The BTZ black hole violates strong cosmic censorship

February 26, 2024
11:30am to 1:00pm

Grey Room 3

Specialist level
Pablo Saura Bastida

Grey Room 3


arXiv: 1906.08265

We investigate the stability of the inner horizon of a rotating BTZ black hole. We show that linear perturbations arising from smooth initial data are arbitrarily differentiable at the inner horizon if the black hole is sufficiently close to extremality. This is demonstrated for scalar fields, for massive Chern-Simons fields, for Proca fields, and for massive spin-2 fields. Thus the strong cosmic censorship conjecture is violated by a near-extremal BTZ black hole in a large class of theories. However, we show that a weaker “rough” version of the conjecture is respected. We calculate the renormalized energy-momentum tensor of a scalar field in the Hartle-Hawking state in the BTZ geometry. We show that the result is finite at the inner horizon of a near-extremal black hole. Hence, the backreaction of vacuum polarization does not enforce strong cosmic censorship.