Primeras observaciones de pares “combinados” de agujero negro y estrella de neutrones

Las colaboraciones científicas Virgo, LIGO y KAGRA anunciaron hoy la primera observación nunca vista de sistemas binarios formados por una estrella de neutrones (EN) y un agujero negro (AN). Esto ha sido posible gracias a la detección, en enero de 2020, de señales gravitatorias (apodadas GW200105 y GW200115 por las fechas de sus detecciones) emitidas por dos sistemas, en los cuales un agujero negro y una estrella de neutrones, girando uno alrededor de la otra, se fusionaron en un único objeto compacto. La existencia de estos sistemas fue predicha por la comunidad astronómica hace varias décadas, pero nunca habían sido observadas con seguridad, ya fuese por señales electromagnéticas o gravitatorias, hasta ahora. El resultado y sus implicaciones astrofísicas han sido publicadas hoy en The Astrophysical Journal Letters.

“Hasta ahora hemos observado pares de agujeros negros o pares de estrellas de neutrones mediante observaciones de radiación electromagnética o a través de ondas gravitacionales. El par de un agujero negro y una estrella de neutrones era el “sistema binario perdido” por el que la comunidad astronómica siempre se estaba preguntando”, comenta Astrid Lamberts, investigadora del CNRS y miembro de la colaboración Virgo en el laboratorio Artemis, Observatoire de la Côte d'Azur, en Niza. “Este descubrimiento muestra una vez más cómo los detectores de ondas gravitacionales están ampliando nuestro horizonte, permitiéndonos observar aquello que hasta ahora literalmente no podíamos ver.”

Las señales gravitatorias detectadas en enero codifican información valiosa sobre las características físicas de los sistemas, tales como la masa y la distancia de los dos pares de estrella de neutrones y agujero negro (ENAN), así como sobre los mecanismos físicos que han generado estos objetos y han hecho que colapsen. El análisis de la señal ha mostrado que el agujero negro y la estrella de neutrones que originaron GW200105 son, respectivamente, de alrededor de 8,9 y 1,9 veces tan masivos como nuestro Sol y que su fusión tuvo lugar hace unos 900 millones de años, cientos de millones de años antes de que los primeros dinosaurios aparecieran en la Tierra. En el caso del evento GW200115, los científicos de Virgo, LIGO y KAGRA estiman que los dos objetos compactos tenían masas de unas 5,7 (para el AN) y 1,5 (para la EN) veces la masa del Sol y que se fusionaron hace casi mil millones de años.

El resultado anunciado hoy, junto con las docenas de detecciones realizadas por Virgo y LIGO hasta la fecha, nos permiten, por primera vez, una observación cercana de uno de los fenómenos más violentos y raros del Universo, y dibujar una imagen inédita de las concurridas y caóticas regiones que son uno de los posibles entornos en donde se generan estos eventos. Además, la información detallada que hemos empezado a recopilar sobre la física de las fusiones de agujeros negros y estrellas de neutrones, nos ofrece la oportunidad de poner a prueba las leyes fundamentales de la física en condiciones extremas, que obviamente nunca podremos ser capaces de reproducir en la Tierra. “El descubrimiento anunciado hoy es una gema más en el tesoro del tercer período de observación de LIGO-Virgo”, añade Giovanni Losurdo, portavoz de Virgo e investigador del INFN. “LIGO y Virgo continúan desvelando colisiones catastróficas, nunca antes observadas, arrojando luz sobre un paisaje cósmico genuinamente nuevo. Ahora estamos actualizando los detectores con el objetivo de mirar mucho más allá en las profundidades del cosmos, buscando nuevas joyas, persiguiendo una comprensión más profunda del universo en el que vivimos.”

Seis grupos españoles contribuyen al estudio y análisis de las ondas gravitacionales detectadas en LIGO-Virgo, en áreas que van desde el modelado teórico de las fuentes astrofísicas y el análisis de los datos hasta la mejora de la sensibilidad de los detectores para los períodos de observación actuales y futuros. Dos grupos, en la Universitat de les Illes Balears (UIB) y el Instituto Galego de Física de Altas Enerxías (IGFAE) de la Universidad de Santiago de Compostela (USC), forman parte de la Colaboración Científica LIGO; mientras que la Universitat de València (UV), el Instituto de Ciencias del Cosmos de la Universidad de Barcelona (ICCUB),  el Institut de Física d’Altes Energies (IFAE) de Barcelona y el Instituto de Física Teórica de la Universidad Autónoma de Madrid-CSIC son miembros de Virgo.

Gravitational-wave observatories:

The Virgo Collaboration is currently composed of approximately 700 members from 126 institutions in 15 different (mainly European) countries. The European Gravitational Observatory (EGO) hosts the Virgo detector near Pisa in Italy, and is funded by Centre National de la Recherche Scientifique (CNRS) in France, the Istituto Nazionale di Fisica Nucleare (INFN) in Italy, and Nikhef in the Netherlands. A list of the Virgo Collaboration groups can be found at http://public.virgo-gw.eu/the-virgo-collaboration/. More information is available on the Virgo website at http://www.virgo-gw.eu 

LIGO is funded by the National Science Foundation (NSF) and operated by Caltech and MIT, which conceived of LIGO and led the project. Financial support for the Advanced LIGO project was led by the NSF, with Germany (Max Planck Society), the U.K. (Science and Technology Facilities Council) and Australia (Australian Research Council-OzGrav) making significant commitments and contributions to the project. Approximately 1,300 scientists from around the world participate in the effort through the LIGO Scientific Collaboration, which includes the GEO Collaboration. A list of additional partners is available at https://my.ligo.org/census.php.

The KAGRA laser interferometer, with 3-kilometer-long arms, is located in Kamioka, Gifu, Japan. The host institute is the Institute of Cosmic Ray Researches (ICRR) at the University of Tokyo, and the project is co-hosted by National Astronomical Observatory in Japan (NAOJ) and High Energy Accelerator Research Organization (KEK). KAGRA completed its construction in 2019, and later joined the international gravitational-wave network of LIGO and Virgo. The actual data taking was started in February 2020 during the final stage of the run called "O3b." KAGRA Scientific Congress is composed of over 470 members from 115 institutes in 14 countries/regions. The list of researchers is available from http://gwwiki.icrr.u-tokyo.ac.jp/JGWwiki/KAGRA/KSC/Researchers. KAGRA information is at the website https://gwcenter.icrr.u-tokyo.ac.jp/en/.