. This would
shut off the resonance tunneling via B. This may be happening when we consider the
tunneling from F with a very small cosmological constant, since ΛB ≤ ΛF . This may
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There is a critical CC :

Decays quickly very long lifetime



Eternal Inflation ?

T ~ 1

ΓA ∼ Ms

H ∼ M2

s /MP < ΓA

No eternal inflation !
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History

• The Universe is a spontaneous creation 
from NOTHING.

• It has a CC somewhere below the string 
scale.

• It then rapidly decays to a vacuum site in the 
landscape with an exponentially long lifetime.

• This is where we live.

• Resonance tunneling may happen both 
before and after inflation.



Conclusion
If the scenario is correct, we can appreciate string 

theory in this new light : it provides a vast landscape so 
that a small CC vacuum is among its solutions, and the 
same vastness destabilizes all vacua except ones with a 
very small CC, thus allowing our universe to emerge, 

survive and grow.

We still need to fold this scenario into the cosmological 
evolution of the universe.  A proper treatment requires 

us to start with the wavefunction of the universe. 
It is a challenging but tractable exercise to check the 

validity of this scenario.


