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observed| |Λ � quantum  corrections to it
(naturalness problem) 

Also, eff obs ( )V ϕΛ ≡ Λ + Δ

GUT

standard model vacuumeff ( )ϕΛ

ϕ

may change vastly 
in cosmic history

Why is there a “SM” vacuum with                            ?-120
effΛ 10∼

The cc problem:



Different approaches:

1- Symmetries

3- Vast landscape of “vacua”
4- Changing gravity (in the IR).

2- Adjustment mechanisms (no go)
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Different approaches:

1- Symmetries

3- Vast landscape of “vacua”
4- Changing gravity (in the IR).

2- Adjustment mechanisms (no go)

Changing gravity leads sometimes 
to a continuum of vacua (as in 3).
(e.g. Unimodular Gravity.)
And may also involve new symmetries.



Unimodular Gravity:

n1 ˆ ˆ[ ] [ , ]
2 matter matterS R g d x S g ψ= +∫

-1/ˆ ( det ) ng g g gμν μν μν→ ≡ −

0S
gμν

δ
δ

=

Weinberg 83, 
Buchmuller+Dragon 88
Alvarez et al. 07,
Blas 07

1 1R g R T g T
n nμν μν μν μν− = −

Traceless Einstein’s Eq.

in gauge 1g =

Any standard Lagrangian can be “unimodularized”

Weyl: g gμν μνδ φ= TDiff:
( ; )gμν μ νδ ξ=

0μ
μ ξ∂ =

Different invariance group

Equations of motion



;
1 ,
2vR Rμν

ν≡ ;[ ( 2) 2 ], 2n R T nT ν
μ μ ν− + = =

0

,μϑ

anomaly

( 2) 2 [ ] 2 .integration constn R T R nϑ− + − = =Λ

matterψ
×

Classical matter

The equation for the trace follows from the Bianchi identity

Seems quite appealing (“fewer” equations)

But nothing differs from Einstein’s theory at the level of phenomenology



Bigravity (Isham et al 71, 
Kogan and Damour,
Damour et al 02)

f gX μ
ν

μ λ
ν λ≡

( )V X Can only depend on  Tr[ ]n
n Xτ ≡ 1,...,4n =

Vintage requirements: 

* ,f gM M M�

1nτ ∼

*n Mτ∂ �

2 1/ 2 2 1/ 2 ( ) 4 1/ 2
*

,

( )i
g g f f m

i f g

S M g R M f R S M V Xg
=

= + + −∑∫ ∫ ∫
Interaction

Action

Matter



1( , )abM F

2( , )abM G

aY

aZ

fμν

gμν

Brane DBI-type action 4 4
*M d g fμν μνξ +∫

Brane

Diff invariance in         and 

J.G. , 08

Example: consider the double embedding

Standard EH kinetic terms for         and            in the target spaces 

1M 2M

Reparametrization invariance on the brane

abF abG
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1( ) det( ( ) )V X Xμ μ
ν νδ −= +

1( ) ( )[ ( ) ( ) ]( ( ))a
b

b
ag x Y x Y xX F Y xμ μλ

ν λ ν
− = ∂ ∂

abFgμν

( )aY x

Diff [ ] Diff[ ]g Fcompensators to “restore” ×

(Arkani-Hamed et al 03, Dubovsky, 04)

( )a a aY x xπ= +

In “unitary” gauge (            ) the diagonal invariance remains. 0π = Diff [ , ]f g

In the gauge ( )a aZ x xμ
μδ=
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Isn’t bigravity problematic?
Bigravity is a theory of massive gravity, and as such it has some issues.

On Lorentz-invariant backgrounds, we have the same problems as with 
Lorentz-invariant massive gravity

Spectrum:
One massless graviton
One massive graviton
+ possible ghostly junk…

(Can be decoupled
by                   )2

fM →∞

vDVZ discontinuity

Strong coupling near sources

Boulware Deser instability (6 propagating degrees of freedom)



However, none of them need apply in Lorentz violating backgrounds.

(Dubovsky 04, Rubakov 04)

These problems can be understood in terms of the dynamics of the
“pions” .( )a xπ (Deffayet+Rombouts 05

Creminelli et al. 05)



Lorentz invariant massive gravity

Fierz-Pauli lagrangian

Linear in the lapseQuadratic in shift

Five propagating degrees of freedom

(Linearized theory)

Wrong prediction for the bending of light because of the additional 
Spin 0 polarization of the graviton (vDVZ discontinuity). 



Lorentz invariant massive gravity

Fierz-Pauli lagrangian

Linear in the lapseQuadratic in shift

Five propagating degrees of freedom

(Linearized theory)

Wrong prediction for the bending of light because of the additional 
Spin 0 polarization of the graviton (vDVZ discontinuity). 

This changes if we do not stick to the Fierz-Pauli form

1α ≠

( 1)α ≠
Then the spin 0 contribution cancels with a new ghostly contribution
from the sixth polarization (the lapse is no longer a Lagrange multiplier)



Lorentz invariant massive gravity
(Non-linear theory)

Near sources, linear theory breaks down at distances smaller than 

1 4 1/ 5
v ( )Schr r m−= Vainshtein 72

At smaller distances, one can do another expansion which recovers
the Schwarzschild solution in the limit                    (although there is no 
guarantee that this matches the linearized solution far from the source). 

2 0m →

Boulware-Deser
instability 

Lapse and shift are no longer Lag. multipliers

The reduced Hamiltonian is unbounded below.



(Arkani-Hamed et al. 03,
Deffayet+Rombouts 05)

Longitudinal mode

The “pion” description

Action starts at cubic
order (no kinetic term)

Replacing

Action

This means one less degree of freedom, 
and hence the reason why there is 
no ghost in the linearized FP Lagrangian.



But there is a mixing with

In Einstein’s frame

After normalization

Strong coupling at the Vainshtein radius

Near the source, we are above cut-off ,  where we would have to take
the higher derivative terms seriously Ghost mode kicks in.

vr

1 4 1/ 5
v ( )Schr r m−=

Ghost is
active

Linear theory
applies

vr r�

Exact in the limit

http://atlas.geo.cornell.edu/people/weldon/earth-3d.gif


This will be the generic situation in the context of bigravity

In certain cases, due to residual gauge symmetry, we may have a
healthy “pion” lagrangian in the decoupling limit  (no ghosts)

(Dubovsky 04)

Lorentz-breaking mass term

The previous discussion does not apply.

(Damour, Kogan, 
Papazoglou 03,
Rubakov 04)

For instance, invariance under                        leads to ( )i i tξ ξ= 2
1 0m =

0ih
i

become Lagrange multipliers.

π Non-dynamical
0π Ghost “condensate”



Linearized spectrum: One massive graviton of mass      
with just two polarizations.

2m

slight modifications of Newton’s law

(No vDVZ discontinuity)

Potentially interesting phenomenology

(Dubovsky, Tinyakov, Tkachev, 05)



2 1gM =
2 1fM �

Inverse grav. couplings

2
2 * / gm m M M≡∼Graviton mass 48( 10 )−<

Overall scale (cut-off) 1/ 2
* ( )gM m M=

Binary pulsar

24( 10 )−<

We would like to cancel

1/ 4 16
vac TeV 10ρ −> =

(Much bigger than             ) *M

Scales:

2 1/ 2 2 1/ 2 ( ) 4 1/ 2
*

,

( )i
g g f f m

i f g

S M g R M f R S M V Xg
=

= + + −∑∫ ∫ ∫



( )V V X=Generic

Vacuum solutions

Field Eqs.

2 4
* vac( ( ' ) ) f

f fM R M V V Xμ μ μ μ
ν ν ν νδ ρ δ= − +

2 4
* vac( ( ' ) ) g

g gM R M V V Xμ μ μ μ
ν ν ν νδ ρ δ= + +

Not automatically μ
νδ∝

2 4
* 1 vac( ) ( ,...)g g

gM M F γγ ρΛ = +
2 4

* 2 vac( ) ( ,...)f f
fM M F γγ ρΛ = +

If we had a one parameter family of solutions satisfying        
with some free integration constant                   , then:1γ ∼

We could choose the 
integ. constant so that 

vac( )g gγ ρΛ �

Provided that 4
* vac

gM ρ≥

( ' )V X μ μ
ν νδ∝

Our vacuum energy would be curving the “other” metric, but not ours !



Isham and Storey 78
Blas, Deffayet, J.G. 07
Berezhiani et al. 07

2 1 2 2 2(1 ) (1 )g dx dx q dt q dr r dμ ν
μν

−= − − + − + Ω

2 2 2 2[ (1 ) 2 ]f dx dx p dt A dr r d dtdrDμ ν
μν βγ= − − + + Ω +

2(1 ) ( 1 )A q p q qβ β−= − − + −
22 (1 ) ( )( 1 )q p qD p qβ β−= − − + − −

Overall constant

Lorentz breaking

Type I Ansatz (non-diagonal):

With this ansatz

Eigenvalues of            :X μ
ν 0 1 2 3( , ), ( , )λ β γ λ λ λ β γ= =

X μ μ
ν νδ∝ ( )Generically, we obtain β β γ=for some

Free parameter
2(

3
)fp r

γ γΛ
= 2

3
( )gq r
γΛ

=

“Standard” vacuum solutions of GR 

n = tr (3 ) const.n n nXτ γ β− −= + =

γ
β



0,
(1 )r

p
p

π =
−

Global structure of a (de Sitter) – (Minkowski) bigravity solution

(Blas, Deffayet, J.G. 06)



The past timelike infinity of Minkowski is mapped into part of 
the de Sitter horizon



Not necessarily unique extension

Cauchy horizon  (unstable?)



Global structure of a (de Sitter) – (Minkowski) bigravity solution



(de Sitter) – (de Sitter) solution



2 1 2 2 2(1 ) (1 )g dx dx q dt q dr r dμ ν
μν

−= − − + − + Ω
2 1 2 2 2[ (1 ) (1 ) ]f dx dx q dt q dr r dμ ν

μν γ β −= − − + − + Ω

2 2(1 ) ( 1) ) 0( p qD q p qβ β−= − + − − =−

Diagonal Solutions:

Eigenvalues of            :X μ
ν 0 1 2 3( , ), ( , )λ β γ λ λ λ β γ= =

X μ μ
ν νδ∝We obtain ( )β β γ=but, also for other

Was a free 
parameter
for Type I sol.

2(
3

)fp r
γ γΛ

= 2

3
( )gq r
γΛ

=

Just take p=q in the Type I ansatz

Non-diagonal term

But now  the parameter is fixed
because of the additional requirement ( ) ( )g fγ γ γΛ = Λ

4 2 4
* 1 vac * 2 vac( ) [ ( ) ]g f

fM F M M F γρ γ ργ −+ = +

for 1β =



( ) ( )g fγ γ γΛ = Λ

4 2 4
* 1 vac * 2 vac( ) [ ( ) ]g f

fM F M M F γρ γ ργ −+ = +

Still an acceptably low curvature vacuum provided that

4
* *,

g
vac fM M Mρ ≤ �

vacρ

fμν gμν



Perturbations around Lorentz-Breaking biflat solutions

ni are  potential V(X) dependent coefficients

−M
4

8

n
n2(h

g
ij + h

ij
f )(hgij + h

ij
f ) + n0(h

g
00 + β−1h 00

f )(hg00 + β−1h 00
f )

−2n4(hg00 + β−1h 00
f )(hgii + h

ii
f ) + n3(h

g
ii + h

ii
f )2

o

No propagating
scalars and vectors, 
only tensors are 
propagating but stable 
perturbations 

(3+1 split  of the metric)

hX00 = 2AX

hX0i = BX,i + V
X
i

hXij = 2ψXδij − 2EX,ij − 2FX(i,j) − tXij

Peculiarity of this mass term: 
components          and 
are absent 

h 0i
f

hg0i

( )i tξ

Residual Diff[f]
invariance in this
background



Linearized
spectrum:

One massless graviton
One massive graviton

with just two polarizations.

(Can be decoupled
by                  , if need be)2

fM →∞
2m

Asymptotically flat non-linear solutions with sources recently obtained 

(Berezhiani, Comelli, Nesti, Pilo 08)

slight modifications of Newton’s law

(No vDVZ discontinuity)

Potentially interesting phenomenology
(Dubovsky, Tinyakov, Tkachev, 05)



Dubovsky, Tinyakov, Tkachev, 2005

(See however Pshirkov et al. 2008)

Relic massive gravitons detectable?



Outlook

Bigravity, or massive gravity, may perhaps play a role 
in “cancelling” the vacuum energy, by way of initial conditions

If we do observe a background of relic massive gravitons, 
this possibility will of course become more popular.

One drawback is that the generic energy scale 
in the massive graviton potential is not high enough 
to cancel a vacuum energy at, say, the TeV.

Still, one may hope that the graviton mass                      ,
where            is the generic energy scale in the graviton
potential.  This may perhaps be due to some symmetry.

2m m�
m

An extreme example is the case when the graviton interaction
potential is invariant under TDiff. This brings us back to the case
of unimodular gravity, where we can cancel any vacuum energy.  
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