A holographic derivation of the entanglement entropy in quantum (conformal) field theories is proposed from AdS/CFT correspondence. We argue that the entanglement entropy in d+1 dimensional conformal field theories can be obtained from the area of d dimensional minimal surfaces in AdS_{d+2}, analogous to the Bekenstein-Hawking formula for black hole entropy. We show that our proposal perfectly reproduces the correct entanglement entropy in 2D CFT when applied to AdS_3. We also compare the entropy computed in AdS_5 \times S^5 with that of the free N=4 super Yang-Mills.
Social media